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Abstract

Suppose Γ is a group acting on a set X . An r -labeling f : X → {1, 2, . . . , r} of X is distinguishing (with respect to Γ ) if the
only label preserving permutation of X in Γ is the identity. The distinguishing number, DΓ (X), of the action of Γ on X is the
minimum r for which there is an r -labeling which is distinguishing. This paper investigates the relation between the cardinality
of a set X and the distinguishing numbers of group actions on X . For a positive integer n, let D(n) be the set of distinguishing
numbers of transitive group actions on a set X of cardinality n, i.e., D(n) = {DΓ (X) : |X | = n and Γ acts transitively on X}. We
prove that |D(n)| = O(

√
n). Then we consider the problem of an arbitrary fixed group Γ acting on a large set. We prove that if for

any action of Γ on a set Y , for each proper normal subgroup H of Γ , DH (Y ) ≤ 2, then there is an integer n such that for any set
X with |X | ≥ n, for any action of Γ on X with no fixed points, DΓ (X) ≤ 2.
c© 2008 Elsevier B.V. All rights reserved.

Keywords: Distinguishing number; Distinguishing set of group actions; Symmetric groups; Group actions; Graphs

1. Introduction

Distinguishing labeling was first defined by Albertson and Collins [1] for graphs. A labeling of a graph G,
f : V (G) → {1, 2, . . . , r}, is said to be r -distinguishing if no non-trivial automorphism of G preserves all the
vertex labels. In other words, f is r -distinguishing if for any σ ∈ Aut(G), σ 6= 1, there is a vertex x such that
f (x) 6= f (σ (x)). The distinguishing number of a graph G is defined as

D(G) = min{r : there exists an r -distinguishing labeling of G}.

Distinguishing labeling can be naturally extended to general group actions [16]. Let Γ be a group acting on a set X .
For a positive integer r , an r -labeling f : X → {1, 2, . . . , r} of X is said to be r -distinguishing with respect to the
action of Γ if for any σ ∈ Γ , f (x) = f (σ (x)) for all x only if σ x = x for all x . If the action of Γ on X is faithful,
then 1 ∈ Γ is the only group element σ for which σ x = x for all x . In this case, a labeling f : X → {1, 2, . . . , r} of
X is r -distinguishing with respect to the action of Γ if for any σ ∈ Γ , if σ 6= 1, then there exists an x ∈ X for which
f (x) 6= f (σ (x)). (We use 1 to denote the unit of a group.) We shall be mainly interested in faithful group actions.
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However, for the purpose of using inductions, we need to consider group actions that are not faithful. The
distinguishing number DΓ (X) of the action of Γ on X is defined as

DΓ (X) = min{r : there exists an r -distinguishing labeling of X}.

The distinguishing number of graphs and group actions have been studied in [1–11,14,16]. It was proven in [16]
that if Γ is a non-trivial abelian group then DΓ (X) = 2 for any action of Γ on a set X , and if Γ is a dihedral group,
then DΓ (X) ≤ 3 for any action of Γ on a set X . The result was generalized in [5], where it was proved that if Γ is
nilpotent of class c or supersolvable of length c then DΓ (X) ≤ c + 1 for any action of Γ on a set X . It was proved in
[16] that for any group Γ , if |Γ | < (k+1)! then DΓ (X) ≤ k for any action of Γ on a set X . It was conjectured in [17]
that for any action of Sn on a set X , DSn (X) = dn

1/k
e or d(n − 1)1/k

e for some positive integer k, and the conjecture
was proved to be true [17] for almost all n.

All the results above explore the relation between the distinguishing number DΓ (X) and the structure of the group
Γ . In this paper, we are interested in a different problem: How can the cardinality of X affect the distinguishing
number? Assume that X = [n] = {1, 2, . . . , n}. It is obvious that DΓ ([n]) ≤ n, as the labeling which assigns to
each element of [n] a distinct label is certainly distinguishing. So for a non-trivial group Γ action on [n], we have
2 ≤ DΓ ([n]) ≤ n (an action of Γ on X is trivial if σ x = x for all σ ∈ Γ and for all x ∈ X ). Now given any positive
integer 2 ≤ k ≤ n, is it possible to find an action of a group Γ on [n] with DΓ ([n]) = k? The answer is yes. For any
2 ≤ k ≤ n, the subgroup of Sn which fixes each of k+1, k+2, . . . , n and whose action on {1, 2, . . . , k} is isomorphic
to Sk has distinguishing number k. However, this answer is not very convincing, because such an action is basically
an action on the set {1, 2, . . . , k}. Is there an action Γ on [n] which is transitive on [n] and has DΓ ([n]) = k? More
precisely, for a positive integer n, let

D(n) = {DΓ ([n]) : Γ is a transitive subgroup of Sn}.

The question, first asked by Chan [4,5], is to determine D(n). In this paper, we shall prove that |D(n)| = O(
√

n),
which means that most of the integers in the interval [2, n] do not belong to D(n). On the other hand, for infinitely
many n, we have |D(n)| ≥ log2 n. The next question that we are interested in also concerns the relation between the
distinguishing number and the cardinality of the set X . If Γ is a group, is there an integer n = n(Γ ) such that for any
set X with |X | ≥ n and for any action of Γ on X , we have DΓ (X) ≤ 2?

If there is an action of Γ on a set X with DΓ (X) > 2, then the answer is trivially ‘no’ since we can add to X
arbitrarily many elements x that are fixed by all the group elements, i.e., let X ′ be a large superset of X , and extend
the action of Γ to X ′ by letting σ(x) = x for all σ ∈ Γ and all x ∈ X ′ \ X . The addition of such elements does not
change the distinguishing number. To make the problem interesting, one needs to avoid such ‘trivial’ actions. Suppose
O is an orbit of the action of Γ on X . Let K be the pointwise stabilizer of O . Then K is a normal subgroup of Γ . We
say O is a restrictive orbit if for any action of Γ on a set Y , we have DK (Y ) ≤ 2. We shall prove that for any group
Γ , there is an integer n = n(Γ ) such that for any action of Γ on X , if the union of the restrictive orbits has cardinality
at least n, then DΓ (X) = 2.

For x ∈ X , let stabx = {σ ∈ Γ : σ x = x} be the point-stabilizer of x . To each orbit O , one associates the conjugacy
class π(O) = {stabx : x ∈ O} of subgroups of Γ . Let ‖O‖ be the number of orbits O ′ with π(O ′) = π(O). We shall
prove that if for each orbit O , the cardinality satisfies 2‖O‖ ≥ |O|, then DΓ (X) = 2.

2. Bounding the size of D(n)

This section discusses the distinguishing number of transitive actions on [n]. Assume Γ acts transitively on [n].
Then Γ is either a primitive subgroup of Sn or an imprimitive subgroup of Sn . In the latter case, it is known (see [13])
that we can write [n] as the Cartesian product of [k] and [m], and Γ = K o H is the wreath product of K and H ,
where K is a primitive subgroup of Sk and H is a transitive subgroup of Sm . Recall that the wreath product K o H has
elements

{( f, h) : h ∈ H and f is a map from [m] to K }.

We denote the image of j ∈ [m] by f j ∈ K . The action on [k] × [m] is defined for (i, j) ∈ [k] × [m] by
( f, h)(i, j) = ( f j (i), h( j)). The sets B j = {(i, j) : i ∈ [k]} are called blocks. Thus the element ( f, h) ∈ K o H maps
the block B j to the block Bh( j).
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Lemma 2.1. Suppose n = km and k,m ≥ 2. View [n] as the Cartesian product [k] × [m]. Suppose K is a primitive
subgroup of Sk and H is a transitive subgroup of Sm , and consider the action of K o H on [n] defined above.

1. If k > m then the wreath products Sk o H and Ak o H have distinguishing numbers DSk oH ([n]) = k + 1 and
DAk oH ([n]) = k − 1.

2. If DK ([k]) = t and r is an integer with
( r

t

)
≥ DH ([m]), then DK oH ([n]) ≤ r .

Proof. The distinguishing number of the action of the wreath product of groups is studied in [4]. Lemma 2.1 follows
from results in [4]. However, we include here a short direct proof.

Proof of (1). Assume k > m. If K = Sk , then let φ be the (k + 1)-labeling of [k] × [m] which labels the k elements
of block B j with the k distinct labels in {1, 2, . . . , k + 1} \ { j}. We claim that φ is a distinguishing labeling. Indeed,
if ( f, h) ∈ Sk o H preserves the labeling φ, then since φ(B j ) = φ(Bh( j)) and distinct blocks use different label sets,
we conclude that h( j) = j . Thus ( f, h)(i, j) = ( f j (i), j). But distinct elements in B j are labeled by distinct labels.
So f j (i) = i , and hence ( f, h) = id[k]×[m]. On the other hand, since K = Sk , a distinguishing labeling of [k] × [m]
must label each block with k distinct labels, and there must be two blocks that use different label sets. Therefore
DSk oH ([n]) = k + 1.

If K = Ak , then let φ be the (k − 1)-labeling of [k] × [m] which labels the k elements of block B j with the k − 1
labels in {1, 2, . . . , k − 1} such that label j is used twice, and every other label is used once. Now we show that φ is
a distinguishing labeling. If ( f, h) ∈ Ak o H preserves the labeling, then since φ(B j ) = φ(Bh( j)) and colour j is the
only colour used twice in B j , colour h( j) is the only colour used twice in Bh( j), we conclude that h( j) = j . In B j
distinct elements are labeled by distinct labels, except that two elements, say q, q ′, are both labeled by label j . Thus
f j fixes all elements of B j , except possibly interchanging q and q ′. However, since f j ∈ Ak is an even permutation,
we know that f j 6= (qq ′). Therefore f j fixes all elements of B j . On the other hand, a distinguishing labeling of a
single block already needs k − 1 labels. Indeed, if φ is a labeling of [k] × [m] which uses less than k − 1 labels,
then for each j ∈ [k], either there are three elements, say q, q ′, q ′′, of B j labeled by the same label, or there are four
elements, say q, q ′ and p, p′, such that q, q ′ are labeled by the same label, and p, p′ are labeled by the same label.
Let h( j) = j for all j , and let

f j =

{
(qq ′q ′′), if there exist q, q ′, q ′′ ∈ [k] with φ(q) = φ(q ′) = φ(q ′′),
(qq ′)(pp′), if there exist q, q ′, p, p′ ∈ [k] with φ(q) = φ(q ′) and φ(p) = φ(p′).

Then ( f, h) ∈ Ak o H preserves the labeling φ. Thus we have proven that DAk oH ([n]) = k − 1.

Proof of (2). Suppose K is a subgroup of Sk with DK ([k]) = t and r is an integer with
( r

t

)
≥ DH ([m]). We define

an r -labeling of [k] × [m] as follows: Let
(
[r ]
t

)
be the family of t-subsets of the r labels. Let φ : [m] →

(
[r ]
t

)
be

a distinguishing labeling of the action of H on [m]. Now for each block B j , use the t labels in the t-subset φ( j) to
label the elements of B j in such a way that it is a distinguishing labeling of [k] with respect to the action of K . Now if
( f, h) ∈ K o H preserves the labeling φ, then since φ(B j ) = φ(Bh( j)), we conclude that h( j) = j . Within the block
B j , since the labeling is distinguishing with respect to the action of K , we have that f j is the identity mapping. So φ
is a distinguishing labeling and hence DK oH ([n]) ≤ r . �

For a group action of K on [k], two labelings l1 and l2 of [k] are equivalent if there exists σ ∈ K such that
l1(σ x) = l2(x) for all x ∈ [k]. In the second half of Lemma 2.1, the condition that

( r
t

)
≥ DH ([m]) can be replaced

by the condition that “the number of non-equivalent r -labelings of [k] with respect to K is greater than or equal to
DH ([m])”. If DK ([k]) = t , then of course DK oH ([n]) ≥ t . If the number of non-equivalent t-labelings of [k] with
respect to K is greater than or equal to DH ([m]), then we have DK oH ([n]) = t .

Lemma 2.2. Suppose k, n are positive integers and k > 5
√

n and k 6= n. Then k ∈ D(n) if and only if k + 1 or k − 1
is a factor of n.

Proof. If k 6= n, k > 5
√

n and k + 1 or k − 1 is a factor of n, then it follows from Lemma 2.1 that k ∈ D(n).
Conversely, assume k ∈ D(n) and k > 5

√
n. We shall show that k+1 or k−1 is a factor of n. Assume to the contrary

that neither k + 1 nor k − 1 is a factor of n. Let Γ be a group acting transitively on [n] with DΓ ([n]) = k.
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As DΓ ([n]) = k 6= n and k 6= n − 1, we conclude that Γ 6= Sn, An . If Γ is a transitive, primitive subgroup of Sn ,
then it follows from a result of [12] that |Γ | ≤ 50n

√
n . It is proved in [16] that if |H | ≤ k! then DH (Z) ≤ k for any

action of H on any set Z . Therefore k = DΓ ([n]) ≤ 5
√

n, which is a contradiction.
Assume Γ is an imprimitive subgroup of Sn . Then there are positive integers t,m such that t × m = n and

Γ = K o H , where K is a primitive subgroup of St and H is a transitive subgroup of Sm .
We claim DK ([t]) ≤ 5

√
n/2. If t ≤

√
n, then DK ([t]) ≤ t < 5

√
n/2. Assume t >

√
n. If K = St , then by

Lemma 2.1, k = DΓ ([n]) = t + 1. Hence k − 1 = t is a factor of n, contrary to our assumption. If K = At , then
k = DΓ (X) = t − 1. Hence k + 1 = t is a factor of n, again contrary to our assumption. Hence K 6= St , At , and so
|K | ≤ 50t

√
t and hence DK ([t]) ≤ 5

√
t ≤ 5
√

n/2.
Suppose DK ([t]) = s. Then for r = 5

√
n/2 + 2, we have

( r
s

)
≥ n > DH ([m]). By Lemma 2.1, DΓ ([n]) ≤ r ≤

5
√

n, again contrary to our assumption. This completes the proof of Lemma 2.2. �

Theorem 2.3. Let D(n) = {DΓ ([n]) : Γ is a transitive subgroup of Sn}. Then

|D(n)| = O(
√

n).

Proof. By Lemma 2.2, if k ∈ D(n), then either k ≤ 5
√

n or k = n or k − 1 is a factor of n or k + 1 is a factor of n.
As n has at most O(ln n) factors, it follows that |D(n)| = O(

√
n). �

We do not know whether the upper bound given in Theorem 2.3 is optimal. It follows from Lemma 2.1 that if k is
a factor of n such that k < n < k2, then k − 1, k + 1 ∈ D(n). If n = 2m and m is odd, then n has m−1

2 factors k with
k < n and k2 > n and hence |D(n)| ≥ m − 1 = log2 n − 1. As 2 ∈ D(n), if m ≥ 5, we have |D(n)| ≥ m = log2 n.

3. A group acting on a large set

Tucker and Conder [15] have shown that there are only a finite number of 3-connected planar graphs G with
D(G) > 2. Thus if G is a sufficiently large 3-connected planar graph then D(G) ≤ 2. This leads to the following
question:

Suppose Γ is a group which acts on a sufficiently large set X . Under what conditions is DΓ (X) ≤ 2?
If x ∈ X is a fixed point of Γ , then let X ′ = X \ {x}. It is obvious that DΓ (X) = DΓ (X ′). Thus for the question

to be interesting, we assume that Γ has no fixed points. However, for some groups Γ , having no fixed points and X
large enough still does not imply that DΓ (X) ≤ 2. For example, consider the action of Sn on [n] = {1, 2, . . . , n}.
We extend the action to a large set X = [n] ∪k

i=1{ai,0, ai,1} (where k is a large integer) as follows: If σ is even, then
σ(ai, j ) = ai, j ; if σ is odd, then σ(ai, j ) = ai,1− j . If σ ∈ Sn is even, then σ x = x for every x ∈ ∪k

i=1{ai,0, ai,1}. Thus
if f is a labeling which labels a1,0 and a1,1 with distinct labels, then the label is preserved by σ ∈ Sn if and only if
σ ∈ An . Therefore DSn (X) = DAn ([n]) = n − 1. The problem in this example is that the “large part” of the set X is
pointwise fixed by the “large subgroup” An of Sn .

An action of Γ on X and an action of Γ on Y are isomorphic if there is a one-to-one correspondence φ : X → Y
such that for any σ ∈ Γ , φ(σ x) = σφ(x). Let H be a subgroup of Γ . There is a natural action of Γ on cosets of H
defined as σ(τH) = στH for σ ∈ Γ . For subgroups H1, H2 of Γ , we notice first that the action of Γ on cosets of
H1 is isomorphic to the action of Γ on cosets of H2 if H1 is conjugate to H2 (i.e. H1 = σH2σ

−1 for some σ ∈ Γ ).
Suppose O is an orbit of the action of Γ on X . Then the action of Γ on O is isomorphic to the action of Γ on cosets
of stabx for any x ∈ O .

We denote the conjugacy class {stabx : x ∈ O} by π(O) and denote the set of all conjugacy classes of Γ by S .
Given a conjugacy class C in S , let vC be the number of orbits O in X with π(O) = C and let ‖O‖ = vπ(O). Then,
up to isomorphism, the action of Γ on a set X is characterized by the integer vector Ev = {vC : C ∈ S}.

Lemma 3.1. Suppose Γ is a group acting on a set X. For a positive integer n, define an action of Γ on X × [n] as
σ(x, i) = (σ x, i). Then DΓ (X × [n]) = d(DΓ (X))1/n

e.

Proof. Suppose DΓ (X×[n]) = d and f is a d-distinguishing labeling of X×[n]with respect to Γ . Let g : X → [d]n

be defined as g(x) = ( f (x, 1), f (x, 2), . . . , f (x, n)). If σ ∈ Γ and g(σ x) = g(x) for all x , then f (σ (x, i)) = f (x, i)
for all (x, i) ∈ X × [n]. Since f is a distinguishing labeling, we conclude that σ x = x for all x . So g is a dn-
distinguishing labeling of X with respect to Γ . Hence DΓ (X) ≤ (DΓ (X ×[n]))n . Conversely, suppose s is an integer
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and DΓ (X) ≤ sn . Let g : X → [s]n be a distinguishing labeling of X with respect to Γ . Let f : X × [n] → [s]
be defined as f (x, i) = j if the i-th component of g(x) is j . If σ ∈ Γ and f (σ (x, i)) = f (x, i) for all x, i , then
g(σ x) = g(x) for all x . Since g is distinguishing, we conclude that σ x = x for all x . Hence f is a distinguishing
labeling and so DΓ (X × [n]) ≤ s. Therefore DΓ (X × [n]) ≤ d(DΓ (X))1/n

e. �

For an orbit O of the action of Γ on X , let KO = ∩H∈π(O) H . Then KO is a normal subgroup of Γ .

Lemma 3.2. Suppose Γ is a group acting on a set X and O1, O2, . . . , Ok are orbits of the action. Let Y = ∪k
j=1 O j

and Z = X \ Y . Let K = ∩k
j=1 KO j . Then

DK (Z) ≤ DΓ (X) ≤ max{DΓ (Y ), DK (Z)}.

Proof. Assume f is a distinguishing labeling of X with respect to Γ . If σ ∈ K and f (σ x) = f (x) for all x ∈ Z , then
f (σ x) = f (x) for all x ∈ X (because for x 6∈ Z , σ x = x). Therefore σ x = x for all x ∈ Z , i.e., the restriction of f
to Z is a distinguishing labeling of Z with respect to K . This proves the first inequality.

Let r = max{DΓ (Y ), DK (Z)}, let f1 : Y → {1, 2, . . . , r} be an r -distinguishing labeling of Y with respect to Γ
and let f2 : Z → {1, 2, . . . , r} be an r -distinguishing labeling of Z with respect to K . Let

g(x) =

{
f1(x), if x ∈ Y ,
f2(x), if x ∈ Z .

If σ ∈ Γ and g(σ x) = g(x) for all x , then f1(σ x) = f1(x) for all x ∈ Y . Since f1 is a distinguishing labeling
of Y with respect to Γ (note that σY = Y and σ Z = Z ), we have σ x = x for all x ∈ Y . So σ ∈ K . Because
f2(σ x) = f2(x) for all x ∈ Z and f2 is a distinguishing labeling of Z with respect to K , we conclude that σ x = x
for all x ∈ Z . Therefore σ x = x for all x ∈ X and g is a distinguishing labeling of X with respect to Γ . This proves
the second inequality. �

Theorem 3.3. Suppose Γ acts on X and O is an orbit of the action. Then

DΓ (X) ≤ max{(DΓ (O))
1/‖O‖, DKO (X)}.

Proof. Let O1, O2, . . . , O‖O‖ be the set of orbits with π(O j ) = π(O). Let Y = ∪‖O‖j=1 O j and Z = X \ Y . Since
KO j = KO for all j , and DKO (X) = DKO (Z), the conclusion follows from Lemma 3.2. �

Suppose Γ acts on X and O is an orbit. We say O is a restrictive orbit if for any action of Γ on a set Y , we have
DKO (Y ) ≤ 2.

Corollary 3.4. For an action of Γ on X, if there is a restrictive orbit O with 2‖O‖ ≥ DΓ (O), then DΓ (X) ≤ 2.

Proof. Assume O is a restrictive orbit with 2‖O‖ ≥ DΓ (O). Apply Theorem 3.3, we conclude that DΓ (X) ≤ 2. �

Corollary 3.5. Suppose Γ is a group such that for any proper normal subgroup H of Γ , for any action of Γ on a set
Y , we have DH (Y ) ≤ 2. Then there is an integer n = n(Γ ) such that for any set X with |X | ≥ n, for any action of Γ
on X with no fixed points, DΓ (X) ≤ 2.

Proof. The assumption implies that all the orbits are restrictive. Thus the conclusion follows from Corollary 3.4. �

The following is a special case of Corollary 3.5.

Corollary 3.6. If Γ is a simple group and X is a sufficiently large set, then for any action of Γ on X without fixed
points, DΓ (X) ≤ 2.

Suppose Γ acts on X . For σ ∈ Γ , let m(σ ) = |{x ∈ X : σ x 6= x}|, and let m(Γ ) = min{m(σ ) : σ ∈ Γ ,m(σ ) 6= 0}.
It was shown in [14] that if m(Γ ) > 2 log2(|Γ |), then DΓ (X) = 2. Corollary 3.6 also follows from this result, because
if Γ is simple, then for each non-trivial orbit O (i.e., orbits containing at least two elements), for each σ ∈ Γ with
σ 6= 1, there is an element x ∈ O for which σ x 6= x . Hence m(Γ ) is at least as large as the number of non-trivial orbits.
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If X is sufficiently large and there is no fixed points, then there are sufficiently many non-trivial orbits, and hence
DΓ (X) = 2.

The condition in Corollary 3.4 is necessary in the following sense: If X is large but the union of restrictive orbits is
small, then it is possible that DΓ (X) > 2. Let O be an orbit of the action of Γ on X . Assume there is an action
of Γ on Y with DKO (Y ) ≥ 3. Then for any positive integer m, the action of Γ to X = Y ∪ (O × [m]) has
DΓ (X) ≥ DKO (A) ≥ 3 by Lemma 3.2.

Theorem 3.7. Suppose Γ acts on X. If (DΓ (O))1/‖O‖ ≤ d for each orbit O, then DΓ (X) ≤ d.

Proof. For each conjugacy class C of subgroups of Γ , let YC be the union of orbits O with π(O) = C . By Lemma 3.1,
DΓ (YC ) ≤ d for each C . Since DΓ (X) ≤ maxC∈S{DΓ (YC )}, we have DΓ (X) ≤ d . �

Corollary 3.8. If (DΓ (O))1/‖O‖ ≤ 2 for each orbit O, then DΓ (X) = 2.
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