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Abstract

We consider the fifth order Kadomtsev—Petviashvili I (KP-I) equation as d;u + ozaj%u + 8§u +o; ! 3}2,14 +
uuy =0, while « € R. We introduce an interpolated energy space E; to consider the well-posedness of the
initial value problem (IVP) of the fifth order KP-I equation. We obtain the local well-posedness of IVP of
the fifth order KP-I equation in E for 0 < s < 1. To obtain the local well-posedness, we present a bilinear
estimate in the Bourgain space in the framework of the interpolated energy space. It crucially depends on the
dyadic decomposed Strichartz estimate, the fifth order dispersive smoothing effect and maximal estimate.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

We consider the initial value problem (IVP) of the fifth order Kadomtsev—Petviashvili (KP)
equation
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{a,u+a33u+ﬁa§u+a;la§u+uaxu:o, o
w(0,x,y) =uo(x,y), (x,y) €R?

Here «, B € R and u is a real valued function. If 8 > 0 Eq. (1) is called the fifth order KP-I and
if B < 0 it takes the name the fifth order KP-II. This equation occurs naturally in the modeling of
a long dispersive wave. Kawahara [15] introduced the fifth order Korteweg—de Vries equation

alu—l—ota;u—i—ﬁafu—i—uaxu:(), 2)

which models the wave propagation in one direction. While the KP equation models the propa-
gation along the x-axis of a nonlinear dispersive long wave on the surface of a fluid with a slow
variation along the y-axis (see [14,21,22] and the references therein).

We begin with a few facts about KP equations. The Fourier transform of a Schwarz function
f(x,y) is defined by

N 1 .
fem=5 / Fxsy)eiOE0 gy gy,
RZ

The dispersive function of the KP equation is

2

w<s,u>=ﬂ55—as3+%. 3)

The analysis of the IVP of the KP equation depends crucially on the sign of o and 8. We take a
glance on the case 8 = 0. In this case, Eq. (1) turns out to be the third order KP equation. Without
loss of generality, we assume || = 1. If « = —1, the equation is called the third order KP-I
equation. While if &« = 1, the equation is called the third order KP-II equation. By computing the
gradient of w, we get that for the third order KP-I

2
|Vw<s,u>|=‘<3§2—“—2,2ﬁ>‘2|s|. @
£2°7¢
For the third order KP-II equation, we have
u? u
|Vw<s,u>|:‘(—3&2—5—2,25)‘2|s|2. (5)

One can easily recover a full derivative smoothness along the x direction by (5), but only a half
derivative smoothness by (4). Since the nonlinear term in the third order KP equation involves a
full derivative along the x direction, this explains partially to get the well-posedness for the IVP
of KP-I is much more difficult than that of KP-II.

Another important concept in the analysis of dispersive equation is the resonance function.
Still considering the third order KP equation, the resonance function is defined by

R(1,6, n1, w2) =w &1 + &, uy + pn2) — wr, n1) — w2, 12)

_ £1& ) <M1 /Lz)z)
—__>°152 (3 KL K2
<sl+sz)< SRR s
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Thus for the third order KP-II equation, we always have the following inequality

|R(&1, &, 11, m2)| = ClEI1E21E1 + &2 (©6)

However, for the third order KP-I equation, the inequality (6) is not true all the time. In this case,
resonant interaction happens frequently. The resonant interaction means the resonance function
is zero or close to zero. Generally, we use (6) to recover the derivative on x by the regularity on .
Thus, the simpler the corresponding zero set, the easier it is to deal with the problem. This facts
also implies that the well-posedness problem of KP-II is easier than that of KP-1.

A natural function space to consider the well-posedness of the IVP of the KP equation is the
non-isotropic Sobolev space:

H2(R?) = { f e S'(R?);

&) (2 f iz, <00}, (7
where (§) = (1 + |&€]). Keep in mind that we are still in the case of 8 = 0. A scaling argument
(e.g. see [21]) shows that s; + 252 > —% is expected for the local well-posedness of the IVP
of the KP equations in H*!"*2. As we pointed out, the third order KP-II has better dispersive
effect than the third order KP-1. The results about the third order KP-II are very close to the
expected indices. In [2], Bourgain showed the global well-posedness of the third order KP-II
in L2, i.e. s; = s = 0. This result had been improved by Takaoka and Tzvetkov [24] and Isaza
and Mejia [13] to 51 > —%, s2 2 0. In [23], Takaoka obtained the local well-posedness of the

IVP of the third order KP-II for s > —%, so = 0 and an additional low frequency condition

|Dx|_%+‘S ug € L?. Recently, Hadac [9] removed the additional condition on the initial value
above. This means in the case sp = 0, the result on the third order KP-II equation is sharp. While
for the third order KP-I equation, the situation is far from the expected. By compactness method,
I6rio and Nunes [12] obtained the local well-posedness of the IVP of the third KP-I equation
for data in the normal Sobolev space H* (Rz), s > 2, and satisfying a “zero-mass” condition.
They used only the divergence form of the nonlinearity and the skew-adjointness of the (linear)
dispersion operator. The condition on s is needed to control the gradient of the solution in the L°°.
In [7], Colliander, Kenig and Staffilani obtained well-posedness for small data in a weighted
Sobolev space with essentially H? regularity.

Another natural space to consider the well-posedness of the IVP of the KP-I equation is the
energy space. We first notice that the KP equation (1) satisfies the following two conversations.

Mass

llull g2 = lluoll 2 ®)

Hamiltonian B o
Hu) = Ef(afu)zdxdy - Ef(axu)zdxdy

L. 2 1 [,
+5 (95 '0yu) dxdy+ = [ wdxdy = H(uo). 9)

Combining the above two conversations together, we can define the energy space for the fifth
order KP-I equation (8 = 1) by

E(Gth) = {u e S'(R?); lullesm = [(1+ €2+ 17 w)aE n|,. <oo}.  (10)
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For the third order KP-I equation (8 =0, « = —1), the energy space can be defined by

EGth) = {u e 8'(RY); Jullpam = | (1+ 181+ 161 i@ m|,» <co). (1)

On these function spaces, we can prove that for g =1,

”M(t) ”E(Sth) < C”“O“E(Sth)v (12)

and for § =0, = —1

lu®] gz < Clluoll (13)

for any sufficiently smooth solution u# of KP-I equation, uniformly in time (see also [5,22]). Thus
it would be expected to obtain local well-posedness in this kind of spaces. But the recent results
of Molinet, Saut and Tzvetkov [19,20] showed that, for the third order KP-I (8 =0, @ < 0), one
cannot prove local well-posedness in any type of non-isotropic L>-based Sobolev space H*!*%2,
or in the energy space (see also [18]), by applying Picard iteration to the integral equation formu-
lation of the third order KP-I equation. To avoid the difficulty, one must abandon Picard iteration
or find out an alternative space with similar regularity with H*!"*2 or energy space. Recently,
Colliander, Ionescu, Kenig and Staffilani [6] set up the local well-posedness of the IVP of the
third order KP-I equation with small data in the intersection of energy space E and weighted
space P defined by

E={f: fel?® a.fel? a;'dyfel? and P=|f: y+ifel?. (14

Kenig [16] established the global well-posedness of the IVP of the third order KP-I equation in
the following function space

Zo={ue L*(R?): llull2 + |97 yu] 1o + 070 2 + 07205 ] 2 < 00}

As far as we know, the best well-posedness result of the third KP-I equation is due to Ionescu,
Kenig and Tataru [11]. They set up the global well-posedness of the third order KP-I equation in
the E(3th) space. Thus a more interesting question is to set up the global well-posedness of the
third order KP-I equation in L2. It is still open.

We now turn our attention back to the fifth order KP-I equation. Without loss of the generality,
we may assume that 8 = 1 from now on. The fifth order equation has a higher dispersive term
than a third order KP equation, which helps us to obtain some better results than the third order
KP equation. As before, we first consider the dispersive function of the fifth order KP equation.
Since there is an interaction between the third order dispersive term and the fifth order dispersive
term, we cannot get a dispersive smoothing effect as (4) or (5) for all (&, u) € R?, but we still
have

2
Y

|Vw(s,m|=‘(ss4+oz3g2 s

)‘zmz, if 151> > |al. (15)

This inequality can help us to recover a full derivative which is important in the analysis of the
fifth order KP-I equation. We also consider the resonance function



W. Chen et al. / J. Differential Equations 245 (2008) 3433-3469 3437

R(§1,82, n1, u2)

=wé + &, u1 +p2) —wEr, pn) —wé, 1)

_ §1&6 2 2 2\ _(ﬂ_&)2> 1
——(§1+€2)<@1+&> s +aie+ed) 30— (£ -22)). ae)

The first result of the fifth order KP-I equation in the context of energy space is due to Saut and
Tzvetkov [22]. They obtained the local well-posedness for the fifth order KP-I equation with data
satisfying

luoll 2 + [IDxFuo | ;2 + |1 Dy lFuol| <00, s >1, k>0, || d0(, p) € S'(R?).

Here |Dy|*ug = (1§|%ip)Y. They also set up the global well-posedness for the data satisfies
upeL? and H (up) < oo. Recently, Ionescu and Kenig [10] got the global well-posedness for
the IVP of the fifth order periodic KP-I equation absenting the third order dispersive term with
the initial data in E (5th). For the IVP of the fifth order KP-II equation, Saut and Tzvetkov [22]
also obtained the global well-posedness for the initial data in L>. And they put forward an open
problem whether one can get the local and global well-posedness of the IVP of the fifth order
KP-I equation with the initial data in L2,

To connect the known results with the L? conjecture, we introduce the function space Ej
consisting of all the functions satisfying

=it = |(1+1ef + ) e

<oo, Vs e R.

It is easy to see when s =0, Ep = L?, and when s = 1, E| = E(5th). To get the low regularity
of the KP equation, we need a careful analysis on the time-spatial spaces. In this case, Bourgain
type space is needed. Below, we may abuse f as the Fourier transform of a function in (x, y) or
(x, y,1). One may figure it out in the context.

Definition 1. Let xo(t — w(§, 1)) = xp0.11(It — 0 (&, W), x;j(t — w(&, W) = xpi-1 217 —
w (&, w))) for j € N. For s, b € R, we define the space X ; through the following norm:

Il =Y 27" |x

>0

[

17
&1 4

i(r -0, u))(1+|s|2 ) fE

L2

Furthermore, for an interval / C R the localized Bourgain space X, (/) can be defined via
requiring

lullx, )= inf {llwlx,,: w()=u(r)oninterval I}.
weXs p

We now state the well-posedness result in X 5 with initial data in Ej.

Theorem 1.1. Assume that B =1, € R, and 1 > s > 0. For any real valued function ug € Ej,
there exist T = T (||luollg,) and a unique solution u of (1) in X ! L) with I = [T, T].
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Moreover the map ug — u is smooth from Eg to X 1+(1)~ By Sobolev embedding, we have
2

ueC(-T,T]; Es). Here %-i— > % and is as close as possible to %

By (12) and Theorem 1.1, we can recover the global well-posedness of the IVP of the fifth
order KP-I equation in the energy space:

Theorem 1.2. (See also [22].) Assume that 8 =1, « € R, s = 1. For any real valued ug € E1,
there exists a unique solution of the IVP of the fifth order KP-I equation

ueCR, Ey).

Remark 1. Even though the conjecture that the global well-posedness for the IVP of the fifth
order KP-I equation with data in L? is still open, it seems the function space Es will be expected
to consider this open problem. Since E; contains the specific feature (14 |£]% 4 |u||&|~!) of KP-I
equation, and is different from the Sobolev space H*!**2 or H®, we have independent interest in
obtaining the global or local well-posedness of the IVP of the fifth order KP-I equations in E;
for s e R.

Remark 2. In our argument, dyadic Strichartz estimates are essential. Especially, when we
dispose the “high—low” interaction in the bilinear estimate, a low order derivative on the low
frequency part is needed. In this case, s > 0 is necessary.

Our main argument to prove Theorem 1.1 is to set up a bilinear estimate as in Section 3 be-
low. Recently, Colliander, Ionescu, Kenig and Staffilani [6] discovered a counterexample which
showed that one could not set up a similar bilinear estimate in the Bourgain type space in the
third KP-I case. But we find their counterexample does not work in our case, since the fifth or-
der dispersive function can help us to recover a full derivative. Also, we do not recourse to the
weighted space. In [6], a weighted space is also used to dispose the case when the very high and
very low frequency interaction happens. In our paper, we can overcome this difficulty by the fifth
order smoothing effect and the dyadic decomposed Strichartz estimate.

In the rest of the paper we would like to use the notation A < B if there exists a constant
C > 0 which does not depend on B suchthat A < CB.If C < ﬁ, we would like to use A < B.
If there exist ¢ and C which are ﬁ <c¢ < C <100, such that cA < B < CA, the notation A ~ B
will be used. And the constants ¢ and C will be possibly different from line to line.

This paper is organized as follows. In Section 2, we present some results on linear KP equation
and some useful estimates. In Section 3, we present the bilinear estimate which is crucial to set
up our local well-posedness. In Section 4, we finish the proof of Theorem 1.1.

2. The linear estimates

We begin with the IVP of linear KP equation

{a,u+a33u+afu+a;lay2u=0, (18)

u(0,x,y) =up(x,y), (x,y)eR>
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By Fourier transform, the solution of (18) can be defined as
u=SOuo(x,y) = / el CETIHOGIN o (€, 1) dE d .
R2
By Duhamel’s formula, (1) can be reduced to the integral formulation:

t

u(t) = S(t)uo — %/S(t — )0, (u2(t)) dr’. (19)

0

Indeed, to get the local existence result, we apply the fixed point argument to the nonlinear map
defined as the right-hand side of the following integral equation:

t

1
M(t)=1ﬁ(t)[5(t)uo—E/S(t—t’)ax(ﬁb%(t/)uz(l/))df} (20)

0
where ¢ € R and, ¥ is a time cut-off function satisfying
Y e CP(R), suppy C[-2,2], ¢¥=1 on[-1,1], (21)
and Y7 () = ¥ (-/T).
To run the fixed point argument, we first set up the following homogeneous and inhomoge-

neous linear estimates.

Proposition 2.1. Assume i € C* as above and s € R, % <b <1, then

[v®SOuo| ., < Clluolle,. (22)
t
"wm f S@t—Hh@dr'| < Cllkllx,, - (23)
0 Xs.b
Proof. We observe that
(¥ OS@Ouo) ¢ 1, 1) =P (r — (&, W)io &, ). (24)

To prove (22), we need to estimate the following integral expression:

1

Zzib( [ w(E, W 1 (¢ = )Pz — o) liol dé dudf) ; (25)

j=0 R3
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where w(&, pu) = (1 + &> + H’g—‘l). We observe that for j =0

/l&(x)ﬁx,-(xwxsur&u%w,
R

and for j > 1

/W(k)|2x,;(k)dk§2j L1V 9 9] 3o
R

1
RS

for any N € N. When we insert (26) and (27) into (25) we obtain the bound

+b)j

luol £, (nx//nL +Z(1 N cla +|s|)N&<s>||Loo>-

. S (3+b)j
It is easy to see that for N > 2, Zj>1 REEILe

To prove (23), we write

< C, then (22) is proved.

t
wa{/SU—HMUSd/=I+H,

where
° . R eitr _ eitw
1=y [ [ i e -0 dsduar
T—wé,n
—0o R2
and
r . N eitt _ eitw
=y (1) / /ez(x$+)’li)h(€_—, I, .[)[1 —¥(z —w)]idéd,udt.
“coR2 T— w($7 /'L)

By Taylor expansion we can write I as

o]

k=1 00

For k > 1, we write

5y (1) = Y (1).

0 .k
I:Z;_'tkl/j(t)/ei(xg+yll+tw)< /ﬁ(s,ﬂyf)(T—W)k_ll/f(T—a))d‘L’) de‘L’
! A

(26)

27)

(28)

(29)
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It is easy to show for s € R,
[ ()] < C,
and for any |s| > 1,

(14 k)2

|Wk(s)| <Cm-

From (29) it is easy to see

00 .k

1= ZUOSOhi(x. ),
k=1

where

e @]

hi (&, 1) = f hE, p,0)(r — o)1y (r — w)dr.

—0o0

Then by (22), we obtain

(1+ k)2
Ml S 32— el -
k>1 ’

On the other hand, from the definition of E; and X j, it is easy to see that
hklle, S MAllx,, -

We now pass to 1. We write Il = 11| + 11>, where

itt

m=v [ [ i w ol - v - o]~ dsdudr

T_a)(‘%-’/“b)
—00 R2
® itw
]Izz—w(t)/‘ei()ff'f‘yl") / i;(é,,u,r)[l—w(f—w)]#@mdrdédu
R2 —0o0

Again by the definition of X 5, we obtain
il x,, S MAlX,, -
By (22), we get

20 x,, S IllE
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where

hg, 1, 1) s
_a) :

S0

(DS /[1 —¥(t — )]

By the following estimate
Il < 1Al -1
we finish the proof of Proposition 2.1. O

Proposition 2.2. (See [1].) Let 5(r) = 2(% — %), 2<r <oo. Forany 0 < T < 1, there exists C
independent of T such that

5 2
[IDx| 2 S(t)uo(x, y) ”L‘%(fo,yﬂ < Clluolngxﬁy), 7 =48(r). (30)

Here

T q é
”f”L‘;(fo’y))z(/(f[|f(X,y’t)|’dxdy) dt) .

-T

The following dyadic decomposed Strichartz estimates are crucial in our bilinear estimates.

Proposition 2.3. Let x;(5, 1, 7) = x;(t — w(§, ), j =20, and (q,r) as in Proposition 2.2.
Denote f; = (x; (&, u, r)|f|(§, w, TV, Forany 0 < T < 1, we have

1D g0y S2E05 022 G31)

Here

1fllg2 = (/// |f(s,u,r)]2d§dudz)%.

For the sake of convenience, we would like to state the following special cases:

i/2

||fj||L°;°(foyy))§21/ I Fill 22y, (32)

i < nJjl2y £. 33

1Da1% fill s as, ) S22y (33)

For0<8<%
D<Al v 2 S2720f50 2 (34)
L; (1—2)5 (x,y,1)
X,y
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and

1-28 5 (x,y,1)

T (x,y)

l7 .
D272 2 0 S2PIfe (35)
L )
Proof of Proposition 2.3. We first note that
iy = [[UERIEO fiy a0 d .
R3
By a simple change of variables we can write

Fi(ey.0) = / FEETIHOFON| Fl(e, 1 A+ )3 (V) dE dptdh
R3

= / e’“x,-m[ / e““f”“*’”m(s,M,Hw)dsdu} dx
R

R2

_ / ¢y NS f.(x, y) A,

R

Here f,\(é L) = | f |(&, u, A + w). Then (31) follows from Minkowski’s inequality, Strichartz
estimate (30) and Cauchy—Schwarz inequality. 0O

To set up the bilinear estimate in the next section, we will encounter the interaction between
high frequency and very low frequency. Then the following maximal estimate will be useful

when we dispose the very low frequency.

Proposition 2.4 (Maximal estimate). Let Ty, be the operator such that T f(E, u,T) =
m(&, ) fE, u,t). Then

Proof. We first notice that

Ty f (ry ya1) = / =2y — Y)Y 1) dy.
Rz

Here and below, we use m to denote the inverse Fourier transform of a function m. Then
[T f Gy, O] S Il 2 [ £ G0 g -
To end the proof one only take the L? norm in the ¢ variable. O

At the end of this section, we would like to set up the following proposition, whose idea comes
from Lemma 3.1 of [8].
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Proposition 2.5. Let [ be a function with compact support (in time) in [—-T,T] and b > 0. For
any a > 0, there exists 0 = o (a) > 0, such that

1 %000 S TN fllxo,- (37)

Proof. We first show that

[t =)™ fl 2 ST Sl 2 (38)

‘We rewrite
[ =)™ Fll 2 = [SO@) S0 1] -

Since S(t) is a unit operator in L? space and preserves the support properties in time, we have

_4
7

e =)™ Flp = sl o STV 7 @50 ]

_ 1

ST 7 |S(- t>fHLz, (39)

q’
(“)(L )

1 1 _ 1
wherez—?_a 3

of Xo,,, we have

org' =00, ifa> 5 - We now turn to show (37) by (38). By the definition

1 lxopa =Y _ 277 xj(r — 0 ) £ 12

>0

< Zz a//2|| “/2 )bxj(f —w(E,M))f”Lz
j=0

< Zz aj/2o H X] (‘L’ —w(§, M))f”LZ
j=0

ST fllxo,- U

3. The bilinear estimates

Theorem 3.1. Assume 0 < s < 1, and u, v with compact time support on [—T,T], 0 < T < 1.
There exists o > 0 such that

los@oly , STlulx,, Wolx, - (40)
s,—j ’ v

[N
D=

Here —3+=(3+) — 1.

Remark 3. The bilinear estimate above plays a key role in the method of Picard iteration. There
are many literatures considering the multilinear estimates. Among them we prefer to pay more
attention on [17] and [25]. In [17], Kenig, Ponce and Vega present a bilinear estimate in the
studying of the IVP of KdV. It mainly depends on the estimate of the resonance function. Since in
the KdV case, the resonant set is very simple, the decomposition of frequency method can bring
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us enough benefit. Recently, the first two authors [3] obtained the low regularity of modified
KdV-Burgers equation by this method. In [25], Tao presented another program to obtain the
multilinear estimates. He used the dual argument and dyadic decomposition to transform the
multilinear estimate into the estimates of some multipliers on some basic boxes. This method can
be used to study some more complicated cases. We also applied this method in a recent paper [4]
to set up the well-posedness of the IVP of the modified KdV equation with a dissipative term.
As pointed out in [25], the estimate in the box for the KP equation is much complicated. In this
paper, we would like to use the dyadic decomposition, the Strichartz estimates and the dispersive
smoothing effect to exhaust the structure of the zero set of KP-I resonance function.

We use the duality to prove the bilinear estimate (40). To make our argument more clear, we
would like to divide our estimates into two catalogs according to the main term in (1 + |& 12 +
le]]€]~1). It means that we need to estimate, for gj =0,

sz(—%ﬂ/gj(g, w i (t—wE w)xE w

j=0 Ax
< [E1(1+ €1) a1 s 7)1 E2, 2, 2) dE1 dpy dTy dy dpa d (41)

and

sz(—%ﬂfgj(g, 1, 0 (T — @& W) xa (€, w

j=20 Ax

s
X |§|<1 + %) [2](&1, 1, TOI0|(E2, o, ) dé1dpr dtidér d sy doo, (42)

where Ax is the set {1 + & =&, w1+ u2=u, 11+ 0 =1}, x1(&€, n) is the characteristic
function of the set {|£]> > %}, x2(&, ) is the characteristic function of the set {|&|> < %}
and [|gjx1xjllz2 <1and |lgjx2x;ll 2 < 1.Itis clear that by symmetry one can always assume
that |&1| > |&2]. The KP-I problem is difficult since resonant set is complicated. We will decom-
pose Ax into several domains. For each domain, we decompose it into some tiny sets, and use
the estimates in Section 2 on these tiny sets. For instance, when the resonant happens, we will
consult to the maximum estimates and the dyadic decomposed Strichartz estimates. We start by
subdividing Ax* into three domains of integration by

Low-Low interaction domain

Ar={l&1] > &1 161 < 100max (1, v/]el)};

High—High interaction domain

Ar =811 > 1&l; 182 ~ |&1] = 100max(1, y/]el) };

High—Low interaction domain

Az = {I&1] > &5 |&1] > 100max(1, y/le])}.
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Proof of Theorem 3.1. Denote

G1(&, 1. 7) = (1+ 161 + |l /1E]) 11, 1t T)

and

$2(E, 1, T) = (14 161 + |1l/161) 1DI(E, e, ).

Then we need to prove, there exists o > 0 such that

[y, ST Nilx, ,, le2llx,
)

N
N

By Proposition 2.5, it suffices to show that

[os@wllx , Sloillx, , Nalix,, +1illx, , Ne2lx, , - 43)

1 1 0,1
-3+ 2

N

We now control the following two terms by the right-hand side of (43):

22](7%+)/g](é, M, T)Xj(r - a)(gs M))Xl(é? M)

j20 Ax
1L T) &2, )
1+ & 44
Y D L+ (a2 + 2 “
and
S [0 (¢ - 0 0) a0
j=0 Ax
y |s|<1 |M|)S b m) b n) @5)
€] (1+|§§1|2+ ||lg1|\)y (1+|§2|2+ \‘lgz‘l)v

Another assumption is that function

[
€]

has compact support in time (supporting in the set [T, T]) for i = 1,2, j € N. In fact, if we
denote

Gi,j(x,y,t)=f_1(|$|(1+|5|2 ) 8iG w0y (r —wE )&, M))(x y.1)

bi (&, i, T0)

aﬁ,-(x,y,r):f—l(—,
(14 1512+ g

)(x,y, t), fori=1,2,

the integral in (44) and (45) can be written as an inner product (G;, ;j, ®1®P>). Since u and v
have compact support with respect to t € [T, T'], then @], has the same compact support in
time with u and v. Thus the inner product (G;, ;, @1®>) can be restricted on the interval [T, T']
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according to the time axis. It means we can assume that G; ; has the same compact support in
time. We also need some other notations:

$iji = dixj (ti— w0 1), =12,
Bijiom; = Pixji (ti = 0 (&, 1)) Oy (€, i =12,
dA’i,ji,ni =<]3in,- (ti — o0&\ i) (i), i=1,2,
and
Bijimin; = B i (T = @ Eiy 1))y (66w, (i), i =1,2.
Here we used the notation 6 (n) = x[0.11(|111), Om (M) = Xzm-1 omj(In]), m € N. Some times, we

may use g; instead of g; (&, u, 1) x;(t — w(&, 1)), one can figure out it in the context. Then we
can decompose (44) and (45) by

3 sz(*%ﬂfgj(.g,u,r)x;(f—‘U(E,M))M(E,u«)

J1.j220 j=20 Ax

s o1, i1 G, s T) b2, j» &2, 2, 2)

1+ &2 46
x |E1(1+181%) (A + 1612+ Hhs (1 4182 + 2y o
and
Z sz(—%ﬂfgj(g,u,r)x,'(f—w(éw))xz(am
J1,7220 j=0 Ax
% |E|<1 |/'L|) ¢1 J1 (él //Lll tll) ¢2 j2(§2 HZ[ Tzl) ) (47)
E1) A +1612 + ED A+ 18P+ )8

Low—Low interaction

2 5 lmitpl
Case A. |§1 + &I > T5 5]

In this case, we have |&] + &| < |€1] < max(1, «/]a]). And we also have |u; + po| <
&1 + &3 < max(1, |«|2). Thus we have

46) < Z 2j(7%+>“(m(§vM)gj)v||L%(L§f’y)”¢1>jl”Lz(é,u,r)”¢2>J’2”L%°(L§,y)

JoJ1,J220
. _l .
S Y Y gl 1222 . gyl 2
JsJ1,J220
Sllenlix, § #21lx, (48)
2
Here m(&, u) = 1 3 , which belongs to L?*(R x R).

X\S\ﬁmaX(l,Ialf), [ Smax(1,]er| 2)
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2 < litpal
Case B. [§1 +&|° < 7357

We first note that if X522l < 1, then argument above can also bring us the same estimate.

[E1+&]
We need only to consider the case % > 1.

@ns > sz“%“/g,-(s, 10X (T — 0 E W) x2E, w)

J1.220 j20 Al

b1 G, ) . (&2, n2, 2)

X g1 |l
(L [+ ) (L el + 2D

‘We then consider two subcases.
Subcase B1. || < |u2l.

If 12l < £, ]2, then |ia] < max(1, |a|?). Since |& + &] < max(1, |a|'/2), we have

1621
i(—L \Y
@ns > 20| (mE wgj) HL;(L;%)”@,J&||L2||¢2,jz||L;°(L§,).)

JoJ1,J220

S > 2T gl 1222 .yl 2
JoJ1,J220

Sldillx, , Idalx, (49)

2
Here m (&, ju) = X

3 .
\$\<de(1 Iotlz) |l Smax(1, fer] 2)

If ‘|l§22\| |€2|%. We first consider the case % < % Thus we can choose min(%, s)>8>0

as small as possible such that

@ns > sz“%*)/gj(s, 10X (T — 0 E W) xa &, w)

J1220 j=0 A

§—8 5
x |€|1‘3<M> 101 6., oy 22 B2 T2

d dgh gD’

Y 2j(*%+)/gj($,u,t)x,-(r—w(é,u))xz(é,u)

jt72, >0 A
1-8 4 52
X &0, j, (61, 1, TIE2° 92, j, (62, 2, T2).

If j < j», by Holder’s inequality and (33), we get
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(1 1 1
CHBS Z Z 2/ 2+)”|D’C|4gjv||L‘}(L§Y),)|“DX|4¢1J1 ||L‘;(L;y)”¢2»jz||L2

J1,7220 jp=j>0

. 1 . .

—5 2 2
Do 201G i 2l 2 N2, gyl 2
J1,7220 jp2j=0

< llgnllx, 3 Ié21lx, |

Wi

If j > j», by Holder’s inequality and (34) and (35), we obtain

s Y3 YOG ] sy

J120 j=2j20 Py
[(—34)91/292/2
S Y 2Pk gil g il 2
Jo120 j=j220

Slonlix,  92llx

; |||D | ¢212|| dars 25)

1o
ol

It % > ’g— and 0 < s < 2, the proof above can also work. We only need to estimate the case

I<s<L

@ns Y 2O [y nnn( - o6 0)eew

12,20 A
< E[1 |s¢1 &L, T) ¢, (B2, w2, )
(1 + [u1D)® lual®
In addition, we decompose |p1| ~ 2" for ny > 0. Thus

i(—L _
@n< D 20 Y YOl N I s 02 iz,

J1,7220 j=20 n120
i(—1 in /2~ — 1
DD Y PR g 2l 2 2. I 2
J1:7220 j20 n1 20

Sl 1||¢2||X e

N

Here we used the fact that |£1| < max(1, /|a|) and |u;| < 2! with Proposition 2.4.

Subcase B2. || > |u2].

If |ua| < 1, we obtain

ans Y YO Ngleeulras,) | mE én) 2 s,
Jod1,7220 '

s 1 i/
S > 2T Pgi 22 Pl N2 gyl 2
JoJ1,j220

Sl 1 lé21lx, ,

o
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Here m(&;, up) denotes the characteristic function of the set {(&2, u2); 1&2] < max(1, |a|%),
|m2| < 1}. Thus, we need only to consider the case |i2| > 1. In this case, we can run the same
argument with Subcase B1 by interchanging the positions of |u1] and |2 |. We omit the details.

High—High interaction

2 |42
Case A. [§1 + & 2> 5157

We can also assume that |£] +&| > max(1, |«|'/?). Otherwise we go back to (48). We now run
dyadic decomposition with respect to |£1]| ~ 2"! (hence |&;| ~2™!) and |£| ~ 2" withm + 1 >
m > 0.

@s > > ) 2f'<‘%+>/g,-<s,u,r)x,»(r—w@,m)m@,m

J1,7220 j20 mi+12m=0 A,
142 —45) 4 ~
x om(1+2s)ymy( v)¢1’jl’ml 1 1. TS joam, Ea 112, T2).

‘We now consider two subcases.
Subcase Al. max(j, j») = 2m;.

If j < jo, we obtain

i(—1 1_ 9 1
46) < Z Z Z 0i(=3H)omi(3 2$)|“DX|4g;'/||L‘}(L§_),)

0220 22720 R o0
1
< 1D jimi |14 1a 102, 72m1 122

i(—1 i12m71/2A 0 (L —
S Y Y RG22,y 2
J1,7220 j22j20

. 1 . . .1 : 1
< Z Z 2](*§+)2]/22]1/2212(§+)2*jz(5+3+)||gj||L2||¢LjI”LG(pz!jz”Lz
J1,7220 jp2j20

Sldilx, g2, |

2
If j > j», we also have

46) < Z Z Z 2](*%+)2m1(%*2S) |||Dx|%¢2,j2,ml ”L‘}(Ljy)

7120 j>220 L>m >0
1
X ||| Dy |? i i
”' x ‘f’l,n,ml”L‘;(L;y)”gJ”LZ

S Y 21Caime Q=i 2R g iy N2 2.l 2
7120 j>jp=>0

Slellx | le2llx -
0 0.
°2 )
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Subcase A2. max(j, j») < 2m;.
Subsubcase 1. | 5L — 221> < j1&1 + &7I5¢] + &5 +&7) — 3al.

In this case, the resonant interaction does not happen. By the definition of resonance function,
we can get a useful estimate. Writing

T—wE + &, w1+ ) —t1 +wlr, u) — 2+, u)

£16 2 2 2 (Ml H2)2>
G iey ((51+€2) [5(67 +&16+ &) — 3a] Pl (50)

since (t — w(&, ) ~ 2/, (11 — wE,m)) ~ 2 and (12 — w(&,p2)) ~ 272, we have
2max(ioii2) > |14 |E + & > |E1* ~ 2% Tt is clear that we have j; = max(j, ji, jo) > 4m.
Thus |& + & < 2/17#"1 We now choose § > 0 such that min(‘]—‘, s)>8>0and 1 —45 + % >
% +. Therefore

J(=3H) (1 —4m1)(3-20) gV
SOEDIEDY ) A A L PP
D20 ity 0 2m>max(, )20

<61l 2z ) [1Ds1 @2 o 3 0

<Y T 3 2J (=3 )2J/29G1—4m1) (5 ~28)5)2/2
J120 m1 20 2my Zzmax(j2,j) 20
1l 2 161y, 122 102, oo 1 2

< g1 ||X0y% I#21lx,

Nl—

Subsubcase 2. |5t — 2217 > 3161 + &715(] + &162+83) — 3al.

In this case, the resonant interaction may happen. We have to do some delicate estimates. Let
0 =11 —w(&, ur) and 6, = 1o — w (&2, Kw2), we can control (46) by

. 1 .
> > 2”7“2’”‘“*2”/@ (5 1,01 + 061, p) + 02+ (82 + 12)

J1.m1 20 2my>max(j,j2) 20
X xj (614 62+ (&1, n2) + w2 + p2) — w(E1 + &2, w1 + p2))
X @1 jym) (&1, 11,01 + w(slvﬂl))(;SZ,jz,m] (&2, u2, 02 + (&2, 12)) d&1 d 1 d&r dp dO; 6.
(51)

We divide the above quantity into two cases.

Subsubsubcase 2a. |5(5} — &) — 3a (&7 — £3) — [(41)% — (£2)%1] > 1.



3452 W. Chen et al. / J. Differential Equations 245 (2008) 3433-3469

We change the variables by

u==%& +8&,

V=1 + K2, (52)
w=01 + w1, u)+ 0+ + un),

Ha = [2.

The determinant of the Jacobian associating to this change of variables is

1 1 0 0
; 0 . 0 Lo
n 55;‘—301512—‘;—121 5¢) 3a§22—’§—222 2 282
0 1
251 2 %) 2

=stet-ef) -l -5) - (&) - (2) ] e

Thus |J,| > 1. We have

oS 3 > 2j(_%+)2m'(1_23)/g/Xj(u,v, w)

J1,m1 20 2my>max(j, j2) 20
X |JM|_1H(u, v, w, 12, 01,0)dudvdwdu,dd; dbs. 54)
Here H(u,v,w, 4y, 01,6>) denotes the transformation of (il,j|,m1($2,j2,m1- For fixed 64, 0;,

&1,&, n1, we calculate the set length where the free variable p, can range. More precisely,
we denote this length by A,,. Let

ot I8 (506 )~ 30] - (- £))
F(w)=61+6; <sl+52>(@‘+€2) [5E + &8 +8) —3a] (sl &) ’

we have | f/(2)| > |€1|%. Since
01 4+ 62 + w (&1, 12) + 0 (&2 + 12) — w (&l + &2, 1 + 12)|

_ &5 25 (e2 2) _<ﬂ_£)2>‘~j
01+ 6> @15 ((51 +&)°[5(&7 + £162 + &) — 3] 5 & 27

(55)

This means that we have A, < 2/=2m By Cauchy—Schwarz and the inverse change of variables
we have

fg,-xj(u,v,w)uﬂrlH(u,v,w,m,el,ez)dudvdwdmdel d,

_ 1/2
52]/2_””fgjxj(u,v,w)<f|JM|_2H2(M,v,w,Mz,Ql,Gz)dle) dudvdwdu,d; do,
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. 1/2
Szj/zmlllngj||L2/</|JM|2H2(u,v,w,uzﬁl,@z)dudvdwdm) d6, do,

. 1/2
§21/2—m1||gjxj||L2/(f|JM|_1H2(u,v,w,uz,el,ez)dudvdwdp.z) d6,d6,

. R 12
=21/2_m‘||ngj||L2f</ 1_[ ¢j2,./i,ml($i,l/«i,9i + w(&, i) dé duldézdua) dodo,

i=1,2

S22l 2ol gl By 1211002, o m 2
It follows from (54) that

@< > 3 2J(=3H)0i/2=migm (1=25)9j1/2) 2/2
m. 120 2my>max(ja. j)>0

x|1gjllz2 1P, jmy 12192, jomy Il 2

S ||¢1||X0’% I#2llx, ;-

[S]

Subsubsubcase 2b. |5(f§fL — Ef) — 304(%12 - 522) — [(%)2 — (%)ZN <1

In this case the change of variables above cannot be used because the determinant of Jacobian
may become zero. We consider the change of variables instead:

u==& +&,

V=) + H2, (56)
w=0; +w,u)+0+wé+un),

& =6

In this case the determinant of Jacobian J is given by

1 1 0 0
; 0 . 0 R
= M 1%
§ 5514—305512—5—121 55?—30[5;‘22—5—222 28 282
0 0
:2<&_&>_ 57)
& &

An easy calculation shows that |Jg| 2 |£1]. In this time, we fixed 61, 62, &2, w1, (2, and calculate
the interval length Ag, of the free variable &;. Set

2 2
h(E) =5(* — &3) - 3a (2 — £2) — [(ﬂ> - (ﬂ> } (58)
& &
We compute

W (&) =208 — 6a& +2(1u1/£)%E " (59)
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Since now /' (£1) has the same sign as &1, we have |1/(£1)| 2 |&1|°. Thus Ag, <273, Remind

~

s Y 3 2](*%+)2m1(1725)[gjxj(u’v’w)
J1.m1 20 2my>max(j, j2) >0
X |Je| TV H (u, v, w, &1, 601, 62) du dvdw dg) d61d6,. (60)

Again denote by H (u, v, w, &1, 01, 6») the transformation of Hi:l‘qui,jiyml under the change of
variables (56).

/gjxj(u,v,w)|Jg|_1H(u,v,w,El,Bl,Qz)dudvdwdél do, do,

\ 172

< am /gjxj(u,v,w)</|lg|2H2(u,v,u),.§1,91,92)d§1> dudvdwdf) do,
R 1/2
—5mq . —2 142

<2 ||g,x,-||Lz/</|Jg| H(u,v,w,sl,el,ez)dudvdwda) 46y dby

1/2
52—2m1||g,~x./||Lz/</usrle(u,v,w,sl,el,eﬁdudvdwd&) d6, doz

1/2
=2_2m‘||ngj||L2/</ l_[ OF ooy (& i, 0 + (& i) dEi dlh') do, do,
i=12

-2 i1/2~)2/2
<2722 g i a1y I 2 102, o Il 12

Thus

i(—3+)7—2 1=25)~j1/27j2/2
@< Y o 2GR migm =299 2002 g 211y 21162y 112
my,j120 2m;>max(jz,j) =0

S lorllx, g I#2llx, |

ol

2 ¢ lmtunl
Case B. |51 + &I < 5557

If L1 +po|
lartna] ‘E+S2|
pitpal >
el ~ 1

< 1, this case can also be proved by (48). Thus we need only to consider the case

Subcase B1. || < |2l

Subsubcase Bla. 2l < |&,)2.

In this case, |u2| < &3 and |1 + u2| < 2]& 3. We now decompose |£1] ~ |£| ~ 2™2. Then
in this case we bound (47) by
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DS 2](7%+)/gj(§7u,r)xj(‘c—w(éf,M))Xz(f’M)

J1:J2,720 my>0 A,
X &1+ T2y iy (E1 1y TG,y (B2, 142, T2). (61)

We first consider the case that two high frequency waves interaction forms a very low wave,
ie |& +&| < 1.

@ns > Y 2j(7%+)2m2(7%7'y)|||Dx|i¢2’fzvmz||L‘;<L¢)
jma=0 ji.jp>0 xy

X 1Dt ma | 3 s 122

o1 1 i 12min )2
S YYD 201Gl 2R g a1 gy N2 162, s N2
Jsm220 j1,j220

S llenlix, 1||¢2||x e

w9

For the case |1 + &;| > 1, one can use the argument in Case A again to obtain

<
@D < I91lx, , I9allx, | +191llx, , Il ,

Subsubcase B1b. ’g— 16212

We bound (47) by

>, 2f’<—%+)/gj<s,u,r)x,-(r—w@,u))xz(s,m
J1.J2,j 20 A,
b1,y Er 111, T1) 2, (€2, 12, T2)

611> (halys

x &1 + & ur + palf

Of course a dyadic decomposition with respect to £ is also needed. Let || ~ 2!, we bound (47)
by

DS 2j(—%+>/gj(g,u,f>x,»(f—w(s,m)xz@,m

J1:J2,J20 m1 20 As

X &1 + &' 27 Gy iy (E1L 1, T2,y (E2, 142, T2).

Then one can also run the above argument by considering two cases: |£; + &| < 1 and
|&1 + &2| > 1. We now give some details in the case |£] + &| > 1.

Subsubsubcase 1. max(j, j») > 2m;.

Ifjgjzand0<s<%,wechooseO<6<%
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. 1 1
47 < Z Z 2J —7+)zm1(7—2s)|||Dx|5g}/” .
1,220 ja=max(j,2m1)>0 Lr (Ley™)
1.
X [IDx 2@ jymy | 2 1 g2 llg2
LI—ZB 6_)
T X,
<) Yoo PG el Ny N2 2, N2

J1,7220 jpZzmax(j,2my) =0

< N ||XOY% P21, -

[N

If j < jpand § <s < 1, we bound (47) by

JE3Hmi(5=28) 1 T T
3 DA A el V71 P2 [ NEL WA PRt [T N [y
J1,J220 jazmax(j,2m1)=20
; 1 1 . .
S 2 Yo YCEamGTRRN g oy 2162, 2

J1.7220 jozmax(j,2m) 20

S ||¢>1||x0’% P21l ;-

[N

If j > j», we also have
. 1 1 1
J=5Hpmi(5=25) Yoo
A7 5 Z Z 2 2T)M; ” | Dy| 4¢2,]2 || L‘;(Li_y)
Joj1 20 j>max(jz,2m1) 20

1
X ” |Dx| %1, jy,m, ”LA;(Li,y)”gj”LZ

. 1 . P l_ . .
<S> Yoo 2iCaDimax Qa0 2002 g o iy jymy 212, N 2
J»j120 j>max(jz,2m1)=0

S ||¢>1||x0’% l$2llx, , -

[N

Subsubsubcase 2. max(J, j) < 2m;.

In this case, the argument in Case A can still work by replacing the % derivative on g; by %

derivative on ¢; when 7 <5 < 1, and & — gﬁ > 2E + EPIS(EX + 616 + EF) — 3a]. We
omit the rest details.

Subcase B2. |1t1| > |2]|. One can use the same argument presented in Subcase B1 by inverting
the role of (§1, 1) and (&2, u2).

High—Low interaction In this domain, the estimates will be more complicated. Roughly
speaking, we will consider the term % in two regions, % > max(|&1]?, %) and % <
max (|2, 44,

i lua] 2wl
Region 1. & 2 max(|&1]°, |5||)’
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2 > |lmtupo|
Case A. &1 + & 2 7 er-

Subcase Al. |£;|? “—ll

We apply the dyadic decomposition with respect to |£| ~ || ~ 2! to bound (46) by
i(—1
Yoo Y e / g 1. (T — 0 W), 1w
J1:J2,J20 m=0 A
032,]'2 (&2, 2, 12)

a2l s
&)

X 2m1(]31,j|,m1($1’l/~1»f1) (62)

Subsubcase Ala. [§;| > 1 and max(j, j2) = 5m1

We first notice that

COREDY > 2“*%*)[&-(5, WO (T — w0 W) E, w

Jemi20 max(j, j2) 2 3m; 20 As

x 2M U206, i €1 1, T2,y (€2, 12, T2).
If j > o,
(L 3_
ORI Yoo 2 mGE ey
71020 j>max(ja, 3m1)>0

S 2REE PO [T MELZNY PP

1y 3 9 2 2
<) > PG g 12222y N2 N2, 2
J1:7 20 j>max(jp, 3m) >0

S llgnlix, 1||¢2||x y

N

If j < jo,
< J(=3H)omi(3=25) ig:
O > YOI D e
J1:J220 j2>max(%m1,j)>0

X ” |Dx|‘1_‘¢1,j1,m1 ”L‘;(Lgy)||¢2,jz||L2

1 , 1 .
<2 S 2 IG5 2
J1:220 j,>max(j,3m)>0

<
S ||¢1||x0’% ||¢2||x05+
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Subsubcase Alb. |&| > 1 and max(j, j») < %ml,

As in the estimates in the high frequency interaction domain, it is necessary to consider more
cases.

Subsubsubcase 1. |% — %lz < %Iél + $2|2|5(§‘12 + &6+ 522) —3a].

In this case, the resonant interaction does not happen. By inequality (50) and |&| > 1, we get
that j; = max(j, ji, j2) = 4m1. We now bound (46) by

. 1 3 1
J(=3+H)omi(3—2s) 7oV

DD DD DI Ll sl (LT

120 j124m120 3y >max(j, )20

X o1, jymy Il 22 H IDXI%¢2,/'2 ||L‘;(L;‘,v)

Yy S 2iCaiam G g by gy m 2192, 1 2

J120 j124m1 20 3m, >max(j, j2) >0

Slgillx, , lealx, -

[S]
[Nl

Subsubsubcase 2. |% — %Iz > %El —i—§2|2|5($]2 +&1& +§22) — 3.

We need to divide the estimate into two cases:

et e[ (52) - ()] >

stet—ef) a2 - [ (1) - (2) ] =

As we known, the first inequality means the determinant of the Jacobian of the change of vari-
ables (52) [J,| = 1. So we get

and

@< Y. Yo 2N 2o R g i o161y my 2 2, 2

m1, j120 3my >max(ja, j) >0

<l91lx, | 192l ;-

(S]]

For the second inequality, we recur to the change of variables (56). In the same way, we get

@S Y Yo 2 CaPpTmgm U200 2R 2 g oIy gy my 2 2.l 2
my, j120 2my>max(jz,j) 20

Sl y Ieallx, |-

(S]]
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Subsubcase Alc. &] < 1.

If |ua| <1, since % > |£1|2, we have that |£;| < |&|72. Thus we bound (46) by

J(=3Homi(1=29) ), . . AN
> Y 2t g2l jum oz ) | (m & n2)d2. ) |l 2 120,
Jod1,j220 my 20
j(—4 1-2 j1/2 -
S >0 D 21T Ui 020 2 oy, 227 2., 12
Jod1,J220 m 20

Sligilix, , Io21x,
y .

)=

Here m (&, j12) denotes the characteristic function of set {|£,] <2721 |us| < 1.
If |uz| 2 1 and max(j, jo) > mj, when j = max(j, j»), we choose min(%,s) > § > 0 such

that § — 25 + 8 < |—4-+| and bound (46) by

Z Z 2j(7%+)2ml(1/272s+5)”gj||L2

J1.j20 0smax(j2.m)<j

Ly S
<1041} ¢1,A,1,m1||Lﬁ(L1 Do ¢2,,/2HL$(LX1;%)

3
X,y
) » 20 2P pm2=2540 112022 6 il 211y, N 2102, o I 12

J1.j20 0Kmax(j2.m1)<j

(S]]

S ||¢1||X0,% b2l -

While for the case j» = max(j, j»), we bound (46) by

XY AeEmEingg
ey LD
J1,j220 0<max(j,m1)< ja T A%y
15
< IDx2 7@ jmi | 2 4 92,5122
Ly (Lyy)
<) Yoo 22202200 2 g oIy N2 162,712

J1,j220 0<max(j,m1)< j2

5 ”¢1”X ”¢2”X 1,-
0. 0,5+
’ °2

B|—

If |u2| 2 1 and max(j, jo) < m1, we have to divided two subcases to estimate (46).

Subsubsubcase a. |% - %Iz < %IS] + &125[E2 + &6 + £2] — 3al.
As we know, the estimate on the resonance function can be used now. We have |£;]|*|&] <
pmax(j.j1.72)  Unfortunately, since |&| < 1, the element inequality is not as good as we have

used. We claim that |&| > |&;|~2. Otherwise, if |%| ~ |%|, then |u2| < |€11%1&] < 1. And if

|- < |21, since we are in Subsubsubcase a: | & — %F < 1€ +EIPI5[E7 + €162+ £7] — 3al,
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we have |2 < |&11|&| < 1. These conflict with the assumption |u2| > 1. Thus we have 221 <
2max(j.j1.72) Tt is clear that j; = max(j, ji, j»). We bound (46) with

XX YOmEEinig] o

=% (3 )
J12J, 220 0<2m < ji T Y

X 1,y 22 ]| |1 Dx o, 12”

125)
. 1 . .
s D> > 2-“‘7“2'"'“/2‘2”‘”2-’/22”/2||g,-||Lz||¢1,,-l,m.||Lz||¢z,jz||Lz
J12J, 220 0<2m < ji

Slolix,, N620x,

N
1o

Subsubsubcase b. I% |2 Z 3 LiE 4+ & IS[E + &1&> + &3] — 3a|. In this case, one can run
the same argument in Subsubcase Alb.

Subcase A2. |£]? < %

The argument in Subcase A1 above can also help us to get the same estimates. We would like

to show the different point when we encounter the case |uz| 2 1, |ﬂ - @|2 %|§1 +§2|2|5[§12
£16 + &3] — 3al. Here we still have [&1]*]£2] < 2mU-/072) 1f || < |pal, we have 'lgzl' > ‘@ﬁl
It means that we also have |&| > [&]|72. If |i1] > |u2|, then we have | + w2l ~ |w1], thus

‘Eigﬁ‘ > |&] 4 & |2. This does not appear since we are in case |& + &> > “’gié’fj‘ Then we

can run the argument in Subcase Al.

2 o lmituol
Case B. [&1 + &2|" < 557

Subcase B1. |u1] < |uzl.

In this region, we also have % >> |&|%. Similar to the argument presented in the second part
of Subcase B1 of domain A;, we can bound (47) with

Z Z 2]<f%+)/gj(s,u,r)xj~(f—w(é,u))xz(é,u)

Ji:J2,j 20 m 20 As
s A .
X &1 +E1T27"5 by ) my (1, 1, T2, j (62, w2, T2).

Then the estimate in Case A above works.

Subcase B2. || > |u2].

/A_I [p1+Hmal
It is clear that n BN Thus (47) by
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DS 2;‘(7%+>/gj(g,,¢,f)xj(r—w(é,u)))(z(é,u)

J1.J2,J20 m 20 A3

x 2MU=20G,  E1 1, T2,y (€2, 12, T2).
If |uo| < 1, then we also have |&| < |&1]72. By the same argument in Subsubcase Alc, we bound
@7 by ligilix, , I421lx, A
2

If |ua| > 1, the estlmates in Case A above can also work until we come to the case |&| <

€117, max(j, jo) < 2mi and g — £21% < 1|6 + & [7IS[E7 + €182 + §31 — 3a. Of course, in
this case, the estimate on resonance function can also bring us

|%—1|4|$2| < pmax(j,j1.j2)

But this estimate cannot help us to get any benefit since |£| < |&|~2. Fortunately, in this case,
for fixed w1, &1, &, the variable us can range in two symmetry intervals with length A,, <
B < 1. Represent the change of variables (51) here,

. 1
> > 21(_7“2’”1(1_2‘?)fgj(é,u,m + o, ) + 6+ o0&+ 1))

Jrom1 20 2my>max(j, jo) =0
X X (01 + 602 + w(E1, 12) + 0 (& + n2) — w(Er + &, 11 + 12))
X Q1 jy.m (&1, 11,01 + (&1, Ml))$2,j2 (&2, 2, 02 + w (&2, 12)) d&1 djuy A2 d o d6) d6,.
By Cauchy-Schwarz inequality, we control the integral (51) by

1
2 2

||¢1,j1,m1||L2</‘/H(sl,gz,HI,M2791592)d$2dM2d92 délduldé‘l)

L

o ) !
<2k ’”1||¢1,,-1,m1||Lz(/f|H<sl,sz,m,m,91,ez)| dszdmdezdsldmdel)
S22y i 2 llg il 2l o -

Here H (&1, &2, |1, 12, 61, 62) denotes g; (&, u, 01 + (&1, 1) + 602 + @ (&2 + w2)) xj (01 + 02 +

w (&1, 12) + (& + 12) — w(E + &, w1 + w2))$2, (62, 12, 62 + (€2, T2)). Now we put this
estimate into the summation above to obtain

@D S ldillx, y, ll2llx

N
I

Region I1. ||’§2|| < max(|&]%, ’g—)

Case A. |£1]2 > ||‘§11||

Since | +€2|.3 '~4|$1|3 > 1] and & > |£1%1&] > | 2], the resonant interaction does not
happen, so 2M*U:712) > g |4 .
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3462
If |u2] < 1 and j = max(J, ji, j2), then 2J > 24mi+m2 In the same way, we bound (46) by

Y Yl 2

2

JoJ1,J220 jZ4mi+my ma<m

n \
X || (mm2 (é2a M2)¢2,]2) ||L%~(L?o))
. 1 .
—> 2 2
SO0 D > I 1227 PNy 12227 P N 2
Joi1s 220 jZ4my+my ma<mi

<
Sloullx,  Igallx, ,
Here we used Proposition 2.4 with m,,, denoting a class of multipliers which are the character-

istic functions of the sets {|&| ~ 22, |uz| < 1}.
If |uz]| < 1 and j; = max(j, ji, j2) or j» = max(j, ji, j») is the maximal value, similarly we

have
CORD DD DI DIl aer ALl AW VR P S

JoJ1,J220 j1=24mi+my ma<mi
X ” (mm2 (62, Mz)‘igz,,/é)v HLZT(L;?V)

S Y Y 22 D2 12, 12
JoJ1,J220 jiZ4m+my ma<mi

<191llx, y Ioalx, | -

If |uo| 2 1 and max(j, jo) = 2mq, let j = max(j, j»), there exists min(%,s) > 6 >0 and

—141> § + 38 > 0 such that

465 > >

J1.j20 0<max(j2,.2m1)<j

2J (=3+)om1(1/2+48) gl 2

T \=xy

5
1D 2, pp] 1 2
) LS(LI—Z(S)
gl 2llP1,jymy 22, 1l 2

1
)
x,

1_
x [1D:127° 1 jym, ”Lﬁ@

2 X

2J (=3 ) om1(1/248)5j1/29./2/2
J1,J 20 0<max(jz,2m1)<j

S lionllix o Iallx
For the case j, = max(Jj, j»), we bound (46) by

3 > 102138} |5 v 11Ds1 @1 |5 i 1022112

J1:7220 0<max(j,2m )< j2

2

J1,J220 0<max(j,2m)< j2

<

~

ST
o=

2].(,%+)2m1/2|

2020 m200 1200 2 g i oIy oy W22, o 1 12

<

~

(S]]

Slenlx  llealx, ;-

9
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If |u2| > 1 and max(j, j») < 2m1, we would like to perform a dyadic decomposition by set-
ting |&| ~ 2™ with i = 1,2 and m| > 0, my € Z. The dyadic decomposition with respect to
|2 ~ 2"2, np > 0 will be useful. Another useful note is that m§ =max(ny — my, 2my).

We perform the change of variables (52). It is easy to see that |J, | > |&; 14, so

46) < Z Z Z 2j(_%+)2m1/gj(u,v,w)xj(u,v,w)

Jrsmi,npz20 M2 2my>max(j,j2) 20
X |J | " H (u, v, w, pa, 01, 62) du dv dw da d6y dos

s Y % 3 2i (=3 n=migna/25j1/29)2/2
Jrmy,np20 M2 2my>max(j,j2) =0

||¢2,j2,mz,n2 ||L2

X N1gjll 2 i1, ji,my 2 .
! SRS hax(1, 273 )s

If my > 0 and ny — my < 0, we bound (46) with

> 3 ) (=3+)g=mign2/2)(=2m2)s

JoJ1sj2.m1 =20 0napKmy <m
i1/2~72/2
x 20122022 g i1l 211y I 121102, o s Nl 12

Sléilx , Néalx -
0,5+ 0

(8]
(]

If 2my > ny —my > 0 and j > 2my, we have

46) < Z Z Z Z 2j(—%+)2—m| 9(m2=m2)[29m2/25—2mas

J1,7220 0<na—mp<2my j22mp20 my2my 20
i1/2~72/2
x 201220202 g il a1l gy W 121102, oo s Nl 12

Sléilx, , lé2lx -
0,5+ 0

1
2

(8]

If no —my >2my > 0 and j > 2mo, since % < max(|$1|2, %) and |§1|2 > %, one can get

(np —mg) < 2m1. Recalling that s > 0, we obtain

46) < Z Z Z Z 2J *%Jr)z*ml2("2*M2)/22m2/22*(n2*m2)s

J1:0220 0<2Zmy<np—my  j22mp 20 my2mp20
i1/2~J2/2
x 201220212 g i a1l jy oy W 1211902, ooz s Nl 12

Sligilix, , lo2lx,

ST

1
N

If my <0, we have
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46) < Z Z Z Z 2](—%-&-)2—’”1 9 (n2—=m2)(1/2=5)nj1/29j2/2ym2/2

J1.m120 ma<0 2my Znp—my 20 2my Z2max(jz,j) =0
x N1 gjllp2ll@1, jymy | 2192, jpmana |l 2

i(—3 —2i 2 2
S ) Y e P gl jym 2l
J1;m1 20 2my zmax(j2, j) 20

Sllenlix, 1||¢2||X o

N

‘We now consider the case 0 < max(] Jj2) <mq, 0 < J <2mgy and np —my > 0. It is clear that
Jji=max(j, ji, j») and [&|* <271, since 2MX(-J172) > &1 |4|£,]. We bound (46) by

3 Zzﬂ—%“/gj(é,u,f)Xj(&/*’T)

J1:1220 j>0 e

$2.j,(E2, w2, T2)
(1+ &2 + 12hys

X |& + &1 j, (€1, w1, T1)

There exists min(%, s) > § > 0 small enough such that

sy > > > 2J (=3 H)pm1(1/2+8)

m120 j1=24m 20 j124m;20 2m) Z2max(jz,j) =0

< [IDx12 78] 21 e, ,lm.||Lz|||D|¢>z,2||
LT

5 28
(L) )

x,y
Y ) o2 —7“2’"'(””5)2”221'2/2||g,-||Lz||¢1,,-l,m]||Lz||¢z,,-2||Lz

m120 jiz4m; 20 2my Zmax(ja,j) 20

S llgillix, L Ié21lx, 4

o

Case B. |&]2 < %

We first note that |y | < |1], otherwise we have ‘|l§22|| > “’gll“ , which is contradiction with the

assumption I;gzl < ||lé,fll|‘ and |&,| < |&1]. Thus we have |1 + 2| ~ |pe1]. The argument in Case A
can be run smoothly until we come to the case |uz| > 1 and max(j, j») < 2m. We perform the
change of variables (52). It is easy to see that |J,| 2 lE1]%. By the same estimate in (55), for
fixed 61, 62, &1, &, 111, the length of the symmetric intervals where free variable w, can range is

Ay, <2/72"1 Then we have

4n < Z Z 2/ _%"')2’"]/gj(u,v,w)xj(u,v,w)

Jj1,m120 2mj>max(jp,j)=0

X || T VH (u, v, w, i, 01, 62) du dv dw d iy d6; do,
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j(—4 i/2—2 1/27j2/2
s ) Yoo 2GR 2R o gy my N2 2.l 2
J1,m1 20 2my>max(j2,j) 20

Sl y I#2llx, |

1o

Case C. |£1]2 ~ ”—l‘

Since legzll L&~ “g'll, we also have | + ua| ~ |@1]. In this case, the resonant interaction
will happen. We bound (46) and (47) by

b, i (82, 2, T2)
2 4 lmalNs”
|%_2| + &l )S

Z Z /gj(S,M,T)Xj(E,/L,T)Ii:l+§2|<131,j1(51,m,f)

1220 j20 4

We decompose |£1] ~ 21, m; > 0, and first consider a special case |ua| < 1 and |&| < |&;|7>¢
for some ¢ > 0 small enough. In this case, we can use Proposition 2.4. (46) and (47) can be
bounded by

> X gl gz ) | (2 1225) | 2 e

JsJ1,7220 m; 20
< Y > P21 2202y N2 b 2
Jod1,J220 m =0

Sl 1 Ié21lx, |

ol—

In the remaining estimates, we always have |£&;| > |& |~2-¢ for the same ¢ as above. In fact,
|2l > 1implies |&| > |&1|72 > |£1]727¢, since |ua| < [€11%[&2].

Now we consider the case max(j, j2) = (2 — e)m for the same ¢ as above. When j =
max(j, j2), there exists min(%, s) > § > 0 small enough such that

(46), (47) < Z Z 2j<f%+>2m1<1/2+8>2(2+e)m16”gj||L2
J1,720 0<max(jo,2—e)m)<j
X [1D:12 1y | L b 110025 4 2
Ly xy) T m )
< Z Z 2j(*§+)2m1(1/2+(3+8)5)2j1/22j2/2

71720 0<max(jo. 2—e)m 1)< j
X 1gjll2 M1 jim 221925 1l 2

Sl 1||¢>z||x 1

I

When j, = max(j, j»),
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j(—3+H)9m1/2 1oV
CONCHEDY > 21D g g s
J1:J220 jpZzmax((2—e)my, j)=0

% [1Dx13b1.jym | L 19252

i(—14)5j/2 2nj1/2
S ) > 21 CaI gm0 2 g 211y Nl 21162, 2
J1,7220 jazmax(j,(2—e)m;) 20

<
S ||¢1||X0y% ||¢2||X0.%+~

At last, we consider the case max(Jj, jo») < (2 — e)m for the same ¢ as above.
Subcase 1. | — 21> < 5161 + &I715E] + 616 + ) - 3al.

Since now the resonant interaction does not happen, we have |£{|*|&;| < 2m#%(-J1.72) - And
because |&>| > |&; |_2_€, we get that j; = max(j, ji, j2) = (2 — €)m. By choosing min(é, s) >
6 > 0 small enough, we have

i(—1
(46), (47) < Z Z 2J 2+)2m1(1/2+5)2(2+8)m15||¢1,j1,m1 ll2
J120 0<max(j, j2) <2—e)m1 < ji

1 2
5 (L)

x [ID<2 06 2y (1D a0
LT (L \) LT X,y

5
X,

< Z Z 2J (=3 pm1(1/24+3+€)8)9j/29.j2/2
J120 0<max(j, j2) SQR—e)m1 < ji

X [1gjllz2 1P, jymy 12 2,5 Il 2

Sléellx o loalix,
4 .

)=

Subcase 2. |k — 21> > j1&1 + &£7I5¢] + 15 +§7) —3al.

As we know, we also need to consider two cases:

2 2
'S(sf‘—sg‘)—m(s%—s%)— [(%) - (g) ” > 182 (63)
and

<& (64)

et —et) —satef ~2) - [ (1) = (12)

(63) means the determinant of Jacobian of the change of variables (52), |/, | = |&1] % Thus we
have
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(46), 47) < Z Z 2J —%-&-)2.1'/2—””2M1(1—£)2j1/22j2/2
my,j120 (2—&)mi>max(jz2,j)=0

X |1gjllz2 1P, jymy g2 12,5 11 22

S ||¢1||X0,% Ié2lx, , -

(]

When (64) occurs, we recur to the change of variables (56). By the argument in (59) and (58),

for fixed 61, 62, &, 11, 2, the length of the interval where &1 ranges is |§1| < 2(=3)m . Thus we
obtain

CONCHEEDY > 24 (=3 )= @=Dmigmiji/2 /2
my,j120 2—e)m;>max(ja,;j)=0

X llgjll2 1ot jrmy 2 lp2, 5 Il 2

Slelx, o ldllx -
0,5 0
4 ,

(STl

We now finish the proof of Theorem 3.1. O
4. Proof of main theorem
We now state the proof of Theorem 1.1.

Proof. Considering the integral equation according to (1)

t

— l 4 20N 2 00 /
u(t)—I/f(t)[S(t)uo— 2/S(t—t)8x(wT(t Ju~(t ))dt}, (65)

0

where 0 < T < 1, and 7 (¢) is the same bump function with (21). It is clear that a solution for
(65) is a fixed point of the nonlinear operator

t
1
L) =y ()S@uo = v (1) f St — 1o, (V3 u?(eh)dr'. (66)
0

Thus we need to prove the operator L is a contractive mapping from the following closed set to
itself

By ={ueXsp, llullx,, <a}, (67)
where a =4C|uo| g, . By Proposition 2.1 and Theorem 3.1, there exist o > 0 such that

[Laolly | <Cluolle, +CTulk , - (68)

+

[

+

NIl—
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Next, since 9, (u?) — 3y (v%) = dc[(u — v) (u + v)], we get in the same way that

L@ =Ly | <CTHu—vlx , (lulx, ,, +lvlx ). (69)

1

=
=

+

(]
(8]

By choosing T = T (Jlugllg,) such that 8CT |lugllg, < 1, we deduce that from (68) and (69)
that L is strictly contractive on the ball B,. Thus, there exists unique solution to the IVP of the
fifth order KP-I equation u € X 1 on the interval [-7, T']. The smoothness of the mapping

’2
from Ej to X 1y follows from the fixed point argument. Since X 1y cC([-T,TY; Es), we
finish the proof of Theorem 1.1. O
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