Note

Distinguishing labeling of group actions

Tsai-Lien Wong*, Xuding Zhu
Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
National Center for Theoretical Sciences, Taiwan

Received 14 August 2005; received in revised form 11 February 2008; accepted 15 February 2008
Available online 25 March 2008

Abstract

Suppose Γ is a group acting on a set X. An r-labeling $f: X \rightarrow\{1,2, \ldots, r\}$ of X is distinguishing (with respect to Γ) if the only label preserving permutation of X in Γ is the identity. The distinguishing number, $D_{\Gamma}(X)$, of the action of Γ on X is the minimum r for which there is an r-labeling which is distinguishing. This paper investigates the relation between the cardinality of a set X and the distinguishing numbers of group actions on X. For a positive integer n, let $D(n)$ be the set of distinguishing numbers of transitive group actions on a set X of cardinality n, i.e., $D(n)=\left\{D_{\Gamma}(X):|X|=n\right.$ and Γ acts transitively on $\left.X\right\}$. We prove that $|D(n)|=O(\sqrt{n})$. Then we consider the problem of an arbitrary fixed group Γ acting on a large set. We prove that if for any action of Γ on a set Y, for each proper normal subgroup H of $\Gamma, D_{H}(Y) \leq 2$, then there is an integer n such that for any set X with $|X| \geq n$, for any action of Γ on X with no fixed points, $D_{\Gamma}(X) \leq 2$.

© 2008 Elsevier B.V. All rights reserved.
Keywords: Distinguishing number; Distinguishing set of group actions; Symmetric groups; Group actions; Graphs

1. Introduction

Distinguishing labeling was first defined by Albertson and Collins [1] for graphs. A labeling of a graph G, $f: V(G) \rightarrow\{1,2, \ldots, r\}$, is said to be r-distinguishing if no non-trivial automorphism of G preserves all the vertex labels. In other words, f is r-distinguishing if for any $\sigma \in \operatorname{Aut}(G), \sigma \neq 1$, there is a vertex x such that $f(x) \neq f(\sigma(x))$. The distinguishing number of a graph G is defined as
$D(G)=\min \{r:$ there exists an r-distinguishing labeling of $G\}$.
Distinguishing labeling can be naturally extended to general group actions [16]. Let Γ be a group acting on a set X. For a positive integer r, an r-labeling $f: X \rightarrow\{1,2, \ldots, r\}$ of X is said to be r-distinguishing with respect to the action of Γ if for any $\sigma \in \Gamma, f(x)=f(\sigma(x))$ for all x only if $\sigma x=x$ for all x. If the action of Γ on X is faithful, then $1 \in \Gamma$ is the only group element σ for which $\sigma x=x$ for all x. In this case, a labeling $f: X \rightarrow\{1,2, \ldots, r\}$ of X is r-distinguishing with respect to the action of Γ if for any $\sigma \in \Gamma$, if $\sigma \neq 1$, then there exists an $x \in X$ for which $f(x) \neq f(\sigma(x))$. (We use 1 to denote the unit of a group.) We shall be mainly interested in faithful group actions.

[^0]However, for the purpose of using inductions, we need to consider group actions that are not faithful. The distinguishing number $D_{\Gamma}(X)$ of the action of Γ on X is defined as

$$
D_{\Gamma}(X)=\min \{r: \text { there exists an } r \text {-distinguishing labeling of } X\} .
$$

The distinguishing number of graphs and group actions have been studied in [1-11,14,16]. It was proven in [16] that if Γ is a non-trivial abelian group then $D_{\Gamma}(X)=2$ for any action of Γ on a set X, and if Γ is a dihedral group, then $D_{\Gamma}(X) \leq 3$ for any action of Γ on a set X. The result was generalized in [5], where it was proved that if Γ is nilpotent of class c or supersolvable of length c then $D_{\Gamma}(X) \leq c+1$ for any action of Γ on a set X. It was proved in [16] that for any group Γ, if $|\Gamma|<(k+1)$! then $D_{\Gamma}(X) \leq k$ for any action of Γ on a set X. It was conjectured in [17] that for any action of S_{n} on a set $X, D_{S_{n}}(X)=\left\lceil n^{1 / k}\right\rceil$ or $\left\lceil(n-1)^{1 / k}\right\rceil$ for some positive integer k, and the conjecture was proved to be true [17] for almost all n.

All the results above explore the relation between the distinguishing number $D_{\Gamma}(X)$ and the structure of the group Γ. In this paper, we are interested in a different problem: How can the cardinality of X affect the distinguishing number? Assume that $X=[n]=\{1,2, \ldots, n\}$. It is obvious that $D_{\Gamma}([n]) \leq n$, as the labeling which assigns to each element of $[n]$ a distinct label is certainly distinguishing. So for a non-trivial group Γ action on $[n]$, we have $2 \leq D_{\Gamma}([n]) \leq n$ (an action of Γ on X is trivial if $\sigma x=x$ for all $\sigma \in \Gamma$ and for all $x \in X$). Now given any positive integer $2 \leq k \leq n$, is it possible to find an action of a group Γ on $[n]$ with $D_{\Gamma}([n])=k$? The answer is yes. For any $2 \leq k \leq n$, the subgroup of S_{n} which fixes each of $k+1, k+2, \ldots, n$ and whose action on $\{1,2, \ldots, k\}$ is isomorphic to S_{k} has distinguishing number k. However, this answer is not very convincing, because such an action is basically an action on the set $\{1,2, \ldots, k\}$. Is there an action Γ on $[n]$ which is transitive on $[n]$ and has $D_{\Gamma}([n])=k$? More precisely, for a positive integer n, let

$$
D(n)=\left\{D_{\Gamma}([n]): \Gamma \text { is a transitive subgroup of } S_{n}\right\} .
$$

The question, first asked by Chan [4,5], is to determine $D(n)$. In this paper, we shall prove that $|D(n)|=O(\sqrt{n})$, which means that most of the integers in the interval $[2, n]$ do not belong to $D(n)$. On the other hand, for infinitely many n, we have $|D(n)| \geq \log _{2} n$. The next question that we are interested in also concerns the relation between the distinguishing number and the cardinality of the set X. If Γ is a group, is there an integer $n=n(\Gamma)$ such that for any set X with $|X| \geq n$ and for any action of Γ on X, we have $D_{\Gamma}(X) \leq 2$?

If there is an action of Γ on a set X with $D_{\Gamma}(X)>2$, then the answer is trivially 'no' since we can add to X arbitrarily many elements x that are fixed by all the group elements, i.e., let X^{\prime} be a large superset of X, and extend the action of Γ to X^{\prime} by letting $\sigma(x)=x$ for all $\sigma \in \Gamma$ and all $x \in X^{\prime} \backslash X$. The addition of such elements does not change the distinguishing number. To make the problem interesting, one needs to avoid such 'trivial' actions. Suppose O is an orbit of the action of Γ on X. Let K be the pointwise stabilizer of O. Then K is a normal subgroup of Γ. We say O is a restrictive orbit if for any action of Γ on a set Y, we have $D_{K}(Y) \leq 2$. We shall prove that for any group Γ, there is an integer $n=n(\Gamma)$ such that for any action of Γ on X, if the union of the restrictive orbits has cardinality at least n, then $D_{\Gamma}(X)=2$.

For $x \in X$, let stab ${ }_{x}=\{\sigma \in \Gamma: \sigma x=x\}$ be the point-stabilizer of x. To each orbit O, one associates the conjugacy class $\pi(O)=\left\{\operatorname{stab}_{x}: x \in O\right\}$ of subgroups of Γ. Let $\|O\|$ be the number of orbits O^{\prime} with $\pi\left(O^{\prime}\right)=\pi(O)$. We shall prove that if for each orbit O, the cardinality satisfies $2^{\|O\|} \geq|O|$, then $D_{\Gamma}(X)=2$.

2. Bounding the size of $D(n)$

This section discusses the distinguishing number of transitive actions on [n]. Assume Γ acts transitively on $[n]$. Then Γ is either a primitive subgroup of S_{n} or an imprimitive subgroup of S_{n}. In the latter case, it is known (see [13]) that we can write $[n]$ as the Cartesian product of $[k]$ and $[m]$, and $\Gamma=K \imath H$ is the wreath product of K and H, where K is a primitive subgroup of S_{k} and H is a transitive subgroup of S_{m}. Recall that the wreath product $K \imath H$ has elements

$$
\{(f, h): h \in H \text { and } f \text { is a map from }[m] \text { to } K\} .
$$

We denote the image of $j \in[m]$ by $f_{j} \in K$. The action on $[k] \times[m]$ is defined for $(i, j) \in[k] \times[m]$ by $(f, h)(i, j)=\left(f_{j}(i), h(j)\right)$. The sets $B_{j}=\{(i, j): i \in[k]\}$ are called blocks. Thus the element $(f, h) \in K \imath H$ maps the block B_{j} to the block $B_{h(j)}$.

Lemma 2．1．Suppose $n=k m$ and $k, m \geq 2$ ．View $[n]$ as the Cartesian product $[k] \times[m]$ ．Suppose K is a primitive subgroup of S_{k} and H is a transitive subgroup of S_{m} ，and consider the action of K 2 H on［ n ］defined above．

1．If $k>m$ then the wreath products S_{k} 々 H and A_{k} 々 H have distinguishing numbers $D_{S_{k} \imath H}([n])=k+1$ and $D_{A_{k} 2 H}([n])=k-1$ ．
2．If $D_{K}([k])=t$ and r is an integer with $\binom{r}{t} \geq D_{H}([m])$ ，then $D_{K \imath H}([n]) \leq r$ ．
Proof．The distinguishing number of the action of the wreath product of groups is studied in［4］．Lemma 2.1 follows from results in［4］．However，we include here a short direct proof．

Proof of（1）．Assume $k>m$ ．If $K=S_{k}$ ，then let ϕ be the $(k+1)$－labeling of $[k] \times[m]$ which labels the k elements of block B_{j} with the k distinct labels in $\{1,2, \ldots, k+1\} \backslash\{j\}$ ．We claim that ϕ is a distinguishing labeling．Indeed， if $(f, h) \in S_{k}$ 乙 H preserves the labeling ϕ ，then since $\phi\left(B_{j}\right)=\phi\left(B_{h(j)}\right)$ and distinct blocks use different label sets， we conclude that $h(j)=j$ ．Thus $(f, h)(i, j)=\left(f_{j}(i), j\right)$ ．But distinct elements in B_{j} are labeled by distinct labels． So $f_{j}(i)=i$ ，and hence $(f, h)=i d_{[k] \times[m]}$ ．On the other hand，since $K=S_{k}$ ，a distinguishing labeling of $[k] \times[m]$ must label each block with k distinct labels，and there must be two blocks that use different label sets．Therefore $D_{S_{k} 2 H}([n])=k+1$ ．

If $K=A_{k}$ ，then let ϕ be the $(k-1)$－labeling of $[k] \times[m]$ which labels the k elements of block B_{j} with the $k-1$ labels in $\{1,2, \ldots, k-1\}$ such that label j is used twice，and every other label is used once．Now we show that ϕ is a distinguishing labeling．If $(f, h) \in A_{k} \imath H$ preserves the labeling，then since $\phi\left(B_{j}\right)=\phi\left(B_{h(j)}\right)$ and colour j is the only colour used twice in B_{j} ，colour $h(j)$ is the only colour used twice in $B_{h(j)}$ ，we conclude that $h(j)=j$ ．In B_{j} distinct elements are labeled by distinct labels，except that two elements，say q, q^{\prime} ，are both labeled by label j ．Thus f_{j} fixes all elements of B_{j} ，except possibly interchanging q and q^{\prime} ．However，since $f_{j} \in A_{k}$ is an even permutation， we know that $f_{j} \neq\left(q q^{\prime}\right)$ ．Therefore f_{j} fixes all elements of B_{j} ．On the other hand，a distinguishing labeling of a single block already needs $k-1$ labels．Indeed，if ϕ is a labeling of $[k] \times[m]$ which uses less than $k-1$ labels， then for each $j \in[k]$ ，either there are three elements，say $q, q^{\prime}, q^{\prime \prime}$ ，of B_{j} labeled by the same label，or there are four elements，say q, q^{\prime} and p, p^{\prime} ，such that q, q^{\prime} are labeled by the same label，and p, p^{\prime} are labeled by the same label． Let $h(j)=j$ for all j ，and let

$$
f_{j}= \begin{cases}\left(q q^{\prime} q^{\prime \prime}\right), & \text { if there exist } q, q^{\prime}, q^{\prime \prime} \in[k] \text { with } \phi(q)=\phi\left(q^{\prime}\right)=\phi\left(q^{\prime \prime}\right) \\ \left(q q^{\prime}\right)\left(p p^{\prime}\right), & \text { if there exist } q, q^{\prime}, p, p^{\prime} \in[k] \text { with } \phi(q)=\phi\left(q^{\prime}\right) \text { and } \phi(p)=\phi\left(p^{\prime}\right)\end{cases}
$$

Then $(f, h) \in A_{k} \imath H$ preserves the labeling ϕ ．Thus we have proven that $D_{A_{k} \imath H}([n])=k-1$ ．
Proof of（2）．Suppose K is a subgroup of S_{k} with $D_{K}([k])=t$ and r is an integer with $\binom{r}{t} \geq D_{H}([m])$ ．We define an r－labeling of $[k] \times[m]$ as follows：Let $\binom{[r]}{t}$ be the family of t－subsets of the r labels．Let $\phi:[m] \rightarrow\binom{[r]}{t}$ be a distinguishing labeling of the action of H on $[m]$ ．Now for each block B_{j} ，use the t labels in the t－subset $\phi(j)$ to label the elements of B_{j} in such a way that it is a distinguishing labeling of $[k]$ with respect to the action of K ．Now if $(f, h) \in K \imath H$ preserves the labeling ϕ ，then since $\phi\left(B_{j}\right)=\phi\left(B_{h(j)}\right)$ ，we conclude that $h(j)=j$ ．Within the block B_{j} ，since the labeling is distinguishing with respect to the action of K ，we have that f_{j} is the identity mapping．So ϕ is a distinguishing labeling and hence $D_{K \imath H}([n]) \leq r$ ．

For a group action of K on $[k]$ ，two labelings l_{1} and l_{2} of［ k ］are equivalent if there exists $\sigma \in K$ such that $l_{1}(\sigma x)=l_{2}(x)$ for all $x \in[k]$ ．In the second half of Lemma 2．1，the condition that $\binom{r}{t} \geq D_{H}([m])$ can be replaced by the condition that＂the number of non－equivalent r－labelings of［ k ］with respect to K is greater than or equal to $D_{H}([m])$＂．If $D_{K}([k])=t$ ，then of course $D_{K \imath H}([n]) \geq t$ ．If the number of non－equivalent t－labelings of $[k]$ with respect to K is greater than or equal to $D_{H}([m])$ ，then we have $D_{K \imath H}([n])=t$ ．

Lemma 2．2．Suppose k, n are positive integers and $k>5 \sqrt{n}$ and $k \neq n$ ．Then $k \in D(n)$ if and only if $k+1$ or $k-1$ is a factor of n ．

Proof．If $k \neq n, k>5 \sqrt{n}$ and $k+1$ or $k-1$ is a factor of n ，then it follows from Lemma 2.1 that $k \in D(n)$ ． Conversely，assume $k \in D(n)$ and $k>5 \sqrt{n}$ ．We shall show that $k+1$ or $k-1$ is a factor of n ．Assume to the contrary that neither $k+1$ nor $k-1$ is a factor of n ．Let Γ be a group acting transitively on $[n]$ with $D_{\Gamma}([n])=k$ ．

As $D_{\Gamma}([n])=k \neq n$ and $k \neq n-1$, we conclude that $\Gamma \neq S_{n}, A_{n}$. If Γ is a transitive, primitive subgroup of S_{n}, then it follows from a result of [12] that $|\Gamma| \leq 50 n^{\sqrt{n}}$. It is proved in [16] that if $|H| \leq k!$ then $D_{H}(Z) \leq k$ for any action of H on any set Z. Therefore $k=D_{\Gamma}([n]) \leq 5 \sqrt{n}$, which is a contradiction.

Assume Γ is an imprimitive subgroup of S_{n}. Then there are positive integers t, m such that $t \times m=n$ and $\Gamma=K \imath H$, where K is a primitive subgroup of S_{t} and H is a transitive subgroup of S_{m}.

We claim $D_{K}([t]) \leq 5 \sqrt{n / 2}$. If $t \leq \sqrt{n}$, then $D_{K}([t]) \leq t<5 \sqrt{n / 2}$. Assume $t>\sqrt{n}$. If $K=S_{t}$, then by Lemma 2.1, $k=D_{\Gamma}([n])=t+1$. Hence $k-1=t$ is a factor of n, contrary to our assumption. If $K=A_{t}$, then $k=D_{\Gamma}(X)=t-1$. Hence $k+1=t$ is a factor of n, again contrary to our assumption. Hence $K \neq S_{t}, A_{t}$, and so $|K| \leq 50 t^{\sqrt{t}}$ and hence $D_{K}([t]) \leq 5 \sqrt{t} \leq 5 \sqrt{n / 2}$.

Suppose $D_{K}([t])=s$. Then for $r=5 \sqrt{n / 2}+2$, we have $\binom{r}{s} \geq n>D_{H}([m])$. By Lemma 2.1, $D_{\Gamma}([n]) \leq r \leq$ $5 \sqrt{n}$, again contrary to our assumption. This completes the proof of Lemma 2.2.

Theorem 2.3. Let $D(n)=\left\{D_{\Gamma}([n]): \Gamma\right.$ is a transitive subgroup of $\left.S_{n}\right\}$. Then

$$
|D(n)|=O(\sqrt{n})
$$

Proof. By Lemma 2.2, if $k \in D(n)$, then either $k \leq 5 \sqrt{n}$ or $k=n$ or $k-1$ is a factor of n or $k+1$ is a factor of n. As n has at most $O(\ln n)$ factors, it follows that $|D(n)|=O(\sqrt{n})$.

We do not know whether the upper bound given in Theorem 2.3 is optimal. It follows from Lemma 2.1 that if k is a factor of n such that $k<n<k^{2}$, then $k-1, k+1 \in D(n)$. If $n=2^{m}$ and m is odd, then n has $\frac{m-1}{2}$ factors k with $k<n$ and $k^{2}>n$ and hence $|D(n)| \geq m-1=\log _{2} n-1$. As $2 \in D(n)$, if $m \geq 5$, we have $|D(n)| \geq m=\log _{2} n$.

3. A group acting on a large set

Tucker and Conder [15] have shown that there are only a finite number of 3-connected planar graphs G with $D(G)>2$. Thus if G is a sufficiently large 3-connected planar graph then $D(G) \leq 2$. This leads to the following question:

Suppose Γ is a group which acts on a sufficiently large set X. Under what conditions is $D_{\Gamma}(X) \leq 2$?
If $x \in X$ is a fixed point of Γ, then let $X^{\prime}=X \backslash\{x\}$. It is obvious that $D_{\Gamma}(X)=D_{\Gamma}\left(X^{\prime}\right)$. Thus for the question to be interesting, we assume that Γ has no fixed points. However, for some groups Γ, having no fixed points and X large enough still does not imply that $D_{\Gamma}(X) \leq 2$. For example, consider the action of S_{n} on $[n]=\{1,2, \ldots, n\}$. We extend the action to a large set $X=[n] \cup_{i=1}^{k}\left\{a_{i, 0}, a_{i, 1}\right\}$ (where k is a large integer) as follows: If σ is even, then $\sigma\left(a_{i, j}\right)=a_{i, j}$; if σ is odd, then $\sigma\left(a_{i, j}\right)=a_{i, 1-j}$. If $\sigma \in S_{n}$ is even, then $\sigma x=x$ for every $x \in \cup_{i=1}^{k}\left\{a_{i, 0}, a_{i, 1}\right\}$. Thus if f is a labeling which labels $a_{1,0}$ and $a_{1,1}$ with distinct labels, then the label is preserved by $\sigma \in S_{n}$ if and only if $\sigma \in A_{n}$. Therefore $D_{S_{n}}(X)=D_{A_{n}}([n])=n-1$. The problem in this example is that the "large part" of the set X is pointwise fixed by the "large subgroup" A_{n} of S_{n}.

An action of Γ on X and an action of Γ on Y are isomorphic if there is a one-to-one correspondence $\phi: X \rightarrow Y$ such that for any $\sigma \in \Gamma, \phi(\sigma x)=\sigma \phi(x)$. Let H be a subgroup of Γ. There is a natural action of Γ on cosets of H defined as $\sigma(\tau H)=\sigma \tau H$ for $\sigma \in \Gamma$. For subgroups H_{1}, H_{2} of Γ, we notice first that the action of Γ on cosets of H_{1} is isomorphic to the action of Γ on cosets of H_{2} if H_{1} is conjugate to H_{2} (i.e. $H_{1}=\sigma H_{2} \sigma^{-1}$ for some $\sigma \in \Gamma$). Suppose O is an orbit of the action of Γ on X. Then the action of Γ on O is isomorphic to the action of Γ on cosets of stab_{x} for any $x \in O$.

We denote the conjugacy class $\left\{\operatorname{stab}_{x}: x \in O\right\}$ by $\pi(O)$ and denote the set of all conjugacy classes of Γ by \mathcal{S}. Given a conjugacy class C in \mathcal{S}, let v_{C} be the number of orbits O in X with $\pi(O)=C$ and let $\|O\|=v_{\pi(O)}$. Then, up to isomorphism, the action of Γ on a set X is characterized by the integer vector $\vec{v}=\left\{v_{C}: C \in \mathcal{S}\right\}$.

Lemma 3.1. Suppose Γ is a group acting on a set X. For a positive integer n, define an action of Γ on $X \times[n]$ as $\sigma(x, i)=(\sigma x, i)$. Then $D_{\Gamma}(X \times[n])=\left\lceil\left(D_{\Gamma}(X)\right)^{1 / n}\right\rceil$.

Proof. Suppose $D_{\Gamma}(X \times[n])=d$ and f is a d-distinguishing labeling of $X \times[n]$ with respect to Γ. Let $g: X \rightarrow[d]^{n}$ be defined as $g(x)=(f(x, 1), f(x, 2), \ldots, f(x, n))$. If $\sigma \in \Gamma$ and $g(\sigma x)=g(x)$ for all x, then $f(\sigma(x, i))=f(x, i)$ for all $(x, i) \in X \times[n]$. Since f is a distinguishing labeling, we conclude that $\sigma x=x$ for all x. So g is a d^{n} distinguishing labeling of X with respect to Γ. Hence $D_{\Gamma}(X) \leq\left(D_{\Gamma}(X \times[n])\right)^{n}$. Conversely, suppose s is an integer
and $D_{\Gamma}(X) \leq s^{n}$. Let $g: X \rightarrow[s]^{n}$ be a distinguishing labeling of X with respect to Γ. Let $f: X \times[n] \rightarrow[s]$ be defined as $f(x, i)=j$ if the i-th component of $g(x)$ is j. If $\sigma \in \Gamma$ and $f(\sigma(x, i))=f(x, i)$ for all x, i, then $g(\sigma x)=g(x)$ for all x. Since g is distinguishing, we conclude that $\sigma x=x$ for all x. Hence f is a distinguishing labeling and so $D_{\Gamma}(X \times[n]) \leq s$. Therefore $D_{\Gamma}(X \times[n]) \leq\left\lceil\left(D_{\Gamma}(X)\right)^{1 / n}\right\rceil$.

For an orbit O of the action of Γ on X, let $K_{O}=\cap_{H \in \pi(O)} H$. Then K_{O} is a normal subgroup of Γ.
Lemma 3.2. Suppose Γ is a group acting on a set X and $O_{1}, O_{2}, \ldots, O_{k}$ are orbits of the action. Let $Y=\cup_{j=1}^{k} O_{j}$ and $Z=X \backslash Y$. Let $K=\cap_{j=1}^{k} K_{O_{j}}$. Then

$$
D_{K}(Z) \leq D_{\Gamma}(X) \leq \max \left\{D_{\Gamma}(Y), D_{K}(Z)\right\} .
$$

Proof. Assume f is a distinguishing labeling of X with respect to Γ. If $\sigma \in K$ and $f(\sigma x)=f(x)$ for all $x \in Z$, then $f(\sigma x)=f(x)$ for all $x \in X$ (because for $x \notin Z, \sigma x=x$). Therefore $\sigma x=x$ for all $x \in Z$, i.e., the restriction of f to Z is a distinguishing labeling of Z with respect to K. This proves the first inequality.

Let $r=\max \left\{D_{\Gamma}(Y), D_{K}(Z)\right\}$, let $f_{1}: Y \rightarrow\{1,2, \ldots, r\}$ be an r-distinguishing labeling of Y with respect to Γ and let $f_{2}: Z \rightarrow\{1,2, \ldots, r\}$ be an r-distinguishing labeling of Z with respect to K. Let

$$
g(x)= \begin{cases}f_{1}(x), & \text { if } x \in Y \\ f_{2}(x), & \text { if } x \in Z\end{cases}
$$

If $\sigma \in \Gamma$ and $g(\sigma x)=g(x)$ for all x, then $f_{1}(\sigma x)=f_{1}(x)$ for all $x \in Y$. Since f_{1} is a distinguishing labeling of Y with respect to Γ (note that $\sigma Y=Y$ and $\sigma Z=Z$), we have $\sigma x=x$ for all $x \in Y$. So $\sigma \in K$. Because $f_{2}(\sigma x)=f_{2}(x)$ for all $x \in Z$ and f_{2} is a distinguishing labeling of Z with respect to K, we conclude that $\sigma x=x$ for all $x \in Z$. Therefore $\sigma x=x$ for all $x \in X$ and g is a distinguishing labeling of X with respect to Γ. This proves the second inequality.

Theorem 3.3. Suppose Γ acts on X and O is an orbit of the action. Then

$$
D_{\Gamma}(X) \leq \max \left\{\left(D_{\Gamma}(O)\right)^{1 /\|O\|}, D_{K_{O}}(X)\right\} .
$$

Proof. Let $O_{1}, O_{2}, \ldots, O_{\|} O \|$ be the set of orbits with $\pi\left(O_{j}\right)=\pi(O)$. Let $Y=\cup_{j=1}^{\|O\|} O_{j}$ and $Z=X \backslash Y$. Since $K_{O_{j}}=K_{O}$ for all j, and $D_{K_{O}}(X)=D_{K_{O}}(Z)$, the conclusion follows from Lemma 3.2.

Suppose Γ acts on X and O is an orbit. We say O is a restrictive orbit if for any action of Γ on a set Y, we have $D_{K_{O}}(Y) \leq 2$.

Corollary 3.4. For an action of Γ on X, if there is a restrictive orbit O with $2^{\|O\|} \geq D_{\Gamma}(O)$, then $D_{\Gamma}(X) \leq 2$.
Proof. Assume O is a restrictive orbit with $2^{\|O\|} \geq D_{\Gamma}(O)$. Apply Theorem 3.3, we conclude that $D_{\Gamma}(X) \leq 2$.
Corollary 3.5. Suppose Γ is a group such that for any proper normal subgroup H of Γ, for any action of Γ on a set Y, we have $D_{H}(Y) \leq 2$. Then there is an integer $n=n(\Gamma)$ such that for any set X with $|X| \geq n$, for any action of Γ on X with no fixed points, $D_{\Gamma}(X) \leq 2$.

Proof. The assumption implies that all the orbits are restrictive. Thus the conclusion follows from Corollary 3.4.
The following is a special case of Corollary 3.5.
Corollary 3.6. If Γ is a simple group and X is a sufficiently large set, then for any action of Γ on X without fixed points, $D_{\Gamma}(X) \leq 2$.

Suppose Γ acts on X. For $\sigma \in \Gamma$, let $m(\sigma)=|\{x \in X: \sigma x \neq x\}|$, and let $m(\Gamma)=\min \{m(\sigma): \sigma \in \Gamma, m(\sigma) \neq 0\}$. It was shown in [14] that if $m(\Gamma)>2 \log _{2}(|\Gamma|)$, then $D_{\Gamma}(X)=2$. Corollary 3.6 also follows from this result, because if Γ is simple, then for each non-trivial orbit O (i.e., orbits containing at least two elements), for each $\sigma \in \Gamma$ with $\sigma \neq 1$, there is an element $x \in O$ for which $\sigma x \neq x$. Hence $m(\Gamma)$ is at least as large as the number of non-trivial orbits.

If X is sufficiently large and there is no fixed points, then there are sufficiently many non-trivial orbits, and hence $D_{\Gamma}(X)=2$.

The condition in Corollary 3.4 is necessary in the following sense: If X is large but the union of restrictive orbits is small, then it is possible that $D_{\Gamma}(X)>2$. Let O be an orbit of the action of Γ on X. Assume there is an action of Γ on Y with $D_{K_{O}}(Y) \geq 3$. Then for any positive integer m, the action of Γ to $X=Y \cup(O \times[m])$ has $D_{\Gamma}(X) \geq D_{K_{O}}(A) \geq 3$ by Lemma 3.2.

Theorem 3.7. Suppose Γ acts on X. If $\left(D_{\Gamma}(O)\right)^{1 /\|O\|} \leq d$ for each orbit O, then $D_{\Gamma}(X) \leq d$.
Proof. For each conjugacy class C of subgroups of Γ, let Y_{C} be the union of orbits O with $\pi(O)=C$. By Lemma 3.1, $D_{\Gamma}\left(Y_{C}\right) \leq d$ for each C. Since $D_{\Gamma}(X) \leq \max _{C \in \mathcal{S}}\left\{D_{\Gamma}\left(Y_{C}\right)\right\}$, we have $D_{\Gamma}(X) \leq d$.

Corollary 3.8. If $\left(D_{\Gamma}(O)\right)^{1 /\|O\|} \leq 2$ for each orbit O, then $D_{\Gamma}(X)=2$.

Acknowledgements

The first author was supported in part by the National Science Council under grant NSC 93-2115-M-110-002. The second author was supported in part by the National Science Council under grant NSC93-2115-M-110-004.

References

[1] M.O. Albertson, K.L. Collins, Symmetry breaking in graphs, Electron. J. Combin. 3 (1996) \#R18, 17pp.
[2] M.O. Albertson, K.L. Collins, An introduction to symmetry breaking in graphs, Graph Theory Notes NY 30 (1996) 6-7.
[3] B. Bogstad, L.J. Cowen, The distinguishing number of the hypercube, Discrete Math. 283 (2004) 29-35.
[4] M. Chan, The distinguishing number of the augmented cube and hypercube powers, manuscript, August 2004.
[5] M. Chan, The maximum distinguishing number of a group, manuscript, September 2004.
[6] M. Chan, The distinguishing number of the direct and wreath product action, manuscript, January, 2005.
[7] C.T. Cheng, Three problems in graph labeling, Ph.D., The John Hopkins University, 1999.
[8] C.T. Cheng, L.J. Cowen, On the local distinguishing numbers of cycles, Discrete Math. 196 (1999) 97-108.
[9] K.L. Collins, Symmetry breaking in graphs, Talk at the DIMACS Workshop on Discrete Mathematical Chemistry, DIMACS, Rutgers University, March 23-25, 1998.
[10] S. Klavžar, T. Wong, X. Zhu, Distinguishing labelings of group action on vector spaces and graphs, manuscript, 2005.
[11] S. Klavžar, X. Zhu, Cartesian powers of graphs can be distinguished with two labels, manuscript, 2005.
[12] A. Maróti, On the orders of primitive groups, J. Algebra 258 (2002) 631-640.
[13] C.E. Praeger, Finite primitive permutation groups: A survey, in: Groups-Canberra 1989, in: Lecture Notes in Math., vol. 1456, Springer, Berlin, 1990, pp. 63-84.
[14] A. Russell, R. Sundaram, A note on the asymptotics and computational complexity of graph distinguishability, Electron. J. Combin. 5 (1998) \#R23 7pp.
[15] Tom Tucker, Marston Conder, 2-distinguishability of automorphism groups of maps, groups, and other structures, Talk at Graph Theory with Altitude, Denver, May 2005.
[16] J. Tymoczko, Distinguishing numbers for graphs and groups, Electron. J. Combin. 11 (2004) \#R63 13pp.
[17] Tsai-Lien Wong, Xuding Zhu, Distinguishing sets of the actions of symmetric groups, manuscript, 2005.

[^0]: * Corresponding author at: Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.

 E-mail addresses: tlwong@math.nsysu.edu.tw (T.-L. Wong), zhu@math.nsysu.edu.tw (X. Zhu).

