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We apply Miller’s theory on multigraded modules over a polyno-
mial ring to the study of the Stanley depth of these modules. Sev-
eral tools for Stanley’s conjecture are developed, and a few partial
answers are given. For example, we show that taking the Alexan-
der duality twice (but with different “centers”) is useful for this
subject. Generalizing a result of Apel, we prove that Stanley’s con-
jecture holds for the quotient by a cogeneric monomial ideal.
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1. Introduction

Let S = k[x1, . . . , xn] be a polynomial ring over a field k. We regard it as a Zn-graded ring in
the natural way. Let modZn S be the category of finitely generated Zn-graded S-modules and de-
gree preserving S-homomorphisms between them. We say M = ⊕

a∈Zn Ma ∈ modZn S is Nn-graded if
Ma = 0 for all a /∈ Nn . Let modNn S denote the full subcategory of modZn S consisting of Nn-graded
modules.

For a subset Z ⊂ {x1, . . . , xn}, k[Z ] denotes the k-subalgebra of S generated by all xi ∈ Z . Clearly,
k[Z ] is a polynomial ring with dimk[Z ] = #Z . Let M ∈ modZn S . We say the k[Z ]-submodule mk[Z ]
of M generated by a homogeneous element m ∈ Ma is a Stanley space, if it is k[Z ]-free. Note that
mk[Z ] is a Stanley space if and only if ann(m) ⊂ (xi | xi /∈ Z). A Stanley decomposition D of M is
a presentation of M as a finite direct sum of Stanley spaces. That is,
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D:
s⊕

i=1

mik[Zi] = M

as Zn-graded k-vector spaces, where each mik[Zi] is a Stanley space.
Let sd(M) be the set of Stanley decompositions of M . For all 0 �= M ∈ modZn S , we have sd(M) �= ∅.

For D = ⊕s
i=1 mik[Zi] ∈ sd(M), we set

sdepth(D) := min{#Zi | i = 1, . . . , s},

and call it the Stanley depth of D. The Stanley depth of M is defined by

sdepth(M) := max
{

sdepth D
∣∣ D ∈ sd(M)

}
.

While it is obvious that sdepth M � dimS M , this invariant behaves somewhat strangely. For exam-
ple, if I is a complete intersection monomial ideal of codimension c then we have sdepth(S/I) = n − c
but sdepth I = n−� c

2 � as shown in [13]. The following is a special case of the conjecture raised in [15].

Conjecture 1.1 (Stanley). Assume k is infinite. For any M ∈ modZn S, we have

sdepth M � depth M.

(If M = I/ J for some monomial ideals I, J of S with I ⊃ J , then the assumption that k is infinite is superflu-
ous.)

After the works of Apel’s [1,2], the conjecture has been intensely studied. (See for example [6,7,13,
14]. Here we listed papers directly related to the present paper, and there are many other interesting
works.) However the conjecture is still widely open. No relation between sdepth I and sdepth(S/I)
is known in the general case, hence the conjecture for I itself and that for S/I are different sto-
ries.

In [8], Miller introduced the notion of positively a-determined S-modules for each a ∈ Nn . These
modules form the full subcategory moda S of modNn S , which admits the Alexander duality functor
Aa : moda S → (moda S)op . Any M ∈ modNn S is positively a-determined for sufficiently large a ∈ Nn ,
and sdepth M is attained by a positively a-determined Stanley decomposition in this case. Hence we
can study the Stanley depth in Miller’s context. For 1 := (1,1, . . . ,1) ∈ Nn , positively 1-determined
modules are nothing other than squarefree modules introduced in [16].

For a squarefree module M and a squarefree (i.e., positively 1-determined) Stanley decomposition
D of M , Soleyman Jahan [14] defined the Alexander dual A1(D) ∈ sd(A1(M)) of D. However, it
is impossible to generalize his construction to moda S and Aa directly. So we will introduce the
notion of quasi Stanley decompositions. Let qsd(M) (resp. qsda(M)) be the set of (resp. positively a-
determined) quasi Stanley decompositions of M ∈ moda S . Then sd(M) ⊂ qsd(M) = ⋃

a∈Nn qsda(M)

and sdepth M can be computed also by qsda(M) or qsd(M). Moreover, the Alexander duality Aa
gives a bijection from qsda(M) to qsda(Aa(M)).

Using qsd(M), we can define a new invariant h̃-reg(M). As an analog of Miller’s equation

supp.reg(M) + depth
(
Aa(M)

) = n

(the support regularity supp.reg(M) of M is introduced also by Miller), we have

h̃-reg(M) + sdepth
(
Aa(M)

) = n.



R. Okazaki, K. Yanagawa / Journal of Algebra 340 (2011) 35–52 37
Hence Stanley’s conjecture (Conjecture 1.1) is equivalent to the conjecture that h̃-reg(M) �
supp.reg(M) for all M ∈ modNn S . If M is squarefree, then supp.reg(M) equals the usual (Castelnuovo–
Mumford) regularity of M , and h̃-reg M equals hreg M defined in Soleyman Jahan [14]. Hence our
observation is a generalization of that in [14].

For l ∈ N, we define the lth skeleton M�l of M ∈ moda S . The prototype of this idea is the skeletons
of simplicial complexes and their Stanley–Reisner rings. Hence M�l is a quotient module of M with
dimS M�l � l. Using this notion, in Theorem 4.6, we show that Stanley’s conjecture holds for all
M ∈ modZn S if and only if it holds for all M ∈ modZn S which are Cohen–Macaulay. The ideal version
of this result has been obtained by Herzog et al. [6].

For a,b ∈ Nn , (−)�b denotes the composition Aa+b ◦ Aa : moda S → moda+b S (more precisely,
the composition of Aa : moda S → (moda S)op , the natural inclusion (moda S)op ↪→ (moda+b S)op , and
Aa+b : (moda+b S)op → moda+b S). For M ∈ modNn S , M�b does not depend on the particular choice
of a with M ∈ moda S . Since we have depth M = depth M�b and sdepth M = sdepth M�b , Stanley’s
conjecture holds for M if and only if it holds for M�b .

Generic and cogeneric monomial ideals are interesting combinatorial classes introduced in [3,12].
Apel [1,2] showed that if a monomial ideal I is generic then Stanley’s conjecture holds for I itself
and S/I . In Theorem 6.5, we show that if I is cogeneric then the conjecture holds for S/I . Under
the additional assumption that S/I is Cohen–Macaulay, this result has been proved in [2]. Roughly
speaking, our proof reduces the assertion to the Cohen–Macaulay case [2] using techniques developed
in Sections 2–5 of the present paper. However, since the skeletons of (co)generic monomial ideals
are no longer (co)generic, we need modification. We also remark that more inclusive definitions of
(co)generic monomial ideals were given in [10], and Apel used these new definitions. However our
proof of Theorem 6.5 works only for the original definition.

Most results in Sections 2–4 are taken from the thesis [11] of the first author. The authors are
grateful to Professor Jürgen Herzog for helpful comments.

2. Preliminaries

Let S , modZn S and modNn S be as defined in the beginning of the previous section. The definitions
of Stanley decompositions and the Stanley depth are also given there. Let sd(M) be the set of Stanley
decompositions of M ∈ modZn S . In this paper, we sometimes regard M ∈ modZn S as just a Zn-graded
k-vector space without saying so explicitly. However, the context makes the meaning clear.

We start this section from the following lemma.

Lemma 2.1. Given an exact sequence

0 → L
f→ M

g−→ N → 0

in modZn S, it follows that

sdepth M � min{sdepth L, sdepth N}.
In particular, for a direct sum M = ⊕s

i=1 Mi in modZn S, we have

sdepth M � min{sdepth Mi | 1 � i � s}. (2.1)

Proof. Let D1 = ⊕s
i=1 lik[Zi] ∈ sd(L) and D2 = ⊕t

i=1 nik[Z ′
i] ∈ sd(N) be Stanley decompositions at-

taining the Stanley depths of each modules. For 1 � i � s, set mi := f (li) ∈ M . For s+1 � i � s+t , take
a homogeneous element mi ∈ M so that g(mi) = ni−s , and set Zi := Z ′

i−s . Then it is easy to see that

each mik[Zi] is a Stanley space and
∑s+t

i=1 mik[Zi] = ⊕s+t
i=1 mik[Zi] = M . Hence D := ⊕s+t

i=1 mik[Zi]
is a Stanley decomposition of M , and we have sdepth M � sdepth D = min{sdepth D1, sdepth D2} =
min{sdepth L, sdepth N}. �
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Remark 2.2. The reader might think the equality holds in (2.1) and the proof is easy. However, as
far as the authors know, even whether sdepth(M ⊕ S) = sdepth M always holds or not is an open
problem.

As usual, for M ∈ modZn S and a ∈ Zn , M(a) ∈ modZn S denotes the degree shift of M with M(a)b =
Ma+b . For any M ∈ modZn S , there is some a such that M(a) ∈ modNn S . While Stanley’s conjecture
(Conjecture 1.1) concerns modules in modZn S , we can restrict our attention to modNn S since the
degree shift preserves both the usual and Stanley depths.

Here, we introduce the convention on Nn used throughout the paper. The ith coordinate of a ∈ Nn

is denote by ai . Let � be the order on Nn defined by a � b ⇔ ai � bi for all i. Clearly, 0 :=
(0,0, . . . ,0) ∈ Nn is the smallest element. For a,b ∈ Nn , let a ∨ b, a ∧ b be the elements of Nn whose
ith-coordinates are max{ai,bi}, min{ai,bi} respectively. If a � b, we set [a,b] := {c ∈ Nn | a � c � b}.

For a,b ∈ Nn , set

suppa(b) := {i | bi � ai}, suppa
X (b) := {xi | bi � ai}.

For the simplicity, supp1(b) = {i | bi � 1} is denoted by supp(b), where 1 := (1,1, . . . ,1) ∈ Nn . For a
homogeneous element 0 �= m ∈ Mb of M = ⊕

a∈Nn Ma , set deg(m) = b, and suppa(deg(m)) is simply
denoted by suppa(m). The monomial

∏n
i=1 xai

i ∈ S is denoted by xa .

Definition 2.3. (See Miller [8].) Let a ∈ Nn . We say a Zn-graded S-module M is positively a-determined,
if it is finitely generated, Nn-graded, and the multiplication map Mb � m �→ xim ∈ Mb+ei is bijective
for all b ∈ Nn and all i ∈ suppa(b). Here ei ∈ Nn denotes the ith unit vector.

Let moda S be the full subcategory of modNn S consisting of positively a-determined modules. If
a′ � a, we have moda′ S ⊃ moda S . Any M ∈ modNn S is positively a-determined for sufficiently large
a ∈ Nn . For example, a monomial ideal I ⊂ S minimally generated by xa1 , xa2 , . . . , xar is positively
a-determined if and only if a � (a1 ∨ a2 ∨ · · · ∨ ar).

If M ∈ moda S , the essential information of M appears in the subspace M[0,a] := ⊕
b∈[0,a] Mb . For

example, we have

dimS M = max
{

#suppa(b)
∣∣ b ∈ Nn, Mb �= 0

}
= max

{
#suppa(b)

∣∣ b ∈ [0,a], Mb �= 0
}
.

Let M, N ∈ modZn S . If there is a Zn-graded k-linear bijection f : M[0,a] → N[0,a] satisfying
f (xd−e y) = xd−e · f (y) for all d,e ∈ [0,a] with d � e and all y ∈ Me , we say M[0,a] and N[0,a] are
isomorphic (over S). If M, N ∈ moda S and M[0,a] ∼= N[0,a] , we have M ∼= N .

Recall that, for Z ⊂ {x1, . . . , xn}, k[Z ] denotes the k-subalgebra of S generated by all xi ∈ Z . To
make k[Z ] an S-module, set xi · k[Z ] = 0 for all xi /∈ Z . In other words, k[Z ] ∼= S/(xi | xi /∈ Z). When
we regard a Stanley decomposition D = ⊕s

i=1 mik[Zi] of M as an S-module, it is denoted by |D|.
We say D is positively a-determined, if the module |D| is positively a-determined, equivalently, 0 �
deg(mi) � a and suppa

X (mi) ⊂ Zi for all 1 � i � s. If M admits such a decomposition, then M itself
is positively a-determined. For M ∈ moda S , let sda(M) be the set of positively a-determined Stanley
decompositions of M . If M ∈ moda S , then sda′ (M) ⊃ sda(M) for a′ ∈ Nn with a′ � a, and

sd(M) =
⋃

a∈Nn

sda(M).

Proposition 2.4. For M ∈ moda S, we have

sdepth M = max
{

sdepth D
∣∣ D ∈ sda(M)

}
.
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If M is a squarefree module (i.e., if a = 1), the above result has been proved by Soleyman Jahan
[14, Theorem 3.4].

Proof. Since sda(M) ⊂ sd(M), the inequality sdepth M � max{sdepth D | D ∈ sda(M)} is clear. To
prove the converse inequality, from D = ⊕s

i=1 mik[Zi] ∈ sd(M), we will construct D′ ∈ sda(M) with
sdepth D′ � sdepth D. We may assume that deg(mi) � a for all 1 � i � t , and deg(mi) �� a for all i > t .
Set

D′ :=
t⊕

i=1

mik
[

Zi ∪ suppa
X (mi)

]
.

Then mik[Zi ∪ suppa
X (mi)] is a Stanley space for each i. Since |D′|[0,a] ∼= |D|[0,a] and M ∈ moda S , we

have D′ ∈ sda(M). It is clear that sdepth D′ � sdepth D. �
For M ∈ modZn S and b ∈ Zn , let βi,b(M) := dimk(TorS

i (k, M))b be the (i,b)th graded Betti number
of M .

Definition 2.5. (See [8].) For M ∈ modNn S , the support regularity of M is

supp.reg(M) := max
{

#supp(b) − i
∣∣ βi,b(M) �= 0

}
.

Remark 2.6. The inequalities in [5, Corollary 20.19], which is a basic property of the usual
(Castelnuovo–Mumford) regularity

regS(M) := max
{

j − i
∣∣ βi, j(M) �= 0

}
of a finitely generated Z-graded S-module M , also holds for the support regularity. In the proof
in [5], the long exact sequence of Exti

S (−, S) is used to handle the regularities, but we can use that
of TorS

i (−,k). Then the same argument works for the support regularity.

Miller [8] introduced the Alexander duality functor Aa : moda S → (moda S)op , which is an ex-
act functor with (Aa)

2 = Id. For M ∈ moda S , b ∈ [0,a] and i ∈ supp(b), we have (Aa(M))b =
Homk(Ma−b,k) and the multiplication map (Aa(M))b−ei � y �→ xi y ∈ (Aa(M))b is the k-dual of
Ma−b � z �→ xi z ∈ Ma−b+ei . We have that

dimS
(
Aa(M)

) + σ(M) = n,

where

σ(M) := min
{

#supp(b)
∣∣ Mb �= 0

}
.

See [8] for further information. In the sequel, we sometimes omit the suffix a of Aa , if the explicit
value of a is not important.

Theorem 2.7. (See [8, Theorem 4.20].) For M ∈ moda S, we have

supp.reg(M) + depth
(
Aa(M)

) = n.

Note that supp.reg(M) � σ(M) for all M ∈ moda S . By Theorem 2.7, supp.reg(M) = σ(M) if and
only if Aa(M) is Cohen–Macaulay.
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3. Alexander duality and (quasi) Stanley decomposition

For a,b, c ∈ Nn with c � b � a, we set

ka[c,b] := xc · (S/
(
xbi+1

i

∣∣ i /∈ suppa(b)
))

∼= (
S/

(
xbi−ci+1

i

∣∣ i /∈ suppa(b)
))

(−c).

This is an ideal of S/(xbi+1
i | i /∈ suppa(b)). Set

[[c,b]]a := {
d ∈ Nn

∣∣ (
ka[c,b])d �= 0

}
.

We see that d ∈ [[c,b]]a if and only if d � c and di � bi for all i /∈ suppa(b). For d ∈ [[c,b]]a, the natural
image of the monomial xd ∈ S in ka[c,b] ⊂ S/(xbi+1

i | i /∈ suppa(b)) is denoted by x̄d . (This is an abuse
of notation, since the symbol x̄d ignores a, b, and c.) It is easy to check that ka[c,b] ∈ moda S with

(
ka[c,b])[0,a] =

⊕
d∈[c,b]

kx̄d. (3.1)

Lemma 3.1. We have Aa(ka[c,b]) ∼= ka[a − b,a − c].

Proof. By (3.1), we have

(
Aa

(
ka[c,b]))[0,a] =

⊕
d∈[a−b,a−c]

ktd

as a Zn-graded k-vector space, where td is the dual base of x̄a−d ∈ (ka[c,b])a−d and has the degree
deg(td) = d. For d,e ∈ [c,b] with d � e, we have xd−e · x̄e = x̄d in ka[c,b]. Hence we have xd−e · ta−d =
ta−e in Aa(ka[c,b]). It follows that (Aa(ka[c,b]))[0,a] ∼= (ka[a − b,a − c])[0,a] . Since both Aa(ka[c,b])
and ka[a − b,a − c] are positively a-determined, we have Aa(ka[c,b]) ∼= ka[a − b,a − c]. �
Definition 3.2. Let M ∈ modNn S . We say f : ⊕s

i=1 ka[ci,bi] → M is a (positively a-determined) quasi
Stanley decomposition, if f is a Zn-graded bijective k-linear map such that f (x̄d) = xd−ci · f (x̄ci ) for all
i and all x̄d ∈ ka[ci,bi] with d ∈ [[ci,bi]]a .

Let qsda(M) be the set of positively a-determined quasi Stanley decompositions of M . For a
decomposition f : D → M , D = ⊕s

i=1 ka[ci,bi], we write (D, f ) ∈ qsda(M) or just D ∈ qsda(M).
If qsda(M) �= ∅, then M ∈ moda S . Conversely, if M ∈ moda S , then we can replace the condition
d ∈ [[ci,bi]]a by d ∈ [ci,bi] in the above definition. Let f i be the restriction of the map f : D → M to
ka[ci,bi]. Note that f i is just a k[suppa

X (bi)]-homomorphism, and not a k[suppX (bi)]-homomorphism.
See Example 3.3 below.

For M ∈ moda S , sda(M) can be seen as a subset of qsda(M) in the natural way. In fact, for⊕s
i=1 mik[Zi] ∈ sda(M), set ci := deg(mi) ∈ Nn (since the decomposition is positively a-determined,

we have (ci) j < a j for all j /∈ Zi ), and take bi ∈ Nn whose jth coordinate is

(bi) j =
{

a j if j ∈ Zi ,

(ci) j otherwise.
(3.2)

Finally, define f : ⊕s
i=1 ka[ci,bi] → M by ka[ci,bi] � x̄d �→ xd−ci · mi ∈ M for d ∈ [[ci,bi]]a . Then we

have (
⊕s

i=1 ka[ci,bi], f ) ∈ qsda(M).
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In the sequel, for b, c ∈ [0,a] satisfying the same condition as (3.2), ka[c,b] is denoted by
xck[suppa

X (b)].

Example 3.3. Let I := (x3, x2 y) be a monomial ideal of S := k[x, y], and set a := (3,1). Then S/I ∈
moda S and {yl, xym, x2 | l,m ∈ N} is a k-basis of S/I . It is easy to check that

ka
[
0, (1,1)

] ⊕ ka
[
(2,0), (2,0)

]
is a quasi Stanley decomposition of S/I , but not a Stanley decomposition. Note that ka[0, (1,1)] ∼=
S/(x2) and ka[(2,0), (2,0)] ∼= k(−(2,0)). While suppX ((1,1)) = {x, y}, the corresponding map
S/(x2) → S/I is not an S-homomorphism (just a k[y]-homomorphism).

Lemma 3.4. Let a,b, c ∈ Nn with c � b � a. Then

sdepth
(
ka[c,b]) = #suppa(b).

Proof. Since ka[c,b] ∼= S/(xbi−ci+1
i | i /∈ suppa(b)) up to degree shifting, the assertion follows from [2,

Theorem 3]. However, we will give a direct proof here for the reader’s convenience.
Since dimS(ka[c,b]) = #suppa(b), it suffices to show that sdepth(ka[c,b]) � #suppa(b). This in-

equality follows from the Stanley decomposition

ka[c,b] =
⊕

xc′
k
[
suppa

X (b)
]
,

where the sums are taken over c′ ∈ [c,b] such that c′
i = ci if i ∈ suppa(b) and ci � c′

i � bi other-
wise. �
Definition 3.5. For a quasi Stanley decomposition D = ⊕s

i=1 ka[ci,bi] of M ∈ moda S , we set

sdepth D = min
{

#suppa(bi)
∣∣ 1 � i � s

}
.

(If D ∈ qsd(M) comes from a Stanley decomposition, this definition clearly coincides with the previous
one.)

Remark 3.6. In the above definition, sdepth D is the Stanley depth of D as a decomposition. By
Lemma 3.4, we have sdepth |D| � sdepth D. The authors do not know whether the equality always
holds or not.

Proposition 3.7. For M ∈ moda S, we have

sdepth M = max
{

sdepth D
∣∣ D ∈ qsda(M)

}
.

Proof. Since sda(M) ⊂ qsda(M), we have sdepth M � max{sdepth D | D ∈ qsda(M)} by Proposition 2.4.
To show the converse inequality, take a decomposition (D, f ) ∈ qsda(M) with D = ⊕s

i=1 ka[ci,bi]. As
Lemma 3.4, take a Stanley decomposition Di of ka[ci,bi] for each 1 � i � s. Since the restriction of
f : D → M to ka[ci,bi] is a k[suppa

X (bi)]-homomorphism, f (Di) is a direct sum of Stanley spaces.
On the other hand,

⊕s
i=1 f (Di) = ⊕s

i=1 f (ka[ci,bi]) = M as Zn-graded k-vector spaces. Hence D′ :=⊕s
i=1 f (Di) is a Stanley decomposition of M , and we have sdepth M � sdepth D′ = sdepth D. �
From a decomposition (D, f ) ∈ qsda(M) with D = ⊕s

i=1 ka[ci,bi] of M ∈ moda S , we will con-
struct its Alexander dual (Aa(D), g) ∈ qsda(Aa(M)) with Aa(D) = ⊕s

i=1 ka[a − bi,a − ci]. Note that
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|Aa(D)| ∼= Aa(|D|) by Lemma 3.1 and (Aa(D))a−d = Homk(Dd,k) =: (Dd)∗ for each d ∈ [0,a]. For
this d, set T (d) := {i | ci � d � bi} ⊂ {1, . . . ,n}. Then Dd and Md have the basis {x̄d ∈ k[ci,bi] | i ∈
T (d)} and { f (x̄d) | i ∈ T (d), x̄d ∈ k[ci,bi]} respectively. Of course, the equations bi = b j and ci = c j

might hold for distinct i, j. Even in this case, we distinguish x̄d ∈ ka[ci,bi] from x̄d ∈ ka[c j,b j]. For
the convenience, x̄d

i denotes x̄d ∈ ka[ci,bi].
Note that (Aa(M))a−d has the dual basis { f (x̄d

i )∗ | i ∈ T (d)}. Now we can define a k-linear bijec-
tion

ga−d :
(

s⊕
i=1

ka[a − bi,a − ci]
)

a−d

→ (
Aa(M)

)
a−d

by

(
ka[a − bi,a − ci]

)
a−d � x̄a−d �→ f

(
x̄d

i

)∗ ∈ (
Aa(M)

)
a−d

for i ∈ T (d) (note that (ka[a − bi,a − ci])a−d �= 0 if and only if (ka[ci,bi])d �= 0 if and only if i ∈ T (d)).
It is easy to see that g := ⊕

d∈[0,a] gd gives a k-linear bijection (Aa(D))[0,a] → (Aa(M))[0,a] satisfying

xd−e · g(x̄a−d) = g(x̄a−e) for all d,e ∈ [ci,bi] with d � e. Here x̄a−d, x̄a−e ∈ ka[a − bi,a − ci]. Since both
Aa(M) and |Aa(D)| are positively a-determined modules, we can extend g to a k-linear bijection
Aa(D) → Aa(M) so that Aa(D) ∈ qsda(Aa(M)). Now we have the following.

Proposition 3.8. The above construction gives a one-to-one correspondence between qsda(M) and
qsda(Aa(M)).

Remark 3.9. If M is squarefree (i.e., M ∈ mod1 S), then qsd1(M) = sd1(M) and the Alexander duality
A1 gives a duality between sd1(M) and sd1(A1(M)). This is the reason why the notion of quasi Stan-
ley decompositions does not appear in [14], while the Alexander duality of Stanley decompositions is
studied there.

For a,a′,b, c ∈ Nn with c � b � a � a′ , we have

ka[c,b] = ka′
[
c,b′],

where b′ ∈ Nn is the vector whose ith coordinate is

b′
i =

{
a′

i if bi = ai ,

bi otherwise (equivalently, bi < ai).

If M ∈ moda S and a′ � a, then M ∈ moda′ S and qsda(M) can be seen as a subset of qsda′ (M) in the
natural way. Set

qsd(M) :=
⋃

a∈Nn

qsda(M).

As the Stanley depth is (conjectured to be) a combinatorial analog of the usual depth, the invari-
ant h̃-reg(M) defined below is a combinatorial analog of supp.reg(M). Note that supp.reg(ka[c,b]) =
#supp(c). In fact, ka[c,b] ∼= (S/(xbi−ci+1 | i /∈ suppa(b)))(−c), and the Koszul complex (with the de-
gree shift) gives a minimal free resolution.
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Definition 3.10. For D = ⊕s
i=1 ka[ci,bi], set

h̃-reg(D) := max
{

#supp(ci)
∣∣ 1 � i � s

}
.

For M ∈ modNn S , set

h̃-reg(M) := min
{

h̃-reg(D)
∣∣ D ∈ qsd(M)

}
.

Lemma 3.11. If M ∈ moda S, we have

h̃-reg M = min
{

h̃-reg(D)
∣∣ D ∈ qsda(M)

}
.

Proof. Since qsda(M) ⊂ qsd(M), we see that h̃-reg M � min{h̃-regD | D ∈ qsda(M)}. To prove the
converse inequality, from (D′, f ′) ∈ qsda′ (M), we will construct (D, f ) ∈ qsda(M) with h̃-reg D �
h̃-reg D′ . Replacing a′ by a ∨ a′ if necessary, we may assume that a′ � a (note that qsda′ (M) ⊂
qsda∨a′ (M)). Set D′ = ⊕s

i=1 ka′ [ci,bi]. We may assume that ci � a for all 1 � i � t and ci �� a for
all i > t . Set D := ⊕t

i=1 ka[ci,bi ∧ a]. Since D[0,a] ∼= D′[0,a] and M ∈ moda S , we can define f : D → M

by ka[ci,bi ∧ a] � x̄d �→ xd−ci · f ′(x̄ci ) ∈ M for all d ∈ [[ci,bi ∧ a]]a . Then (D, f ) has the expected prop-
erties. �
Remark 3.12.

(1) To compute h̃-reg M , the notion of quasi Stanley decompositions is really necessary. For example,
set S := k[x, y], a := (1,2), and M := ka[0, (0,1)] ∼= S/(x, y2). Then M has a trivial quasi Stanley
decomposition, and h̃-reg M = 0. However D = k⊕ yk is the unique Stanley decomposition of M ,
and h̃-reg D = 1.

(2) For a Stanley decomposition D = ⊕s
i=1 mik[Zi] ∈ sd(M) with deg(mi) = ci , Soleyman Jahan [14]

set hreg(D) := max{|ci | | 1 � i � s}, where |ci | := ∑n
j=1(ci) j is the total degree of ci . He also

set hreg M := min{hreg D | D ∈ sd(M)}. Clearly, we have h̃-reg M � hreg M and the inequality is
strict quite often. However, if M is squarefree, then h̃-reg M = hreg M . For squarefree modules,
[14, Conjecture 4.3] is equivalent to the condition (iii) of Theorem 4.6 below.

Theorem 3.13. If M ∈ moda S, then we have

h̃-reg(M) + sdepth
(
Aa(M)

) = n.

Proof. For D = ⊕s
i=1 ka[ci,bi] ∈ qsda(M), we have

n − (h̃-reg D) = n − max
{

#supp(ci)
∣∣ 1 � i � s

}
= min

{
n − #supp(ci)

∣∣ 1 � i � s
}

= min
{

#suppa(a − ci)
∣∣ 1 � i � s

}
= sdepth

(
Aa(D)

)
.
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Hence we have

n − (h̃-reg M) = n − min
{

h̃-reg D
∣∣ D ∈ qsda(M)

}
= max

{
n − (h̃-reg D)

∣∣ D ∈ qsda(M)
}

= max
{

sdepth
(
Aa(D)

) ∣∣ D ∈ qsda(M)
}

= max
{

sdepth
(

D′) ∣∣ D′ ∈ qsda
(
Aa(M)

)}
= sdepth

(
Aa(M)

)
. �

Corollary 3.14. For a short exact sequence 0 → L → M → N → 0 in modNn S, we have h̃-reg M �
max{h̃-reg L, h̃-reg N}.

Proof. Since we have the exact sequence 0 → A (N) → A (M) → A (L) → 0, the assertion follows
from Lemma 2.1 and Theorem 3.13. �
4. Skeletons of positively a-determined modules

Let M ∈ moda S . For l � 0, let M>l be the submodule of M generated by the components Mb for
all b ∈ Nn with #suppa(b) > l. The module M>l is again positively a-determined. We set

M�l := M/M>l,

and call it the lth skeleton of M . Clearly, M�l is a positively a-determined module with dimS M�l � l,
and M�l = M for l � dimS M .

Remark 4.1.

(1) For a simplicial complex � with the vertex set {1, . . . ,n}, the Stanley–Reisner ring k[�] of � is
defined to be S/(

∏
i∈F xi | F /∈ �). Then dimk[�] = max{#F | F ∈ �} = dim�+ 1. Moreover, k[�]

is always a squarefree module, that is, k[�] ∈ mod1 S . In this setting, we have k[�]�l = k[�(l−1)],
where �(l−1) := {F ∈ � | #F � l} is the (l − 1)st skeleton of �.

(2) Let I be a monomial ideal minimally generated by xa1 , . . . , xar . In the sequel, the skeleton of a
module means the one with respect to a = a1 ∨ · · · ∨ ar . Then J := I + S>l coincide with the lth
skeleton ideal of I due to Herzog et al. [6]. Note that S/ J ∼= (S/I)�l .

Lemma 4.2. Let M ∈ moda S and l � 0. If M>l−1 �= M>l , then M>l−1/M>l is a Cohen–Macaulay module of
dimension l. Moreover, sdepth(M>l−1/M>l) = l.

Proof. We set M̃ := M>l−1/M>l . For b ∈ Nn , M̃b �= 0 implies #suppa(b) = l and M̃b = Mb . For F ⊆
[n] := {1, . . . ,n} with #F = l, set

M̃[F ] :=
⊕
b∈N

n

suppa(b)=F

Mb.

Then M̃[F ] is an S-submodule of M̃ , and we have

M̃ =
⊕

F⊆[n]
M̃[F ],
#F=l
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as S-modules. If we regard M̃[F ] as an S ′ := k[xi | i ∈ F ]-module through the natural injection S ′ ↪→ S ,
then M̃[F ] is a finite free S ′-module with

M̃[F ] ∼=
⊕

b∈[0,a]
suppa(b)=F

(
S ′(−b)

)dimk(Mb)
.

Therefore M̃ is a Cohen–Macaulay module of dimension l over S ′ , hence the same is true over S .
The above decomposition also shows that sdepth M̃ = l. �

As in the case of the skeletons of monomial ideals, the following holds.

Proposition 4.3. (Cf. [6, Corollary 2.5].) For 0 �= M ∈ moda S,

depth M = max
{
l
∣∣ 0 � l � dimS M, M�l is Cohen–Macaulay

}
.

Moreover, we have dimS M�depth M = depth M.

Proof. We use induction on d := dimS M . The case d = 0 is trivial. Assume d > 0. The assertion clearly
holds when M is Cohen–Macaulay. Hence it suffices to consider the case depth M < d. Since M>d = 0,
M>d−1(= M>d−1/M>d) is a Cohen–Macaulay module of dimension d by Lemma 4.2. By the short
exact sequence

0 → M>d−1 → M → M�d−1 → 0,

we have depth M = depth M�d−1. On the other hand, we have M�l ∼= (M�d−1)�l for all l � d − 1.
Combining the above facts, we have

depth M = depth M�d−1

= max
{
l
∣∣ 0 � l � d − 1,

(
M�d−1)�l

is Cohen–Macaulay
}

= max
{
l
∣∣ 0 � l � d − 1, M�l is Cohen–Macaulay

}
= max

{
l
∣∣ 0 � l � d, M�l is Cohen–Macaulay

}
.

Here, the second equality follows from the induction hypothesis, and the fourth follows from the
present assumption that M�d(= M) is not Cohen–Macaulay.

That dimS M�depth M = depth M also follows from similar argument. �
We can also prove that M�l is Cohen–Macaulay (or the 0 module) for all l � depth M , while we

do not use this fact in this paper.

Lemma 4.4. For b, c ∈ [0,a] with c � b, we have sdepth(ka[c,b]�l) = l if #suppa(c) � l � #suppa(b).

Proof. We use induction on l starting from l = #suppa(b). If l = #suppa(b), then ka[c,b]�l =
ka[c,b], and the assertion has been shown in Lemma 3.4. Consider the case l < #suppa(b).
Since sdepth(ka[c,b]�l) � dimS (ka[c,b]�l) = l, it suffices to show sdepth(ka[c,b]�l) � l. We have
sdepth(ka[c,b]�l+1) = l + 1 by the induction hypothesis, and there exists a decomposition D :=⊕s

i=1 xci k[Zi] ∈ sda(ka[c,b]�l+1) with #Zi = l + 1 for all i. Since D is positively a-determined, we
have suppa(ci) ⊂ Zi for all i. Note that ka[c,b]�l = (ka[c,b]�l+1)�l = ⊕s

i=1(xci k[Zi])�l as Zn-graded
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k-vector spaces. Hence, if Di is a Stanley decomposition of (xci k[Zi])�l , then
⊕s

i=1 Di is a Stan-
ley decomposition of ka[c,b]�l by an argument similar to the proof of Proposition 3.7. Therefore
the problem can be reduced to the case ka[c,b] = xck[Z ] with #Z = l + 1 and suppa(c) ⊂ Z . If
suppa(c) = Z , then ka[c,b]�l = 0 and there is nothing to prove. So we may assume that suppa(c) � Z .
Define b′ ∈ Zn as follows

b′
i :=

{
ai − ci if i ∈ Z;
0 otherwise.

It is easy to verify that

(
k[Z ]/xb′

k[Z ])(−c) ∼= (
xck[Z ])�l

.

Since k[Z ]/xb′
k[Z ] can be seen as the quotient ring of S by the complete intersection ideal I =

(xb′
) + (xi | xi /∈ Z), Stanley’s conjecture holds for k[Z ]/xb′

k[Z ](∼= S/I) by [2, Theorem 3]. (We can
prove this statement directly using the results in the next section. In fact, we can reduce to the case
b′ � 1.) Thus we have

sdepth
(
xck[Z ])�l = sdepth

(
k[Z ]/xb′

k[Z ]) = l,

as desired. �
Now we have the following.

Proposition 4.5. For M ∈ moda S, sdepth M � t if and only if sdepth M�t � t.

Proof. To see the “only if” part, take D = ⊕s
i=1 mik[Zi] ∈ sda(M) with sdepth M = sdepth D � t , and

Di ∈ sd((mik[Zi])�t) for each 1 � i � s. Then the direct sum
⊕s

i=1 Di gives a Stanley decomposition
of M�t . Hence the assertion follows from Lemma 4.4. So it remains to prove the “if” part. Assume
that sdepth M�t � t . We shall show that sdepth M�i � t for all i � t by induction on i. This implies
the required assertion since M�i = M if i � dimS M . If i = t , then there is nothing to do. Assume i > t .
Consider the exact sequence

0 → M>i−1/M>i → M�i → M�i−1 → 0.

If M>i−1/M>i = 0, then M�i = M�i−1, and we are done. Suppose not. By Lemma 4.2, we have
sdepth(M>i−1/M>i) = i(� t). We also have sdepth(M�i−1) � t by the induction hypothesis. There-
fore

sdepth M�i � min
{

sdepth
(
M>i−1/M>i), sdepth

(
M�i−1)} � t. �

Theorem 4.6. The following are equivalent:

(i) (Conjecture 1.1) sdepth M � depth M for all M ∈ modZn S;
(ii) sdepth M � depth M for all M ∈ modZn S which are Cohen–Macaulay;

(iii) supp.reg(M) � h̃-reg(M) for all M ∈ modNn S;
(iv) supp.reg(M) � h̃-reg(M) for all M ∈ modNn S with σ(M) = supp.reg(M).
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Proof. For (i) and (ii), we can replace modZn S by modNn S . Hence the conditions (iii) and (iv) are
the Alexander dual of (i) and (ii) respectively by Theorems 2.7, 3.13 and the fact stated in the end of
Section 2.

The implication (i) ⇒ (ii) is clear. For the converse implication, take M ∈ modNn S with t :=
depth M . Since M ∈ moda S for some a ∈ Nn , we can consider the skeleton M�t of M . Since M�t

is Cohen–Macaulay and depth M�t = t as shown in Proposition 4.3, the implication (ii) ⇒ (i) follows
from Proposition 4.5. �
Remark 4.7.

(1) The equivalence (i) ⇔ (ii) is the module version of [6, Corollary 3.2].
(2) In the situation of (ii), sdepth M � depth M is equivalent to sdepth M = depth M(= dimS M). Sim-

ilarly, in (ii), supp.reg(M) � h̃-reg(M) is equivalent to h̃-reg(M) = supp.reg(M)(= σ(M)).
(3) We can replace modZn S and modNn S in the conditions of the theorem by moda S simultaneously.

In particular, the above theorem holds in the context of squarefree modules. The equivalence (i)
and (iii) has been mentioned in [14] for squarefree modules.

5. Sliding operation for monomial ideals

For a,b ∈ Nn , let a � b ∈ Nn be the vector whose ith coordinate is

(a � b)i =
{

ai + bi if ai �= 0,

0 otherwise.

Similarly, for a, c ∈ Nn with a � c, let c \ a ∈ Nn denote the vector whose ith coordinate is

(c \ a)i =
{

ci + 1 − ai if ai �= 0,

0 otherwise.

Let I ⊂ S be a monomial ideal minimally generated by xa1 , xa2 , . . . , xar , and I = ⋂s
i=1 mdi the ir-

redundant irreducible decomposition. Here, for a ∈ Nn , ma denotes the irreducible ideal (xai
i | ai > 0).

For b ∈ Nn , we set

I�b := (
xa1�b, xa2�b, . . . , xar�b)

.

As we will see later, this operation preserves several invariants.
Take c ∈ Nn so that c � ai for all 1 � i � r. Then I is positively c-determined, and we can take the

Alexander dual J := Ac(S/I). By [9, Theorems 5.24 and 5.27], J is (isomorphic to) a monomial ideal
with

J = (
xc\d1 , xc\d2 , . . . , xc\ds

) =
r⋂

i=1

mc\ai .

Similarly, Ac(I) ∼= S/ J . Hence we have the following.

Proposition 5.1. We have I�b ∼= Ab+c ◦ Ac(I) and S/I�b ∼= Ab+c ◦ Ac(S/I). Hence the irredundant irre-
ducible decomposition of I�b is given by

I�b =
s⋂

i=1

mdi�b.
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Proof. Since (b + c) \ (c \ a) = a � b, the assertions easily follow from the above mentioned properties
of the Alexander duality. �

Through the inclusion modc S ↪→ modb+c S , we can consider the functor

(−)�b := Ab+c ◦ Ac

from modc S to modb+c S . Note that S(−a)�b = S(−(a � b)) for a ∈ Nn . If

t⊕
i=1

S
(−a′

i

) φ−→
s⊕

i=1

S(−ai) → M → 0

is the minimal presentation of M ∈ modc S , then

t⊕
i=1

S
(−(

a′
i � b

)) φ�b−−→
s⊕

i=1

S
(−(ai � b)

) → M�b → 0

is the minimal presentation of M�b . Here, if cxa (c ∈ k and a ∈ Nn) is an entry of the matrix repre-
senting φ, then cxa�b is the corresponding entry of the matrix representing φ�b . Hence M�b does not
depend on the particular choice of c ∈ Nn with M ∈ modc S , and we can regard (−)�b as a functor
from modNn S to itself.

Proposition 5.2. For M ∈ modNn S and b ∈ Nn, the following hold

βi,a(M) = βi,a�b
(
M�b) (

for all i ∈ N and a ∈ Nn
)
, dimS M = dimS M�b,

depth(M) = depth
(
M�b)

, supp.reg(M) = supp.reg
(
M�b)

,

sdepth(M) = sdepth
(
M�b)

, h̃-reg(M) = h̃-reg
(
M�b)

.

Proof. If P• is a minimal free resolution of M , then (P•)�b is a minimal free resolution of
M�b by the exactness of the functor (−)�b . Since Pi = ⊕

a∈Nn S(−a)βi,a(M) , we have (Pi)
�b =⊕

a∈Nn S(−(a � b))βi,a(M) . Hence βi,a(M) = βi,a�b(M�b) holds, and this equation induces the third and
fourth ones.

For the remaining equations, take c ∈ Nn with M ∈ modc S . Then

dimS M = n − σ
(
Ac(M)

) = dimS
(
Ab+c ◦ Ac(M)

) = dimS M�b.

Similarly, we have

sdepth(M) = n − h̃-reg
(
Ac(M)

) = sdepth
(
Ab+c ◦ Ac(M)

) = sdepth
(
M�b)

.

The equation h̃-reg(M) = h̃-reg(M�b) can be proved by the same way. �
The following is a direct consequence of Proposition 5.2.
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Corollary 5.3. For M ∈ modNn S and b ∈ Nn, we have the following.

(1) M is Cohen–Macaulay if and only if so is M�b . Similarly, for a monomial ideal I , S/I is Gorenstein if and
only if so is S/I�b .

(2) Stanley’s conjecture holds for M if and only if it holds for M�b .

Unfortunately (?), many classes of monomial ideals for which Stanley’s conjecture has been proved
is closed under the operation (−)�b . For example, a monomial ideal I is Borel fixed if and only if so
is I�b . Hence Corollary 5.3 does not so much widen the region where the conjecture holds. The
following is an exception.

Let I be a monomial ideal minimally generated by monomials m1, . . . ,mr . We say I has linear
quotient if after suitable change of the order of mi ’s the colon ideal (m1, . . . ,mi−1) : mi is a monomial
prime ideal for all 2 � i � r. For example, I := (xy, yz2) ⊂ k[x, y, z] has linear quotient, but I�(1,0,0) =
(x2 y, yz2) does not. For further information on this notion, consult [7] and references cited there.
Here we just remark that, for squarefree monomial ideals, having linear quotient is the Alexander
dual notion of (non-pure) shellability, and there are many examples.

Since Stanley’s conjecture holds for a monomial ideal with linear quotient by [14, Proposition 4.5],
we have the following.

Proposition 5.4. If a monomial ideal I has linear quotient then Stanley’s conjecture holds for I�b for all b ∈ Nn.

Remark 5.5. Let I be a complete intersection monomial ideal of codimension c. Then each variable xi

appears in at most one minimal monomial generator of I . Hence there is b ∈ Nn such that (
√

I )�b = I
and we have sdepth

√
I = sdepth I by Proposition 5.2. The latter equation has been proved by Cim-

poeaş [4]. Now it is known that sdepth I = n−� c
2 � by Shen [13], but the equation sdepth

√
I = sdepth I

is used in his proof.

6. Quotient ring by a cogeneric monomial ideal

Definition 6.1. (See Bayer et al. [3].) Let I be a monomial ideal minimally generated by monomials
m1, . . . ,mr . We say I is generic if any distinct mi and m j do not have the same non-zero exponent in
any variable.

Definition 6.2. (See Sturmfels [12].) Let I be a monomial ideal with the irredundant irreducible de-
composition I = ⋂s

i=1 mai . We say I is cogeneric if any distinct mai and ma j do not have the same
minimal (monomial) generator.

Remark 6.3.

(1) It is easy to see that a monomial ideal I is generic if and only if the Alexander dual J = A (S/I)
is cogeneric. Similarly, for b ∈ Nn , I is generic (resp. cogeneric) if and only if so is I�b .

(2) In [10], more inclusive definitions of generic and cogeneric monomial ideals are given, and Apel
[1,2] uses these definitions. However, our proof of Theorem 6.5 below only works for the original
definition, that is, Stanley’s conjecture is still open for the quotients by (non-Cohen–Macaulay)
cogeneric monomial ideals in the sense of [10].

Theorem 6.4. (See Apel [2, Theorem 5].) If I is a Cohen–Macaulay cogeneric monomial ideal, then Stanley’s
conjecture holds for S/I (i.e., sdepth(S/I) = depth(S/I) holds, in this case).

The next result says that the Cohen–Macaulay assumption can be removed from the above theo-
rem.
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Theorem 6.5. If I is a cogeneric monomial ideal, then sdepth(S/I) � depth(S/I). That is, Stanley’s conjecture
holds for the quotient by a cogeneric monomial ideal.

Let I be a monomial ideal and J := A (S/I) the Alexander dual. As stated in the end of Section 2,
S/I is Cohen–Macaulay if and only if supp.reg( J ) = σ( J ), where σ( J ) = min{#supp(a) | xa ∈ J }.

The next result is just the Alexander dual of Theorem 6.4.

Proposition 6.6. Let I be a generic monomial ideal with supp.reg(I) = σ(I). Then we have h̃-reg(I) =
supp.reg(I).

Via the Alexander duality, Theorem 6.5 is equivalent to the next. This is just a “direct translation”.
However, it improves the “human interface” of the argument, since we usually describe ideals by
their generators, not irreducible decompositions. Anyway, to prove Theorem 6.5, it suffices to show
Theorem 6.7 below.

Theorem 6.7. If I is a generic monomial ideal, then h̃-reg(I) � supp.reg(I).

Proof. We prove the assertion by backward induction on σ(I). If σ(I) = n, then h̃-reg(I) =
supp.reg(I) = n and the assertion holds. Consider the case when s := σ(I) < n.

Let m1, . . . ,mr be the minimal monomial generators of I . Replacing I by I�r for r = (r, r, . . . , r) ∈
Nn , we may assume that we have ai > r for all xa ∈ I with ai �= 0. Assume that #supp(mi) = s for all
1 � i � t and #supp(mi) > s for all i > t . Consider the monomial ideals

Ii = (
xi

j · mi
∣∣ j /∈ supp(mi)

)
for each 1 � i � t , and set

J := I1 + I2 + · · · + It + (mt+1, . . . ,mr).

Then J is a generic monomial ideal with J ⊂ I and σ( J ) = s + 1. Moreover, we have the following
lemma whose proof will be given later.

Lemma 6.8. With the above notation, we have

supp.reg(I/ J ) = h̃-reg(I/ J ) = s.

The continuation of the proof of Theorem 6.7. We have the short exact sequence

0 → J → I → I/ J → 0.

By Lemma 6.8, Remark 2.6 and the fact that supp.reg( J ) � s + 1, we have supp.reg( J ) = supp.reg(I)
unless supp.reg(I) = s. If supp.reg(I) = s, then h̃-reg(I) = s by Proposition 6.6. Therefore we may
assume that supp.reg( J ) = supp.reg(I). By the induction hypothesis, h̃-reg( J ) � supp.reg( J ). Hence
we have

h̃-reg(I) � max
{

h̃-reg( J ), h̃-reg(I/ J )
} = h̃-reg( J )

� supp.reg( J ) = supp.reg(I). �
Proof of Lemma 6.8. Set M := I/ J , and consider h̃-reg M first. It is clear that h̃-reg M � s, and it
suffices to show that h̃-reg M � s.
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If Ma �= 0, then #suppr(a) = s. For a subset F ⊂ [n] := {1, . . . ,n} with #F = s, set

M[F ] :=
⊕
a∈N

n

suppr(a)=F

Ma.

Then it is an S-submodule of M , and we have

M =
⊕

F⊂[n]
#F=s

M[F ] (6.1)

as S-modules. So it suffices to show that h̃-reg(M[F ]) � s for each F ⊂ [n] with #F = s. We may as-
sume that M = M[F ] and I = (m1, . . . ,mr) with supp(mi) = F for all i (this reduction slightly restricts
the structure of the module M[F ] , but it causes no problem in the following argument).

Set a := deg(m1)∨ deg(m2)∨ · · · ∨ deg(mr). By the assumption that supp(mi) = F for all i, we have
supp(a) = F . Note that the ith coordinate of a ∨ r is ai if i ∈ F , and r if i /∈ F . Hence I , J and M
are positively (a ∨ r)-determined. We will give a decomposition D ∈ qsda∨r(M) with h̃-reg D = s. Set
Σ := {b ∈ Nn | xb ∈ I, b � a}, and take b ∈ Σ . Since supp(b) = supp(a) = F , we have xb /∈ J . Moreover,
for all monomial xc with supp(c) ⊂ suppa(b) and all j /∈ F , we have

min
{

i
∣∣ mi divides xb

} = min
{

i
∣∣ (x j)

i · xb+c ∈ J
} =: l(b)

by the construction of J . Let b′ ∈ Nn be the vector whose ith coordinate is

b′
i =

{
bi if i ∈ F ,

l(b) − 1 if i /∈ F .

Then

D :=
⊕
b∈Σ

ka∨r
[
b,b′] (6.2)

is a quasi Stanley decomposition of M with h̃-reg D = s.
To compute supp.reg(M), we can use the direct sum (6.1), and may assume that supp(mi) = F for

all i again. To prove supp.reg(M) = s, we show that the quasi Stanley decomposition (6.2) induces a
filtration of M as an S-module. Note that a is the largest element of Σ with respect to the order �.
Set b1 := a, and take a maximal element b2 of Σ \ {b1}. Inductively, let bi be a maximal element of
Σ \ {b1, . . . ,bi−1}. This procedure stops in finite steps, since m := #Σ < ∞. For i � 1, let Mi denote
the quotient module of M by the submodule generated by the images of the monomials xb1 , . . . , xbi

(set M0 := M), and let Ni be the submodule of Mi−1 generated by the image of the monomial xbi .
Then we have the short exact sequence

0 → Ni → Mi−1 → Mi → 0

in modNn S for each 1 � i � m. Moreover, we have

Ni
∼= ka∨r

[
bi,b′

i

]
and Mm = 0.

Since supp.reg(Ni) = s for all i (see the comment before Definition 3.10), we can proved that
supp.reg(Mi) = s for all i by backward induction on i starting from i = m − 1. Since M = M0, we
are done. �



52 R. Okazaki, K. Yanagawa / Journal of Algebra 340 (2011) 35–52
Acknowledgment

The authors are grateful to an anonymous referee for pointing out gaps in an earlier version of the
paper.

References

[1] J. Apel, On a conjecture of R.P. Stanley; Part I – Monomial ideals, J. Algebraic Combin. 17 (2003) 39–56.
[2] J. Apel, On a conjecture of R.P. Stanley; Part II – Quotients modulo monomial ideals, J. Algebraic Combin. 17 (2003) 57–74.
[3] D. Bayer, I. Peeva, B. Sturmfels, Monomial resolutions, Math. Res. Lett. 5 (1998) 31–46.
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