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Abstract The human heat shock protein 70 (Hsp70) family con-
tains at least eight homologous chaperone proteins. Endoplas-
matic reticulum and mitochondria have their specific Hsp70
proteins, whereas the remaining six family members reside
mainly in the cytosol and nucleus. The requirement for multiple
highly homologous although different Hsp70 proteins is still far
from clear, but their individual and tissue-specific expression
suggests that they are assigned distinct biological tasks. This
concept is supported by the fact that mice knockout for different
Hsp70 genes display remarkably discrete phenotypes. Moreover,
emerging data suggest that individual Hsp70 proteins can bring
about non-overlapping and chaperone-independent functions
essential for growth and survival of cancer cells. This review
summarizes our present knowledge of the individual members
of human Hsp70 family and elaborate on the functional differ-
ences between the cytosolic/nuclear representatives.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The discovery of heat inducible chromosome puffs in the sal-

ivary glands of Drosophila larvae in 1962 by Ritossa and the

subsequent identification of the puff-encoded genes and pro-

teins initiated a rapidly expanding research field on heat shock

response [1–3]. Several independent groups noted that a mild,

non-lethal heat shock protected cells of various origins against

cell death induced by a subsequent severe heat shock as well as

other lethal stimuli [4–8]. Soon it became clear that the en-

hanced cell survival was intimately linked to the induction

and accumulation of heat-inducible proteins and especially

to that of a 70 kD protein that was designated heat shock pro-

tein 70 (Hsp70) [9–12]. In 1984 Hugh Pelham suggested that

the ability of Hsp70 to enhance the recovery of stressed cells
Abbreviations: CBF, CCAAT-box binding factor; ER, endoplasmatic
reticulum; Hsc70, heat shock cognate 70; HSE, heat shock element;
HSF, heat shock factor; Hsp70, heat shock protein 70; MHC, major
histocompatibility complex; siRNA, small interfering RNA; TNF,
tumor necrosis factor
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was mediated by its ability to catalyze the reassembly of dam-

aged ribosomal proteins [13]. Subsequent research revealed

that such a chaperoning function, indeed, was characteristic

for Hsp70 proteins and that it was essential for the Hsp70-

mediated protection against stresses that cause protein

denaturation as well as for many of the newly discovered

house-keeping roles of constitutively expressed Hsp70 proteins

in non-stressed cells (reviewed in [14–18]). The house-keeping

functions of Hsp70 chaperones include transport of proteins

between cellular compartments, degradation of unstable and

misfolded proteins, prevention and dissolution of protein com-

plexes, folding and refolding of proteins, uncoating of clathrin-

coated vesicles, and control of regulatory proteins.
2. Heat shock protein 70 family is structurally and functionally

conserved in evolution

Hsp70 is, by far, the most conserved protein in evolution

[14,19,20]. It is found in all organisms from archaebacteria

and plants to humans, and the prokaryotic Hsp70 protein

DnaK shares approximately 50% amino acid identity with

eukaryotic Hsp70 proteins. Accordingly, Hsp70 is a highly

appreciated phylogenetic nominator in the field of molecular

evolution. It has been used to disclose a monophyletic relation-

ship among the entire metazoan kingdom and a specific boot-

strap-confident (91%) phylogenetic relationship between

animals and fungi [19,21,22]. The conservation of Hsp70 se-

quence is also reflected by conserved functional properties

across the species. For example, Drosophila Hsp70 expressed

in mammalian cells efficiently protects them against heat stress

[13], and rodent Hsp70 can be functionally complimented by

human Hsp70 to grant cellular protection against various stres-

ses both in vitro [23–25], and in transgenic animals [26–28].

Interestingly, all eukaryotes have more than one gene encod-

ing Hsp70 proteins. For example, the fungus Blastocladiella

emersonii has 10 putative family members with high homology

to the Hsp70s in yeast Saccharomyces cerevisiae [29]. The yeast

contains eight Hsp70 homologues, of which six are localized to

the cytosol (Ssa1, Ssa2, Ssa3, Ssa4, Ssb1, and Ssb2) and two are

compartment-specific Ssc1 residing in mitochondria and Ssd1/

Kar2 in endoplasmatic reticulum (ER) [30]. Genetic studies have

revealed that the four Ssa proteins can compensate for each

other, whereas their simultaneous deletion is lethal [31]. Interest-

ingly, the cytosolic Ssb proteins cannot substitute for the sur-

vival function of Ssa proteins suggesting that cytosolic Hsp70
blished by Elsevier B.V. All rights reserved.
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family members have both overlapping and diverse functions in

yeast [22]. Emerging data indicate that akin to yeast, human

Hsp70 family members have both redundant and specific func-

tions that are summarized and discussed in more detail below.
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3. The human Hsp70 family

The human Hsp70 family comprises at least eight unique

gene products that differ from each other by amino acid

sequence, expression level and sub-cellular localization

(Table 1) [32]. The localization of Hsp70-5 (also known as

Bip or Grp78) and Hsp70-9 (mtHsp70 or Grp75) is confined

to the lumen of the ER and the mitochondrial matrix, respec-

tively, whereas the remaining six Hsp70 proteins reside mainly

in the cytosol and nucleus suggesting that they either display

specificity for their client proteins or serve chaperone-indepen-

dent particular functions. Common to all known Hsp70 spe-

cies, also the human Hsp70 proteins display highly conserved

amino acid sequences and domain structures consisting of:

(i) a conserved ATPase domain; (ii) a middle region with pro-

tease sensitive sites; (iii) a peptide binding domain; and (iv) a

G/P-rich C-terminal region containing an EEVD-motif en-

abling the proteins to bind co-chaperones and other Hsps

(Fig. 1) (reviewed in [16,17,32]). Furthermore, the members

localized to specific cellular compartments have a localization

signal in their N-terminus and Hsp70-5 has a C-terminal reten-

tion signal sequence that inhibits its exit from the ER [33]. The

conserved domain structure consolidates the chaperone func-

tion of the Hsp70 proteins and enables them to bind and

release extended stretches of hydrophobic amino acids,

exposed by incorrectly folded globular proteins in an ATP-

dependent manner (reviewed in [16,17]). The C-termini contain

the least conserved sequences that may explain the non-redun-

dant functions of Hsp70 family members (see below).
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3.1. Hsp70-1a and Hsp70-1b

A large part of the data published on human Hsp70 family

deals with the major stress-inducible members of the family,

Hsp70-1a and 1b (collectively called Hsp70-1). Hsp70-1a and

-1b are encoded by closely linked, stress-inducible and intron-

less genes, HSPA1A and HSPA1B, that reside in the major

histocompability class (MHC) III cluster between the comple-

ment- and tumor necrosis factor (TNF) locus on the short arm

of chromosome 6 [34,35]. According to the published

sequences, Hsp70-1a (NM_005345) and Hsp70-1b

(NM_005346) share all but two (E110D, N499S) of their 641

amino acids being more than 99% identical (Table 1 and

Fig. 1). During various stress conditions, both Hsp70-1 genes

are activated by binding of a stress-inducible transcription fac-

tor, heat shock factor 1 (HSF1), to heat shock elements (HSE)

found in multiple copies in the upstream regulatory regions of

the genes (reviewed in [35,36]). During normal conditions,

Hsp70-1 proteins are expressed in a cell type and cell cycle

dependent manner accumulating in G1- and S-phase [37,38].

Accordingly, Hsp70 promoters also contain several binding

sites for basal transcription factors such as TATA factors,

CCAAT-box-binding transcription factor and SP1 [39]. The

basal expression of HSPA1A and HSPA1B mRNAs differ

slightly in most tissues, with somewhat higher expression of

HSPA1A in most tissues and cell types (Fig. 2).



Fig. 1. The human Hsp70 family. (A) Cartoon showing a linear representation of the human Hsp70 family in respect to known domains. (B) A
complete protein alignment of the human Hsp70 family generated in Boxshade 3.21 from the sequences NM_005345 (Hsp70-1a), NM_005346
(Hsp70-1b), NM_005527 (Hsp70-1t), NM_021979 (Hsp70-2), NM_002155 (Hsp70-6), NM_006597 (Hsc70), NM_005347 (Hsp70-5) and NM_004134
(Hsp70-9). Black squares indicate complete homology; gray squares indicate changes in functionally conserved amino acids. White squares indicate
functionally non-conserved amino acid disagreement.
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Stress-induced Hsp70-1 functions as a chaperone enabling

the cell to cope with harmful aggregations of denatured pro-

teins during and following the stress (reviewed in [15,16]).

Accordingly, its ectopic expression confers protection against

stresses that induce protein damage, e.g. heat, ischemia and

oxidative stress both in cultured cells [23,40–47], and in trans-

genic mice [26–28,48]. Supporting the major role for Hsp70-1

in protection against external stresses, mice deficient of the

equivalent murine proteins, Hsp70.1 or Hsp70.3, are viable

and fertile, but Hsp70.1 deficient mice display increased sensi-

tivity to pancreatitis, UV light (epidermis), osmotic stress (re-

nal medulla) and ischemia (brain), and reduced capacity to

acquire resistance to TNF-induced liver toxicity and inflamma-

tory shock after preconditioning with heat [49–53] (Table 2).

Furthermore, cells lacking either Hsp70.1 or Hsp70.3 display

increased sensitivity to heat [54]. Remarkably, mice deficient

for both stress-inducible Hsp70 proteins are also viable and

fertile, but they are sensitized to sepsis, have reduced capacity

to develop tolerance to cardiac ischemia, and their cells display

genomic instability and increased sensitivity to radiation [55–

57]. These data underline additive and synergistic effects of

the two stress-inducible Hsp70 proteins and the evolutionary

significance of multiple Hsp70 genes.

In the case of the heat stress, it has been demonstrated that

the chaperone function of the Hsp70-1 is required for its cyto-

protective effect, and Hsp70-1 has been suggested to inhibit the

accumulation of protein aggregates and thereby to remove the

stimulus that triggers cell death [58,59]. Also, Hsp70-1 protects

mitotic cells against division abnormalities due to heat-induced

centrosome damage [60]. However, Hsp70-1 also protects mice

against pancreatitis and TNF [50,53], and enhances the sur-

vival of cultured cells exposed to various stimuli not known

to induce protein denaturation or aggregation, e.g. activation

of death receptors of TNF receptor family [25,61], glucose

starvation [62], ceramide [61], doxorubicin [63], ultraviolet

light [64], microtubule disturbing drugs [47] and cancer-associ-

ated cellular changes [65–67]. Emerging data suggest that the

protective effect against many of the above-mentioned stimuli

is mediated by Hsp70-1 located on the luminal side of the lyso-

somal membrane [68–72]. In this location, Hsp70 stabilizes the

lysosomal membrane and inhibits the release of lysosomal

hydrolases into the cytosol, where they can initiate apopto-

sis-like programmed cell death [68,73,74]. Supporting this no-

tion, increased amount of lysosomal cathepsin activity is found

in extra-lysosomal localization in the pancreas of Hsp70.1 defi-

cient mice [53].
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Fig. 2. Expression of nuclear and cytosolic members of the human
Hsp70 family in various tissues. The Robust Multi-Array (RMA)-
normalized GNF1h data (a.u.) of seven selected normal human tissues
(Kidney, Liver, Prostate, Testis, Uterus, Blood and Brain) are
extracted from The Genomics Institute of the Novartis Research
Foundation Gene Expression Database SymAtlas (outlined in [86])
and presented according to the Affymetrix U133A Hsp70 annotations
listed in Table 1. All normalized data sets and information about tissue
sample origin are available online at http://symatlas.gnf.org and at the
3.2. Hsp70-1t

The gene encoding Hsp70-1t (HSPA1L) is intronless and

located in the same MHC class III region as HSPA1A and

HSPA1B[35,75]. The protein is 91% identical to Hsp70-1a

(Table 1), the major variation being in the C-terminal end

(Fig. 1). The HSPA1L gene contains no HSE in its promoter

region and it is constitutively expressed at high levels in testis

and at very low levels in other tissues (Fig. 2). The function

and transcriptional regulation of Hsp70-1t are currently un-

known.

Gene Expression Omnibus (www.ncbi.nih.gov/geo).
3.3. Hsp70-2

The HSPA2 gene product, Hsp70-2, is constitutively ex-

pressed at low levels in most tissues, but in high levels in testis
and brain (Fig. 2) [76,77]. The gene is located on chromosome

14 and the protein shows 84% homology to Hsp70-1a (Table 1

http://symatlas.gnf.org
http://www.ncbi.nih.gov/geo


Table 2
Phenotypes of Hsp70 knockout mice

Protein Gene locus Chromosomal
localization

Analogous Human gene Phenotype Ref.

Hsp70.1 Hspa1a 17 B1 HSPA1A Viable and fertile. Susceptible to UV,
osmotic stress, ischemia, TNF,
pancratitis and heat

[49–53]

Hsp70.3 Hspa1b 17 B1 HSPA1B Viable and fertile. Susceptible to Heat [54]
Hsp70.1 + Hsp70.3 Hspa1a + Hspa1b 17 B1 HSPA1A + HSPA1B Viable and fertile. Susceptible to radiation

and sepsis. Increased genomic instability
[55–57]

Hsp70.2 Hspa2 17 B1 HSPA2 Viable and female fertility. Meiotic defects in
male germ cells

[78–80]

Hsc70 Hspa8 9 A5.1 HSPA8 Not applicable. Knockout cells are non-viable [92]
Bip, GRP78 Hspa5 2 B HSPA5 Lethal at embryonic day 3.5 [87]

3706 M. Daugaard et al. / FEBS Letters 581 (2007) 3702–3710
and Fig. 1). Its expression is frequently reduced in men with

abnormal spermatogenesis [77], and male HSPA2 knockout

mice are sterile due to massive germ cell apoptosis (Table 2)

[78]. In the mouse spermatocytes, Hsp70-2 has been assigned

specific roles as an essential chaperone for cyclinB/cdc2 com-

plex during meiotic cell division [79,80], and for transition pro-

tein-1 and -2, that are DNA-packaging proteins involved in the

post-meiotic genome reorganization process [81]. Further-

more, Hsp70-2 is required for the growth and survival of var-

ious human cancer cells [67,82] (see chapter 5.3).

3.4. Hsp70-5, Bip

The gene HSPA5 is located on chromosome 9 and encodes a

constitutively expressed compartment-specific protein, Hsp70-

5 (Table 1). Hsp70-5 (also known as Bip or Grp78) is located

in the ER, where it facilitates the transport of newly synthe-

sized proteins into the ER lumen and their subsequent folding

[83–85]. Hsp70-5 contains a presumed N-terminal ER localiza-

tion signal that guides its localization into the ER. In its far C-

terminal end, it has a highly conserved ‘‘KDEL’’ ER retention

signal that is common for soluble ER-localized proteins

(Fig. 1) [33]. According to the SymAtlas gene expression re-

source [86], Hsp70-5 is found in all cell types but is highly ex-

pressed in secreting cells like thyroid and pancreatic islets. The

Hspa5 knockout mouse embryos die at embryonic day 3.5 (Ta-

ble 2), and therefore Hsp70-5 is to be regarded as an essential

housekeeping gene [87].

3.5. Hsp70-6

Hsp70-6 is a strictly stress-inducible member of the Hsp70

family encoded by the gene HSPA6 located on chromosome

1 [88]. The Hsp70-6 protein is 85% homologous to Hsp70-1a

(Table 1 and Fig. 1) and it is induced only after severe stress

insults [89]. Although 15% different from the two other

stress-induced Hsp70 proteins (Hsp70-1a and -1b), it is likely

that Hsp70-6 functions in a similar way as a component of

the general stress-response. According to the SymAtlas gene

expression resource [86], Hsp70-6 is expressed at moderate lev-

els in blood, especially in dendritic cells, monocytes and natu-

ral killer cells, but is close to absent in other blood cells as well

as other tissues (Fig. 2). Hsp70-6 knock-out mice have not

been reported and it is presently not known whether Hsp70-

6 has some specific functions in blood cells. Chromosome 1

contains also a pseudogene, HSPA7, which is transcribed in re-

sponse to stress. This transcript does, however, not encode a

functional Hsp70 protein due to a nucleotide insertion at co-

don 340 that creates a frame-shift and a subsequent stop-co-

don at position 368 [89,90].
3.6. Hsp70-8, Hsc70

The gene, HSPA8, is located on chromosome 11 and it is ex-

pressed constitutively in most tissues (Table 1 and Fig. 2) [91].

The HSPA8 gene encodes the cognate Hsp70 family member,

Hsc70 (Hsp70-8), which is 86% identical to Hsp70-1a (Fig. 1).

Hsc70 has been reported to be involved in a multitude of the

housekeeping chaperoning functions including folding of nas-

cent polypeptides, protein translocation across membranes,

chaperone-mediated autophagy, prevention of protein aggre-

gation under stress conditions, and disassembly of clathrin-

coated vesicles (reviewed in [14,17]). Thus, Hsc70 is considered

as an essential housekeeping gene and it has been reported that

Hsc70 knockout mouse cannot be created due to the essential

role of Hsc70 for cell survival (Table 2) [92]. Accordingly,

RNA interference-based knock-down of Hsc70 results in mas-

sive cell death in various cell types [67]. Recently, Hsc70 has

been assigned an interesting role in the cytokine-mediated

post-transcriptional regulation of the pro-apoptotic Bcl-2 fam-

ily-member Bim in human blood cells [93]. Hsc70 binds to AU-

rich elements in the 3 0-untranslated region of the Bim mRNA

and stabilizes the messenger in a co-chaperone-dependent

manner. This demonstrates that the chaperone activity of

Hsc70 proteins is not limited to protein–protein interactions.

It should be noted that a shorter 54 kDa Hsc70 splice variant

that uses an alternate in-frame splice site in the 3 0 coding re-

gion has been reported, but its functional significance remains

unclear [94].

3.7. Hsp70-9

The HSPA9 gene is localized to chromosome 5 and is not in-

duced in response to stress. The Hsp70-9 protein (mtHsp70) is

52% identical to stress-induced Hsp70-1a (Table 1) and 65%

homologous to the yeast mitochondrial Hsp70, SSC1 protein

[95–97], which demonstrates higher sequence conservation be-

tween trans-species mitochondrial Hsp70s than among the

Hsp70 family of a single species. A specific 42 amino acid tar-

geting signal delivers Hsp70-9 to mitochondrial lumen, where

it interacts with incoming proteins and assists them in correct

folding after the trans-membrane transport [97,98]. The Ssc1

deletion is lethal in yeast [99] and to our knowledge no

Hsp70-9 knockout has never been established in the mouse.
4. Why do we have six cytosolic/nuclear Hsp70 proteins?

4.1. Hsp70 deficient mice

The function of the two compartment-specific Hsp70 family

members (Hsp70-5 and Hsp70-9) is to facilitate chaperone-



M. Daugaard et al. / FEBS Letters 581 (2007) 3702–3710 3707
dependent transport and correct folding of proteins targeted

for the ER and mitochondria, respectably. Conversely, the

individual functions and the reasons for needing six Hsp70

family members in the cytosol and nucleus have proven hard

to deduce. A part of the explanation may lie in the fact that

only three of the proteins are stress-inducible proteins, namely

Hsp70-1a, Hsp70-1b and Hsp70-6, whereas the other three

(Hsc70, Hsp701t and Hsp70-2) are not. The logic implication

would be that the first group would have their primary func-

tion during stress, and the other three would be required for

basal housekeeping functions. This interpretation is largely

supported by results from the mouse knock-out models. It is

evident that mice deficient for the murine homologues of

human Hsp70-1a and –1b (Hsp70.1 and Hsp70.3) are more

susceptible to stress but develop normally in unstressed condi-

tions [49–52,55–57]. On the other hand, mice lacking the

Hsp70-2 homologue (Hsp70.2) have a developmental defect

in spermatogenesis [78], and Hsc70 appears to be absolutely

essential for cell viability [92,100]. The transgenic models thus

support the idea that some of the cytosolic Hsp70 family mem-

bers (Hsp70-1a and Hsp70-1b) deal with the cellular stress

response while others are involved in tissue-specific and house-

keeping biological tasks.
4.2. Hsp70 mRNA expression patterns in human tissues

Another indication of functional differences among the cyto-

solic members of the human Hsp70 family arises from gene

expression data that reveals a potential tissue-selective need

for specific cytosolic family members (Fig. 2). For instance,

the expression patterns of HSPA1A (Hsp70-1a) and HSPA1B

(Hsp70-1b) are close to identical in the different types of tissue

except for blood where the expression of HSPA1B (Hsp70-1b)

is dramatically lower than HSPA1A (Hsp70-1a). HSPA1L

(Hsp70-1t) is exclusively expressed in testis that expresses rela-

tively low levels of both HSPA1A (Hsp70-1a) and HSPA1B

(Hsp70-1b). Besides its high expression in testis, HSPA2

(Hsp70-2) is also highly expressed in the nervous system, indi-

cating a special role for Hsp70-2 in these tissues. And HSPA6

(Hsp70-6) is close to undetectable in most tissues during nor-

mal unstressed conditions except for certain blood cells where

it is expressed in substantial levels. Although circumstantial,

the unrelated expression patterns of the individual genes make

it plausible that the Hsp70 family members have tissue selec-

tive functions. Furthermore, multiple Hsp70 genes make it

possible to regulate the total level of Hsp70 differently in differ-

ent tissues for example during the development.
4.3. Hsp70 family in cancer

A long line of experimental evidence positions Hsp70-1 as a

cancer relevant survival protein. It is abundantly expressed in

malignant tumors of various origins (reviewed in [15,101]), and

its expression correlates with increased cell proliferation, poor

differentiation, lymph node metastases and poor therapeutic

outcome in human breast cancer [102–105]. The role of

Hsp70 in tumourigenesis is further supported by data showing

that its high expression is required for the survival of tumor

cells of various origins in vitro as well as for the growth of hu-

man tumour xenografts in immunodeficient mice [65,66]. Fur-

thermore, it enhances the tumourigenic potential of rodent

cells in syngenic animals [106–109]. Recent data indicate that

also Hsp70-2 is upregulated in a subset of primary and meta-
static breast cancers and that it has growth and survival pro-

moting effects in cancer cells [67,82]. Knowledge on the

expression of other Hsp70 proteins in cancer tissue is as yet

limited. However, all cytosolic Hsp70 mRNAs are expressed

at detectable levels in various immortalized and transformed

human cell lines that have provided the first human model sys-

tem for testing whether the cytosolic Hsp70 proteins have

overlapping or distinct functions [67]. A study based on a

panel of small interfering RNAs (siRNAs) specifically target-

ing the individual family members clearly demonstrates that

whereas Hsc70 is required for the survival of both non-trans-

formed and transformed cells, Hsp70-1 and Hsp70-2 have

non-overlapping and specific functions related to cancer cell

growth and survival. Cancer cells depleted of Hsp70-1 and

Hsp70-2 displayed strikingly different morphologies (detached

and round vs. flat senescent-like), cell cycle distributions (G2/

M vs. G1 arrest) and gene expression profiles [67]. In conclu-

sion this means that, although different Hsp70 proteins may

serve many overlapping chaperone functions and in some cases

can substitute for each other, some of them perform specific

functions that are not necessarily related to protein stress.
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[25] Jäättelä, M., Wissing, D., Bauer, P.A. and Li, G.C. (1992) Major
heat shock protein hsp70 protects tumor cells from tumor
necrosis factor cytotoxicity. EMBO J. 11, 3507–3512.

[26] Angelidis, C.E., Nova, C., Lazaridis, I., Kontoyiannis, D.,
Kollias, G. and Pagoulatos, G.N. (1996) Overexpression of
HSP70 in transgenic mice results in increased cell thermotoler-
ance. Transgenics 2, 111–117.

[27] Plumier, J.C., Ross, B.M., Currie, R.W., Angelidis, C.E.,
Kazlaris, H., Kollias, G. and Pagoulatos, G.N. (1995) Trans-
genic mice expressing the human heat shock protein 70 have
improved post-ischemic myocardial recovery. J. Clin. Invest. 95,
1854–1860.

[28] Radford, N.B. et al. (1996) Cardioprotective effects of 70-kDa
heat shock protein in transgenic mice. Proc. Natl. Acad. Sci.
USA 93, 2339–2342.

[29] Georg Rde, C. and Gomes, S.L. (2007) Comparative expression
analysis of members of the Hsp70 family in the chytridiomycete
Blastocladiella emersonii. Gene 386, 24–34.

[30] Werner-Washburne, M. and Craig, E.A. (1989) Expression of
members of the Saccharomyces cerevisiae hsp70 multigene
family. Genome 31, 684–689.

[31] Werner-Washburne, M., Stone, D.E. and Craig, E.A. (1987)
Complex interactions among members of an essential subfamily
of hsp70 genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 7,
2568–2577.

[32] Tavaria, M., Gabriele, T., Kola, I. and Anderson, R.L. (1996) A
hitchhicker’s guide to human Hsp70 family. Cell Stress Chap-
eron. 1, 23–28.

[33] Munro, S. and Pelham, H.R. (1987) A C-terminal signal
prevents secretion of luminal ER proteins. Cell 48, 899–907.

[34] Wu, B., Hunt, C. and Morimoto, R. (1985) Structure and
expression of the human gene encoding major heat shock protein
HSP70. Mol. Cell. Biol. 5, 330–341.

[35] Milner, C.M. and Campbell, R.D. (1990) Structure and expres-
sion of the three MHC-linked HSP70 genes. Immunogenetics 32,
242–251.
[36] Anckar, J. and Sistonen, L. (2007) Heat shock factor 1 as a
coordinator of stress and developmental pathways. Adv. Exp.
Med. Biol. 594, 78–88.

[37] Milarski, K.L. and Morimoto, R.I. (1986) Expression of human
HSP70 during synthetic phase of the cell cycle. Proc. Natl. Acad.
Sci. USA 83, 9517–9521.

[38] Taira, T., Narita, T., Iguchi-Ariga, S.M. and Ariga, H. (1997) A
novel G1-specific enhancer identified in the human heat shock
protein 70 gene. Nucleic Acids Res. 25, 1975–1983.

[39] Greene, J.M., Larin, Z., Taylor, I.C., Prentice, H., Gwinn, K.A.
and Kingston, R.E. (1987) Multiple basal elements of a human
hsp70 promoter function differently in human and rodent cell
lines. Mol. Cell. Biol. 7, 3646–3655.
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