
Theoretical Computer Science 33 ( 1984) 279-304 
North-Holland 

DENOTATIONAL SEMANTICS OF CSP 

N. SOUNDARARAJAN 

Ctmputtv and hfiwmation Science, The Ohio State University, Cdumhus, 011 43210, U.S.A. 

Communicated by M. Nivat 
Received September 1983 

Revised May 1984 

Abstract. In this paper we propose a new denotational semantics for CSP. The domains used in 

the semantics arc very simple, compared to those used in other approaches to the semantics ot 
CSP. Moreover, our denotations are more abstract than those of the other approaches. 

I. Introduction 

France2 ‘t al. ! 71 have proposed a denotational semantics for CSP. In this paper 

we propose an alternative semantics. The main advantage of our approach is the 

simplicity of the domains land of the denotations. 

Consider a CSP program [P, 11 . . . 11 PJ. In order to define the semantics of this 

program, we need to define the semantics of the individual processes P,, . . . , P,,, 
and specify how the semantics of the individual processes may be combined to 

obtain the semantics of the entire program. Consider the ith process Pi; the state 

of P, at any time consists of two components: s, the ‘local’ state of Pi consisting of 

the (local) variables of f, (recall that there are no shared variables in CSP); and 

11, the sequence of all communications that Pi has so far participated in. Thus the 

semantics of the statements that may appear in Pi will be functions of the kind 

j‘: S, x H, + S; x H,, S, b eing the set of possible local states of Pi, and Hi the set of 

its possible communication sequences. Nondeterminism will, however, require us 

to modify the range of the functions to allow for several possible results, and hence 

the functions will, in fact, be of the kind .f: SI x Hi -+ P( Si x H,), P(S) being the 

powerset of S. (Further considerations will require us to restrict the range of ,f‘ 

somewhat, so that it will not be the entire powerset of S, x Hi. The result will be 

somewhat like the ‘powerdomains’ of Plotkin [5], except that Plotkin constructs 

much more general domains including ‘recursive powerdomains’. Since we do not 

need such complex domains, we shall construct our domains from scratch rather 

than using Plotkin’s powerdomain constructor.) 

Let us consider a particular statement that may appear in P,: the output command 

“f,!k”, k being a constant integer (for simplicity, integer will be the only type in the 

language: and there will be no declarations of variables). Then, the denotation of 
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*‘P,!k” will be the function 

where /*’ denotes concatenation of the element ( i, j, k) to the right en& of hi. Thus 

the denotation of Pj!k is a function that concatenates the element (i, j, k) to the 
right end of h, to indicate that (when this statement finishes) P, has participated in 
a new communication in which the nuz>ber k was sent by P, to P,. 

In order to allow for composition of functions (which will, of course, correspond 
to sequential composition of statenxxts), the domain of the functions must also be 

P( S, x H, ); the value of _I’ over this domain will (usually) be defined in the obvious 

‘distributive’ fashion: 

t’f x ) = u ./I {(s,, I?,)}) 
! \,.\I, ), .\ 

for Ltny X t’ Pi, S, x H, ). Note the braces around (s,, II,); the reason is that its are 
taking the domain of _f‘ to be P (S, x H,) rather than S, x H,. 

C’onsider another example: the input command “P,?rr”, II being a variable of P,. 

-Then, .I’( ib,, W) I= K s u G-- k], II, ̂ (_j, i, k) 1 k E N), where N is the set of all integers. J 
Thus the effect of this statement is to replace the value of 11 by (some) k, and to 

cancatenate to h, the element (j, i, k ). Note thai when c(lnsidering P, in isolation. 

we have to allow for ali possible values for k, since we have no wy of knowing, 

in P,, what number P, will actually send to P,. That will be known only if we consider 

41 the processes: correspondingly, in the semantics, the value of k will be fixed 

only when we combine the semantics of the individual processes to obtain the 

semantics of the entire program. In fxt, the operation that we shall define for 

combining the xtiantics of the individual processes will do little mot-e than to 

ensure that the numbers received by f, from P, (its recorded in P,‘s semantics) are 

identical to the numbers sent by P, to F, (as recorded in /‘j’s semantics). 

The paper is organized as follows: in Section 2 we specif> the domains to be used 

in the semantics, and consider some properties of functions (and functionals) on 

these domains. In Section 3 WC define the semantics of the individu;tl processes, 

‘tnd inr Section 4 we specify the operation thitt will combintz the individual semantics 

to obttiin the stxnantics of the tmtirc program. The final section comp;trc”s CM 

approach with other approaches. 

2. The domains and functions 
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H,, the domain of communication sequences of Pi will be rather more complex. 
Note that we must allow not just finite sequences but also infinite ones, since P* 
may conceivably communicate forever with one or more of its partners (the so-called 
‘infinite chattering’). Thus Hi is the set of all finite and infinite sequences of individual 
communications that Pi may participate in; thus, 

C, being the set of’ individual communications that P, may participate in, CT the 

set of all finite sequencc=es of elements of C,, and CT the set of all infinite sequences 

of elements Qf C’,. We shall call Ci thr set of all possible communication elements 

of r,. 

Next, we need to specify Ci: we have already seen some of the elements of Cl: 

( i,j, k), k E IV, corresponding to an output statement in Pi that sends the numbp: k 

to Pi; (_j, i, k), k E IV, corresponding to an input statement in Pi -that recekes the 

number k from P,. There are three other kinds of communications t.!-& Pi may 

participate in correspo4ing respectively to (a) output guards, (bj input guards, 

and (c j dl,:triStiLed termination of loops in P,. First, consider an output guard 6; p/ !k, 

b being a boolean expression (in the !c)cg! variables of Pi), k being a constant. If 

b evaluittes to true in the current (local) state of P,, and this guard is chosen, then 

P, will send the number X; to P, in executing this guard. This communication should, 

however, not be represented by the element (i, j, k) since that is likely to cause 

problems when the semantics of the individual processes are conibined to obtain 

2,; semantics of the entire program. 

What we need to do is record, in the communication element corresponding to 

to the output guard, not only the value k communicated by P,, and the process P, 

to which it was communicated, but also what other options were available to Pi at 

this point. Thus this communication element will be of the form (i,.j, k, 72, 7’ being 
the set of ‘other options’ that P, had at this pJint: 

p;(j’, i)I 1 -5j’S tz,j’# i)u{(iJ)l; sj’s n,j’# i,j’+jl 

di, T’)lT’c_(l,..., i-l,i+l,..., I~}}u(L}. 

An ehent (.j’, I ) in 7’ indicates that P, could (instead of outputting to P,) have 

* input from P, , sucl~ an element would be inc!uded in T if one (or more) of the 

3tht’r guards were of !hc -form h’ : P, ‘.?I-, and the boolean b’ had the value true in 

tilt‘ current state of I’,. Similarly, an element (i, j’) in T indicates that Pi could have 

output to P,. inskad of to P,, since it had a guard b’ : P,,!e with b’ evaluating to 

true. The elemeG:lt, “L” in T indicates th3t Pf could hav? continued ‘locally’, since 

it hdd a purely boolear. guard evaluating to true. (Ncte that we allow I/O guards 

;lrld purely boolean gusrds to be freely mixed.) Finally an element (i, T’) in 7’ 

indicates that the output guard we are considering occurred in a loop in P,, and 
this loop could have terminated at this point (rather than outputting to 5, and going 
onto another iteration) if every process whose index appears in T’ had already 
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terminated. Note that if “c” is an element of T, then an element of the kind (i, T’) 
cannot simultaneously be an element of T, since c E T implies that there is a purely 
boolean gr:,3rd that evaluates to true, and hence the loop cannot possibly have 
terminated tit this point, irrespective of which other processes had already terminated. 

Note also that only one element of the kind (i, T’) can belong to the T of (i,j, k, T), 
since T’ is the set of indices of all processes that must terminate for Pi’s loop to 
terminate. Also j must necessarily be an element of such a T’, since Pi is clearly 
willing to output to Pp Note finally that “L” is just a constant symbol used to indicate 
the ‘local option’ that is available to Pi. 

Next consider an input guard 6 ; Pj?X. Clearly the communication element corre- 

sponding to this will be quite similar to the one for output guards, and will be of 

the form (j, i, k, T), T being the set of ‘other op*iions’ open to Pi: 

TG Ui, .i')Ij'Z i}u{(j’, i)lj’# i,j'# j} 

u{ii, T’)l T’S& .., i- 1, i+l,. .., II)}u{L). 

Finally, consider the communication element corresponding to the termination 
of a loop on account of the distributed termination convention. Such an element 

will be of the form (i, T, T? T’) where T is the set of indices of all processes whose 

termination caused the loop in P, to terminate, ‘7 (like Y’) is a constant symbol 

to indicate the nature of thi.4 element, and T’ is the set of other options open to P, 

at this point: 

T’c ((i,_jQ# i}u((j, i)l_j# i}. 

Thils, 

C, -={Ci,j, k)jj# i. AC- N}u{(j, i, k)ji+ i, kc N} 

u{(i,T,~,~‘)~Tc_{i ,..., i-i,i+l,..., t~},T’52?“}, 

0, - { ( i, j 1 ij’ f i, j’ f ,j}u{(j’, i)l.j’* i}U{L} 

~{(i, T”)IT”c_ 11,. .., i-- 1, d-1 ,..., v}). 

O,l is detined similxlc;. 

Ue can simplify (-‘, somewhat by replacing 0,, Of and 0” hi 

s,_,t ( ( i, T” ) j T” ;: ( 1 - i-1 , . . . . i ; I....,~?}). 
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This will allow certain elements that operationally speaking are meaningless (for 
instance, “I” being an element of T’ in an element (i, T, 7, T’) is meaningless, since 
the loop cannot possibly terminate if Pi has a ‘local’ option). However, the function, 

definitions will make sure that such impossible elements are not introduced into 

the hi. 
We can simplify C’i further by writing (i, j, k) as (i, j, k, a), @ being the empty 

set (of ‘other options’), and ( j, i, k) as (j, i, k, @). Thus, 

c, = {(i,j, k, T)lj# i, kE ZV, TG 0) 

d(i, T,7, T’)(Tz(l,..., i-l,i+l,..., n}, T’cO}. 

Consider an example: 2 loop in the process f, of a program [PI 11 P2 11 P3 11 P,]: 

Suppose during a particular iteration, all the booleans evaluate to true: and that 

we are considering the case when the first guard is chosen. The corresponding 

communication element concatenated to h,, the communication sequence of P,, 

would be ( I ,2, 100, Tj where 

to say that P, sent the number 100 to E, and the other options available to P, at 

this point were (a) to receive a number from fJ, (b) to send a number to P+ (cl, to 

receive a number from P2, and (d) to terminate its loop, this option, howe\*er, 

requiring that f2, P, and f4 had already terminated. 

H,, as already remarked, is the set of all finite and infinite sequences of elernznts 

of C,: 

The order on M, is the initial subsequence order: 

It, z 11: itf 11, is an initial subsequence of II :. 

The empty sequence E is the least element of H,. 

Nest, we consider the domain S, x H,. In fact, it is r&her incorrect to use the 

cartesian product notation “x” for this domain since the order we shall use on this 

domain will be 
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which is not the usual order on Cartesian product domains. Moreover, the domain 
Si x Ifi will not include all elements of the kind (si, ki); instead, 

Si 8’ Hi = {(si, hi)(si E Si, hi E Cy} u ((I, hi)l hi E CT}* 

Thus a non-bottom element of Si cannot be paired with an infinite communication 
sequence. The reason for this is that the ‘current state of Pi can have an infinitely 
long communication sequence component only as a result of a nonterminating loop 
in Pi, and the corresponding ‘local’ state component of Pi must necessarily be 1. 
((_A_, hi), where hi is a finite sequence is, of course, a perfectly reasonable state of P,.) 

Despite the above remarks, in this paper we shall use the notation Si x Hi for the 
above domain, since it is ‘almost’ the Cartesian product of Si and Hi. In summary, 

Si X Hi = {(Si, hi) 1 si E Si, hi E CT} v {( 19 hi) 1 hi E CF) 

and 

(St, hi:PE(SI, hi) ifI [Si = Si, hi = hi] or [Si = I, hiG hi]. 

Definition. An infinite sequence {A-, , x2, . . . > of elements of S, X Hi is a c/win if 

XJ C Xj + 1 for all j. 

Theorem 2.1. Every chain (x,, x2, . . .} of elements qf Si x H, has a unique least upper 
bound. 

Proof. Either there exists a k such that xk = x~+~ = 9 - l , in which case xk is 
lub{x,, x2, _ . .}: or, for all k, xk = (I, hk), and there exists a k’ such that k’> k and 
XI, # x;; in this case, lub{x,, x2, . . .} = (I, lt{ h,, h2, . . .}), the second component of 
the lub being an infinite sequence. 

Next consider the domain P(Si X Hi). The order on this dr?qain will be the usual 
Egli-Milner order: 

XrX’ ifi [V~EX.~X’~X’.X~X’AVX’EX’.~.~~EX.~~~’]. 

We shall impose the following restrictions on the elements of P( Si X H,): 
(a) X E P( S; X M,) implies X is convex, i.e., 

This restriction results in slightly unnatural denotations for some individualprocesses ; 

however, it simplifies the theory considerably (for instance, lub’s of chains of 
elements of P( Si :i Hi) become unique). Moreover, the denotations of complete CSP 
programs are unaffected by the imposition of the convexity requirement. 

(b) If X E P( Si X Hi), X is an infinite set, and there exist x1, x2, . . . , xi, xi, . . . , 
such that, for all j, Xj c Xj+l A -xj G X, A XI E X, then lub{_t,, ~2, . . .} E X. 

Essentially this requirement states that if (a loop in) a process can communicate 
an arbitrarily largle number of times, then it can also communicate forever. 
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A subset of Si x Hi that satisfies restriction (b) will be called romplete. Thus every 
element of P( Si x Hi) is convex and complete. U 

Lemma 2.2. If X and Y are camplete (subsets of S, x Hi), then SO is X u Y. . 

ProOf. Suppose z = lub{ 21, zZ,, . . .}, Zj C zj+ 1 for all j, and there exist z{, zi, . . . such 
that 

we have to show that z E X u Y. If all but finitely many zj belong to X (or Y), then 
by the closure of X (or Y) z will belong to X (or Y) and hence to X u Y. If not, 
we can replace any zi that does not belons to X by a zj (j > k) that does belong 
to X, and hence z will belong to X (by completeness of X), hence to X u Y. Thus 
X u Y is complete. El 

Definition. The comes closure operator is defined as follows: For any X c Si x Hi, 

C,[X] = {J#x, z E x....cE?‘G z). 

It is easy v see that C, is a closure operator, i.e., C,[ C,[X]] = C,[ Xl. 

Lemma 2.3. !r‘ Y 5 Si x H# and Y is complele, then so is C,[ I’]. 

Proof. The proof is straightforward and is left to the reader. El 

Thus if Y is d complete subset of S, X Hi, then C,[ Y] is an element of P( Si x Hi ). 

Definition. The completeness closure operator C2 is defined as follows: For any 

X E Si X Hi, 

C,[X] = x u { .Y( 3x,, ?c~, . . . , u;, d, . . . 

.[[Vjx, I= sj + 1 A .yi G x; A x; E X] A x = lub(x,, x2, . . .)I). 

PJote. Similar operators have also been defined by Boasson and Nivat [I] but in a 

Merent context. 

hnlma 2.4. [X is a c’owex subset @‘S, x H,] + [ C[X] E P (S, x H, )]. 

Proof. Suppose 

s = lub(x,, x>, . . .}, x, ~‘~+_qe- - - 

and there exist xl,, xi,. . . such that [x, c_ xi A x_; E C&X]] for all j: then we need to 
41ow x E C&q. 
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1r.x; E X for ail j, we are done. If not, we shall show that we can find xp, xz, . . . E X 

which wii’l serve the same purpose as xi, xs, . . . (i.e., Xj C Xy). Suppose, in particular, 
7; E c,[x j - x, bh-‘* being the set subtraction operator. Then, by definition of 

C,[X], x; = lub{y,, y2, . . .}, and there exist yi, yi, . . . such that Vk.[y, I= _vk +, A yk c 

y;( A y;i E Xl* Hence xj is infinite (i.e., is of the form (I, h’) where h’ is ;I.n infinite 

sequence). Also xj is finite (i.e., its sequence component is finite) and is of the form 
(I, hj) since X, I= X,+1. This, along with the fact that XjGx.; implies that there exists 
an I such that xj my,, and so we can take xj’ to be yi (since y,~y: and x, c_y,). 

This process can be repeated for any XI that does not belong to X. Hence 

x = lub(x,, x2, . . .), Xj lE Xj + 1 ASjC_XJAXyEX for all& 

and so, by the definition of CJX], x E C,[X]. Thus C,[X] is complete. (The proof 
also shows that C2[Cz[X]] = CJX].) 

We can easily show that if X is convex, so is C,[X]. Thus if X is a convex subset 

of S, x If,, then C,[X] is an element of P (S, X Hi). 0 

Notation. We shall often write C,[X] as X u X* where X* denotes the set 

The reason for this notation is the following lemma. 

Proof. Suppose the condition is satisfied. Suppose also that yt 1.““. Then J* s 

!uh( I’,, >‘_7, . . . }, and there exist ~71, _-&, . . . , such that Y_~.[J*, c y, + I A y, L_Y; A _I*; .I-: k-1. 

Hence there exist z;, zs, . . . such that Y_j.r$ zi A -_I E Z. Hence, by completeness of 

GCzl, y cc C&Z]. Similarly, we c;ln show that if z E Z*, there exists a J* CT C,[ I’] such 

[Y 1’ f Y.3z cz C,[Z].y c z] A [{Y z E z.3y E C’,[ Y].y c- z]. 

Proof. Straightforward. c-1 

Proof. Straightforward. LI 

Detinition. An infinite sequence {X,. X2.. . .) of clem.:nts of P(S, X H, ) is a chair1 if 

.Y, .ii I I for 211 .j. 
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Theorem 2.8. Every chain {X,, X2, . . .) of elements of P( Si x Hi) has a unique lub 

Proof. Define X = C,[ Y], where 

Y={XI~X~, X2, e w l l [[Wjm+jI=Xj+, AXLE X~]A X= lub(x,, X2, a m -}I}. 

We need to show that X has the following properties: 
(a) X E P( Si X Hi), i.e., X is convex and complete. 
(b) X, r= X for all j. 
(c) If ZE P(Si XHi) and X,CZ for allj, then XGZ. 
Ad (a): It is easy to show that Y is convex; hence by Lemma 2.2, X is convex 

and complete. 
Ad (b): We have to show, for all j, 

Both results are trivial, and we omit the details. (We have used Lemn:a 2.5 to write 

s r’ Y rather than x E X in the left-hand side of the second implicaticin above.) 

Ad k): Firs1 ;ve need to show 

If there exists a j such that Wk +._ Y F XL, the result is immediate. If not, 

.Y = lub( s,, .x2, . . .). 

From the sequence {x,, _c, . . .}, (repeatedly) remove all elements Y, that satisfy 
_\; I zz _*; , ,. Then we can find _& s:, . . . E 2 such that Vj.?:j c si. Hence x E Z, since 2 

is complete. 

Next we need to show 

w’z c z.3x E X.Xf 2. 

Since 2 E 2, and X, c: Z, there exist (for all j) z, E X, such that z, c z. Replace each 
2, by the least (under the order on S, x H,) x, E JC, that satisfies _UiC- z. Then we can 

easily show that (A-, , x2, . . .) is a chain ; its lub .k *will belong to X and will satisfy XC z. 

Thus X is indeed the 1.u.b. of {X,, X2, . . .}. C_l 

Note. It is easy to show that lub( X, X, . .} -: X for all X E P(S, x H,). 

Lemma 2.9. [#’ {S,, Ai, . . .} is a chirl, und there exists a dwin (sli, xll, . . _> qfelements 

M S x M, .L E 4, _fiw all k, and jli < jk +, _fiw all k, then lub{.u,,. J;_,, . . .} E 

lub{ X,, X2, . . .). 

Proof. X, r _A’,& - - - L A’,!, hence we cnn find _x,, . . . , xl,. l such that x/ c XI for all 
1 y~_j, -- 1, and s, 5 S,G - l 6 ES,,. Now, X,, C_ AJLj, + I ; hence, there exist Xi, + 1 E X,,+l such 
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that _Yi,L Xj,+l- Take the least xi,+ 1 E Xi, +I that satisfies Xi, E xi, +I. This _Yi, +I will 
necessarily satisfy _Ti, +1 C Xi2 since Xj, +I G Xj2a This process can be repeated so that 
we get a chain (x,, x2, . . .} such that x1 E X,, and zq4 is the original -xj, we started 
with, for all k. Clearly 

q 

Lemma 2.10. If X,, X2, . . . , Y,, Y2, . . . are elements (#f P( Si X Hi ) SUCK that Xj IS_ 

X ,+1, Y,Es_ Y,.+, for all j, then 

lub( C,[X, u Y,], C,[X2 u Y,], . . .) = C,[lub{X,, X2, . . .) w lub{ Y,, Y2, . . .)I. 

Proof. Note first that 

C-,[X,u Y,]rzc’JX,+,u Y,+J for all j, 

and hence lub{ C,[X, u Y,], C,[X? u YJ, . . .} does exist and is convex. It is easy to 

see th:rt 

C’,[lub{X,, X,, . . .)u lub{ Y,, Y:, . . .}]G lub((‘,[X, u Y,], C&&u Y,], . . .}. 

Next suppose z = lub{ z,, zz, . . .}, Z;G 2, ( ,, 2, E X, u Y, for all j. We need to show that 

I r C’,[lub(X,, X,, . . .} u lub( Y,, Y2, . . .}]. If z, E X, (or Y,) for all but finitely mani M e 
jq the result is immediate. If not, it follows from L.emma 2.9 that 2 c 
lub{ Y,, X2, . . .}. a 

T!lat completes the discussion of the domains. Nest consider the functions. These 

fill h;rie the functionality J: P( S, x H,) d P(S, x H, 1. 

All our functions will be monotonic. In fact, all our functions will also satisfy 

some other conditions. 
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Note. Condition (b) implies that X c Y +f( X) ~f( Y) ; and (c) implies (a). 

All our functions will be semantic functions. Most (but not all) of our functions 

will, in fact, be ‘simple’ semantic functions. 

Definition. A semantic function f is a simple semantic function if it satisfies the 

following additional conditions: 

(d) .f(W, WI = W-, WI, 

(e) S(k4, W = Na,, WI, 

where a, is the ‘abort’ state into which P, goes if it attempts to execute a selection 
statement that has no guard whose boolean portion evaluates to true, 

(0 j’(X) = IJ .f({.y)) for all X E P(Si X If,). 
\t s 

Definition. If .f, g are functions on P( Si x Hi), then the functions fog, f u g are 
defined as ‘ollow~~ 

( 1) We can easily prove thatfog( X),J‘u g(X) E P(S, x H,) for all X E P(Si x H,), 

and 
(2) _f’og,.fu g are monotonic if J and g are. 

‘tie can also pmve the following result. 

Theorem 2.11. j’o g, .f‘u g are semantic .functions jf j’and g are. 

Proof. The only slightly nontrivial proofs are those of the facts that 

,f‘u g( GCX, u JGl> = c‘,[.f’u gw, 1 u.hJ gvwl 

and 

[_V.Y C X.3!* Cj’u g( X ).x2 !z +Y2] A [VJ, E*f‘U g( x ).3.x F_ x2 r, ,q. 

Consider the first result: 

./‘u g( C’,[X, LI .L]) - C,l./‘( C’,[X, u X2]j u g( C’,[X, v X2])] 

= G[G[S(X, 1 UJ‘Wdl~ G[g(.X,) u gWdl1 

= r’,[fcx,,u.i(x,)ug(X,)ug(X~)l L L 

= c‘,[c,[j‘cx,)vg(X,)]u C,[.f’iX~)ug(.~~,ll 

= c’,[f‘u gW,) u_hJ gW,)l. 
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Next suppose x E X. Then there exists a y E g(X) such that x2gy2. By definition of 
f~g,y~ g(X)~~~f~g(X).Hencetlx~X.3y~fug(X).x’~~~~.Similarlywecan _ 

show Wy C+J g(X).3x E X.&y”. 0 

Definition. If ,f, g are monotonic functions, then jr g if 

jf(X)Gg(X) vx E P(Sj x H;). 

Definition. An infinite sequence (_j’,J, . . . } of monotonic functions is a chairr if c 
.f; GA + I fG 

Theorem 2.12. Eveq~ chain {j;, f2, . . .) of semantic.Jitnctions has a unique luh_J which 
is also a semantic _jiirKYion. 

Proof. Define f(X) =lub{_f;(X),_J‘,(X), . . .} VX E P( Si x If,). It is cdsy to show that 
J is a monotonic function and that _f is the least upper bound of {.f;,.fi, . . .). We 
also need to verify that j‘ is a semantic function: 

It is clear that _f( @) = @. 

Next., 

.f‘(C,[X u Y]) =lub(.f;(C’,[XU Y]),.f,(C‘,[Xu Y],. . . .) 

;I ~‘,~.lub{.f;(X?,.1’,(X I,. - .} 

Thus .I’ is indeed a semantic function. i- 
!_I 

jV0.t. wnsider fun0ionals. All our functionals will na;tp sern;mtic functions to 

wm17 t ~c’ t’wact iwb. 
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Definition. A functional t is monotonic if fC g+ t[f]~ r[g]. 

Definition. A monotonic functional t is continuous if for all chains (J,,& . . .), 

mw-l,h, l l 4 = lW U,l. C#-J, . . -1. 

(Note that the right-hand side above exists since t[fi’3llr t[J+ J, t being a monotonic 

functional.) 

Theurm 2. I3.. [f t is a continuous functional, then lub{L!, t[O], t’[O], . . .} is the least 
fixed point oft, and is a semactic function, where 0 is the following semantic function : 

Proof. The proof that lub{O, f[O], . . .) is the 1.f.p. of t proceeds along standard 

lines; that it is a semantic function follows from Theorem 2.12, and the fact that 0 

is a semantic function, a;?d 1 maps semantic functions to semantic functions. Cl 

Results 

(I) The fkncti:~nal t dejined by t[f ] =.fog, g being a given semantic function, is 
monotonic. 

Proof. Trivial. (The fact that t maps semantic functions to semantic functions follows 

from Theorem 2.11.) Cl 

(2) t[ f ] =.f’v g, g being a given semanticjknction, is a monotonic functional and maps . 

sarnmtic jitnctiorls to semantic jbncti9ns. 

Proof. Trivial. Cl 

(3) t[_f] = f-0 g, .f being a giver1 semantic function, is a continuous funr;tio;lal. 1 

Proof. Suppose {.f;,.f2, . . .} is a chain of monotonic functions. Then, 

tbb{.f,,j;, . . .llW = 

= W.f,,.f~, . . .PgW) 

- lW.f,,.f,, . . . HgWH 

= lub{.f,(g(XH,jS(g( U), . . .} (by construction of lub{.f;,_f2, . . .}, 

Theorem 2.12) 

= luW-,og(X),hog(X), . . .) 

= luW[fil, UJ, . = W). 

Her-w t is a continuous functional. D 
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(4) tf I= fu g is a continuous functional. 

Proof. t[lub{f,,fi, . . .}](X> = C,[lub{.f,,fZ, . . .}(X)ug(X)]. Hence, we need to 

show 

G[lub{_f,, _L * * JW) u g(X)1 = ~uWf, u gW),.f&J g(X), . . .}. 

NOW, 

lub{.f, u g(X),.w g(X), l l -1 = 

= luS{C,[_fdX) u gwn G[hW ‘3 gwn * - *I 

= C’[lub{.J;(X),,f,(X), . . .}ulc~~{g(X), g(X), . . .}] (by Lemma 2.10) 

- C,[hrb{_f,,J,, . . .)W)ug(l;’ 1. 

Thus I[./‘] =.fu g is a continuous funci ional. Cl i 

(5) The jkrctional t defined below s t?ontinuous and maps semantic .flrnctions to 
semantic functions, g and g’ being g&t ~1 semantic_fidnctions: 

t[f](X, = CJX’ u g( C,[Yj, u.f(g’(C&~Z]h] 
where 

Proof. We can easily see that X’, X2 and X3 are convex : moreover, X ’ is also 

complete, hence we da not need to write C,[X’] in the detinition of t. 

First consider the monotonicit) of t[.f], .f’ being a semantic function. Suppose 

.Y L Y. We can easily show that there exist convex Y’ and Y” such that 

We must first show that VU t t[_#‘]~X).3!tl t[,#‘j, Yhc c Suppose II CI. t[f](.Y ). We 

cari assume 

If 11 i- X ‘, there exist I? E Y stxh that ZJ L ~3. If cl E I”, we are done. If L‘ E k.“, the 

t’xr: that g is a semantic function implies that there exist N-C g( C,[ Y’]) such that 

I’ I(‘.’ . and hence 21 c w. A similar arpment works (,/I g’ being semantic functions) 
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ifvEY‘ !f u E g( CJX’]), then the facts that g is a semantic function and X2 c Y’ 
(hence G[X”]c_ C,[ Y”]) imply that u E g( C2[ Y’]). A similar argument holds if 

u t f(g’(C,[X3])). - 
Thus we have shown VU E t[f](X).3v E t[f]( Y).u c_ v. Next we have to show 

VII E f[.j]( Yj.3~ E t[f](x). ~4 C v. Suppose v E t[fl( Y). We can assume v E Y’ u 
g( C,[ Y”]) uf(g’( C2[p])). If u E Y’, it is easy to see that there exists a u E X’ such 
that u c v. If u E g(C,[ Y*]): now Y* = X2 u Y’. Hence, 

g; C*[ Y’], = C,[g( C*[X2]) v g( C*fY’])]. 

Hence there exists a U’E g( C,[X’]) u g( C,[ Y’]) such that V’E v. If V’E g( C,[X”]), 
we are done; if v’ E g( C2[ Y’]), there exists a u” E C,[ Y’] such that ck v’~, g being 
a semantic Iunction ; hence there exists P. u’ E Y’ such that w c v”; and there exists 
a UEX’ suchthat U’ - - .L A u E w. Hence u G u and u E f[S]( X). A similar argument 
holds if u E.f(g’( C,[ Y’])). 

Next consider the montonicity of 1. Sppose _fcj’. Then 

t[ f](x) . = cI[x’ tJ g(c2[x2]) U.ft g’( c2[x3]j)], 

l[f](X, = C,[X’ u g(Cz[X’], us(g’(c,[x3]))l. 

It is easy to AUW that t[S]( X ) G r[f’](X ). Thus t is monotonic. Now consider the 
continuity of’ 1: suppose {_fi,_j& . . .} is 2 churn. We need ta show that t[f]( X) = 

lubi UJc X A Ci-W ), . . .}, f being the lub of {fi, f2, . . .}. Now lub( t[fi](X ), 
I[&]( X ), . . .} = lub{ Y,, Y::> . . .}, where 

1: = CJX’ u g( C,[X’]) u.f;(g’( C,[X’]>,]. 

Hen&by Lemma 2.10, 

= C,[lub(X’, X’, . . .} u lub{g( C,[X’]), g( c,[X’]), . . .I 

u lub{.f,(g’( C~[X~])),.I;(g’(C~[X3])), - . -11 

= c‘,[X’u g(C,[x~]~U.~~g’~~*~~~1~~1 

- f[.f]( x ). 
Wc still need to show that t[f] is a semantic function if _f is a semantic functicn. 
It is easy to see that r[J]( @) = ?? Next we have to show that 

t[*#‘]( C,[X u Y]) := C,[r[.f]W u f[.f]( WI. 

Let 2 denote C,[X u Y]. Then the required result easily follows from the fact that 
_f; g and g’ are semantic functions and the following easily proved result: 

Z2=X2y Y”, Z3=X3y Y3 and Z’=C,[X’u Y’]uZ’, 

such that VZ’E 2’3~ E 2” u Z’.Z’E z. 
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Finally, we have to show that 

WXE X.3_,vE t[f](x).x*c~~' and Vy E t[.f]( X ).3x E JCx* c y’. 

The first result is trivial (using, in case x E X’ or X’, the facts that J g and g’ are 

semantic functions )b 

The second result is also straightforward (using the results that if z E C,[X’]- X2, 

then ZEX’ , &and similarly if z E C,EX’]- X’, then z E X’). 

Thus t[f] is a continuous functional and maps semantic functions to semantic 

functions. !I 

We have almost completed the discussion of the domains, functions and func- 

tionals needed for defining the denotations of individual CSP processes. We shall 

conclude by proving that a particular function (needed for defining the semantics 

of the selection statement) is a semantic function. 

Lemma 2.14. The jimction .f dqjined as jbllmv.~ is (I semantic fitnction : 

.f‘( x 1 -z c,[x”uf’( C,[X’], u * . * u.f;,,( G[X”‘]) u C,[?r “I] 

X” = {s/ _x c X A [x’ = _L v s’ = a,]}, 

Proof. First consider the monotonicity of j: Suppose X c,: I”. Then we can easily 

show for 311 j, I ~j =S m, 

If .Y is such that there exists a v t. A’ such that 
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then u will be an element of Y and hc:nce of f( Y). A similar argument holds if 
x EJ( CJX’]), making use of the fact that X’ c Y-j, and henceh( CJXj]) SE&( C2[ Y’]). 

Conversely, suppose r ~f( Y). Then we can go through similar argumer,;s to show 
that 2x ~f( X ).xE~. ( Note: the fact that 

which follows from Y.’ - - XJ v X” and J is a semantic function, is used in proving 
the converse. 1 

Next, we need to prove that f is a semantic function. It is easy to see thatf( @) = @. 
Consider .f( C,[X u Y]). It is straightforward to see that [X u Y]’ = X’ u Y’ for 

all j, 0 s j s UI + 1. Hence, using the fact that J is a semaimtir: function we can show 

that f( C,[X u Y]) = CJf<X) u.ff WI. 

Finally, we have to show that 

This again is straightforward, using (for the second half of the result) the fact that 
C&V] - X’ c x”. 

Thus .J’ is indeed a semantic function. G 

3. Semantics of individual processes 

We are rlow ready to define the denotations corresponding to various statements 

that may appear in a CSP process, say P,. As explained earlier, the denotations 

corresponding to a statement (J; that appears in P, will have the functionality 

M[q]: P(S, x f-f,)-, P(S, x H,). 

All our functions will be semantic functions; the functions corresponding to the 

basic statements (skip, assignment, input and output) will be simple semantic func- 

tions, i.e., will also satisfy the conditions 

For such functions we only need to define .f‘({(s,, !I,)}) for all (s,, h,)~ S, x Hi, s, f 1, 
s, f (J,, in order to specify j‘ fully: in specifying such functions we shall often write 

j‘(s,, /I, ) instead of the proper notation .f({(s;, II,)}). 

Now consider the various statements that may appear in P,: 
( 1) Skip: M[skip] is d simple semantic function: 

h/f [skip]( s,, h, ) -2 { ( T,, II,)} 

(2) Assignment: M[x := e] is a simple semantic functior : 

M[x:= e](.s,, 12,) = {(.s,[x+ e(s,)], h,)}, 
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where el;si) is the value of the expression e in the state Si ; si[x + e( si)] is the state 
obtained by replacing the value of x by the value of e in the state Si and leaving 
the other identifiers unchanged. (We assume that evaluation of expressions does 
not cause any problems, i.e., e(si) is well defined if si f I and si # a,.) 

(3) Output: M[P, !e] is a simple semantic function: 

M[P,!elbi, hi) = {(siy hi A[ 4 j, e(sd, @))I- 

Recall that the fourth component of a communication element is the set of ‘other 
options’ open to pi at this point, and in this case is the empty set, since Pi has no 
other options at the moment. ‘A’ is the concatenation operation. 

(4) Input: M[P,?x] is a simple semantic function: 

M[P,?X](Sip hi)={(si[x+k], hi*(j, i, k, @))(k~ N}. 

(5) Sequential composition: M[S, ; S,](X) = M[S,]( M[S,](X)). 
(6) Selection: Consider a selection statement; we allow mixed guards, i.e., some 

of the guards of the statement may be purely boolean while others are I/O guards. 
Suppose the statement is 

where 6j is the boolean portion of the jth guard (“true” if the jth 
guard with no boolean portion), Cj is the communication portion 
(skip if the jth guard is purely boolean). 

guard is an I/O 
of the jth guard 

M[[b, ; cl + S, 0 l l l Cl h, ; c,,, + S,]](X) = 

= XOuJ(g,[C,[X’]))u l l l ufm(gm( G[Xrn])) u c[x’“‘+y, 

where 

x .’ m+l = 
(VI v =Q,A3XEx.x’#lAx’#a,Ax~=y~ 

1, 1 h,(_l-‘)A .--A v!l,,,(s’)] 

(we assume that b,, . . . , 6, are well defined if x’ # I and x’ # a,). 

X’={X~XEXA~‘flA_~‘fQ,hh,(.Y’)), Hjs-I. 

f; is the denotation of F, ( 1 sj 6 m). g,, . . . , g,,, will capture the etfect of the l/O 
guards. g,, . . . , gm are simple semantic functions. The definition of gj depends on 
whether the jth guard is purely boolean, input or output. 

If the jth guard is purely boolean, 

gj(si, hi) = {(si, h,)I* 

If the jth guard is an output guard, say b, ; Pj!e, then, 

g,& h,) = {Cs,, k”(i, k VA WI, 
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where T, the set of other options, is defined as follows: 

T=((i,k’)(31~ml~OG~b,(s,)~CP(I)=khk’#k) 

u{(k’, i)1316 rn.1~ IGA 6,(si)ACP(/)= k’) 

u(k131sm.lc PBA bi(si)}, 

where OG, IG and PB are the sets of indices of the output, input and purely boolean 
guards respectively: CP( I) is the communication partner of Pi in the Ith guard (if 
1 E OG v rs;, ;.q CP( I) is k if the Ith guard is b, ; Pk !e or b, ; Pk ?u. 

Finally, if the jth guard is an input gtiard, 

g,(Si, hi) = {(si[u + t], hi ̂ (k, i, t, T))) t E N}, 

where 
T={(i, k’))31%’ ~.~EOGA b/(.;i)ACP(I)=k’) 

(Note: by the result at the end of Section 2, M[[g, + S, 0 l l l 0 g, + S,,,]] is a semantic 

function.) 1 

The defil.ditiun of the denotation of’ the selectiori statement seems somewhat 

complex, but, in fact, almost all of th: ccnplcxity is due to the need for defining 

special notations to take care of the various cases that may arise, rather than any 

inherent complexity in the nature of the denotation. 
(‘7 ) Repetition: Consider the repetition statement 

The denotation of this statement is the least fixed point of the functional t defined 
as follows: 

t[_f](X) = C,[.V’u~( Y’)u ’ l l uf( Y,“)U Y”*+‘], 

where 

j;= M[S,], 1 sjsm, 

X” = (-UJ X E X A [X’ = I V X! = ai]), 

Y m + I 
= C,[(z 13s E X.[x’ # I_ 8\ X' # ai A /\ 1 6,(X’) 

It PH 

b iiere 

AZ’ =_y’/j 22 = x2 ̂ ( i, T, r, T’))], 

T={j1326 rn.[I~ IGv IEOG]A b,(x’)~j=CP(f)}, 

U{(j, i)13k tP1.k It-iA b/(X’) Aj=CP(l)}, 

y’ =j;(g,(c,[X ‘])I for all j, 1 ci”- m7 
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where 

4 = M[Sj], 1 S ja m, 

Xi={~~~~X~,~‘#If\~‘#ai~bj(x’)}, Iaj~m, 

and the gi ( I s j =S m) are simple semantic functions; the definition of gj depends 
on whether the jth guard is a purely boolean, output or input guard. 

If l!he jth guard is purely boolean, 

If the jth guard is an output guard, say bi ; & !e, 

g,(-yi, h,) = {(si, hi ^(k k 4d, T))I, 

where 

T=((i, k’)+ ~.IEOGA b!(q)/\ ~‘=C?(/)A k’# k} 

~{(k’, ~)~~~~w.IEIGA b,(si)A k’=CP(I)} 

~{(L)3f~m.l~PB~b,(si)} 

u ((i, T’) I[Vi d m.1~ PB+T h,(si)] 
; 

, 

If the jth guard is an input guard, say 6, : f&, then 

g,b,, h,) = {(.s,[u+- t], h, A(k, i, n, T)l 11 c IV}, 

*.vhcre T is defined in almost identical fashion as in the case of the output guard. 

By the results of Section 2, t maps semantic functions to semantic functions and 

is a continuous functional, and it has a unique least fixed point which is a semantic 

function. 

That completes the definition of the denotations of the various statements that 

may appear in the individual processes 

4. Semantics of CSP programs ’ 

(‘onsider it CSP program P :: [I’, 11 . . . !I P,, 1. “The senxintics of’ the progtxm will bt 

a function 

&,:s, x. - . xS,,-+ P(S, x. - - xS,&+, d)). where S, = S,-(1, a,); 

i.e., for a given initial state cst, . . . , s,‘:) of [P, 11. . .I[ P,,],_& gives us the sc‘t of possible 

fin4 states of the program: 1 J the program can go into an infitlite loop (either becauce 

of one (or more) of the processes going into an infinite loop, or because of ‘infinite 

chattt4np’), I will be one of the elements in the set of final states: iI the program 
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can get into other kinds of problems (deadlock between two or more processes, or 

abortion of one or more of the processes), the fail state “d” will be Glle of the 

elements in the set of final states. (Note: We do not distinguish between different 
kinds of failure, deadlock, abort, etc., since there does not seem to be any essential 

reason to do so, although it would be easy to modify the definition of fp below to 

distinguish between the various types of problems that the program may get into.) 

We shall neither define an order on the domains ST x l l l x S,, P( S, x l l l x S, u 

(I, d)), r,cz 4k~ss such properties as monotonicity of functions such as fp, con- 
tinuity of functionals on such functions, since there seem to be many problems even 
at the informal operational level, in composing two CSP programs to obtain a NW 
CSP program, or in constructing a new CSP programs by taking a given CSP program 
as the body of a loop etc., and we shall ignore such possibilities in this paper. 

The function fF is defined as follows: 

where B is the n-fold ‘binding operator’, to be defined shortly, that will bind the 

semantics of P,, . . . , P,, to obtain the semantics of the in+i&al processes F,, . . . , P,,, 

respectively 

B( ‘XT,, . * * ) X,,) = Y, u Y+J y3, 

whereX,EP(S,xH,)(j=1,... .n),and 

Y, = {(s,, . - . , .&,)I s, E s; A ’ ’ l A s,, E s, 

A ah,, . . . , h,JVi.(S,, hi) c X, A Cornpat@,, . . . , 12, )I;, 

where 

Compat( k,, . . . , h,, ) = 

= 3Qh E C* A Vi.h/i = Trim( 12,) 

C={(i,j,I)Ii#j, l+,jan,IEN} 

u{(i, T,7)/Mi(-& X(1 ,..., i-l,i+l,..., n)}, 

6 is fhe number of elements in h; h/i the sequence obtaine,d from 12 by omitting 

all elements except those of the form (i,j, I), (j, i, 1) and (tr, T, 7); Trim( hi) the 

sequence obtained by dropping the fourth component of each element of k,; 

Elem( h, k) the kth element of h ; h[k: 1) the subsequence of h From the kth to Ith 

element of 11, i.e., (Elem( h, k), . . . , Elem( h, I)). 

Thus Y, corresponds to a situation in which each process terminates properly, 

the communication as recorded in each of the sequences being compatible with the 

commlrnications in the other sequences. 
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Yz will correspond to 
or one (or more) of the 

Y2 -7 (d /3s,, . . . , s,,, h,, . . . , h,.[[Vis n.(si, hi)E Xi] 

A [3 is, = ai 

N. Soundararajan 

a situation when two (or more) of the processes deadlock, 
processes ‘aborts’: 

A [3hi,. . . , hi_,, hi+,, . . . , hi,.[Vj # i.hjC hj] 

~Compat(h;, . . . , hi_,, hi, hi+,, . . . , h;) 

A Vk # i.[Elem( hi, I) = (k, T, r, T’) 

+Vj E T.[j # i A hj = hj A Sj f aj A Sj # l_]] 

A [Elem( hi, 1) = (i, T, T, T’) 

+Wj E T.[hl= hi A Sj # a, A .yl # _L]]]]]} 

u {dJ 3s,, . . . , s,,, hi, . . . , h,l.[[Vi 6 n.(s,, h,) E X,] 

A [gh;, . . . , h;,.[Vi c nsh:E hi ACompat(k{, . . . , hi,)] 

P. Vi s n.[Elem( hi, I) = (i, T, T, T’) 

A Incompai( h ;‘, . . . , k z )]I), 

where h:’ = h,[ly: t I : K,], i.e., h:’ is the sequence got from ki after stripping off the 
initi4 subsequence hi from it. 

Jncompal( h’;, . . . , hi) E 

- [iii s n.k:’ # F 

/\[kfi,jSn.[i#jAh:‘-2 1 ~hy?l] 

*Options(h:‘, 1) 17 Optionsi II:‘, I ) = @] 

where 

Thus the first part of Y2 corresponds w the situation when one of the processes 
;ftx.arts, while the second part corresponds to the situation when the program cannot 
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continue because the various processes are attempting mutually incompatible com- 
munications. 

Y~=(L~~s,, . . . , s,, h,,. l -, h,,.[[W~ n.(s,, hkX1 

A h, E CT+Jhi,. . . , hj_,, hJ+,, . . . , hk.[Wi # j.h:c hi] 

n Compat( h’,, . . . , hj_1, hj, hj+l, . . . , hi,) 

A Vi # j.[Elem( h:, I) = (i, T, 7, T’) 

A [Elem( hi, I) = (j, T, T, T’) 

A h, E CJ’~[Vm.[3h’,, . . . , h{._,, hj,,, . . . , h’,.[Qi # j.h:g .!I,] 

A Compat( h’,, . . . , II;_,, hj[l : m], h.:,.,, . . . , II’,) 

A Vi f j.[Elem( hi, I) = (i, 7, T, 7) 

A VI s m.[EIem( h,, I) = (j, T, r, T’> 

where C* , is the set of finite sequences of elements of C,, and CF the set of all 

infinite sequences of elements of c,. 

Thus the first part of yZ (i.e., the part following hj E CJ% ) corresponds to the 

case when PJ goes into an infinite loop after going through a finite number of 

communications, whereas the second part of k3 (the part following hj E CT+) 

corresponds to the case when the loop is due to infinite chattering. 

That completes the definition of B, and of the semantics of [Pi 1‘. . .I1 PJ. Our 

definition of the semantics of [ P, 11. . .I1 P,,] has been tailored to ‘hide’ the communica- 

tions between the various processes, since these are internal to the program as a 

whole; on the other hand, the communications are nut internal to the individual 

processes, and hence it was reasonable to include the communication sequence of 

:t process in the semantics of the process. If desired. it would be relatively simple 

t13 modify the definition of the semantics so that the denotation & of [P, 11. . .[I P,,] 

has the functionality& : S, x - l l x S, + P(S, x l l l x S, x H), where H is the domain 

of (finite and infinite) sequences of communications between all pairs of processes; 

in other words, if h is an element of H, then h is obtained by ‘merging’ the sequences 
I?,, . . . , h,,. We leave the changes that need to be made in the definition of B, in 

order to modify 1; in this fashion, to the interested reader. 
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5. Concdusicns 

In this paper we have presented a denotatianal semantics for CSP. Our semantics 

has the following advantages: 

(a) The domains used in the semantics and the semantic functions are fairly 

simple. This may be con’trasted with the domains and functions used by Francez et 
al. [3]. The approach of Pnueli et al. [6] is closer to our approach in that they use 

communication sequences in an essential fashion, and their domains are much 

simpler than those of Francez et al. [3]; in fact, the c-xder on the domains of Pneuli 

et al. is even simpler than the order on our domains; however, we believe that, 

neither the denotations of irt:\dividual processes nor the semantics of entire CSP 

programs as defined in Pneuli et al., are as closely related to their intuitive meanings 

as in our approach. 

(b) Our semantics seems more ‘abstract’ than others that have been proposed. 

Consider, for instance, the process 

P, : : x := 1 ; [s = 1 + skip Cl true --, skip]. 

This will have the same semantics (in our approach) as the process P, :: A- := I as 

indeed it should. This is not true of the semantics of France2 et al., where the 

semantics of the former process is a rather more complex tree than the semantics 

of the latter process. A similar remark applies to the semantics of Pnueli et al. [6]: 

in fact, in their semantics, even the process 

P, :: s := 1 ; skip; skip: skip 

would have a semantics different from the semantics of either of the processes given 

earlier. 

Pnueli et al. justify this by saying that since the third process would take longer 

to execute than either of the other two processes, it should have a ditierent semantics. 

f3ut since the difference between the processes is only operational it would seem 

preferable to have identical denotational semantics for all three processes. 

W Neither mixing of l/O and purely boolean guards nor the distributed termina- 

tion convention of CSP causes any problems in our definitions. 

There is orle problem with our approach that is worth mentioning: we hue 

required the (. kmtmts of P( s, Y i-l,) to be convex. Thic resuhs in identical dcnot;~tions 

for the foilo\&g processes: 

P, :: [true -+ skip0 true --f P, !5 ; P, !5 ] : * (true --+ skip] 

I”, :: [true + skip5 true -+ P, !5 Cl true -+ P, !5 : P, !5] ; ,e [true -+ skip]. 

This ~cms rather undesirable, since the first process would necessarily go through 

with ;I stxond corllnlunic;ltilon once it performs the tirst communication, while this 

is3 not true 01’ the latter prcxtzss. It is indeed possible to devslop a ~ornewhat more 

~rnples th:or~ without irnpo4ng the requirement of con~xit~~; ho\t.tfver, even such 
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a theory seems to have similar problems in more complex situations. In particular, 

the following processes have identical semantics, even in such a theory, aithough 

one would expect them to have distinct semantics: 

Ok= f 4’,!5; k:-2-J; 

i;l :: k ;= O;*[k=O+skipllk=O~f:!5;k:=lOk=1+~!5;k:=2]; 

We believe that rather major changes would have to be made if these two processes 

are to have distinct semantics. 
We imposed the requirement of completenesrl on the elements of P( S, x Ifi> in 

order to ensure continuity of the functionals needed ir. the definition of loops: 

informally, as explained in an earlier section, completeness amounts to requiring 

that if a loop can communicate an arbitrary number of times, it can also communicate 

forever. As a result, it would seem impossible, using our approach, to define a ‘fair’ 

semantics, since such a semantics would allow us to construct loops that terminate 

after communicating an arbitrary number of times. We believe that in order to deal 

with fairness, it would be necessary to introduce much more stiucture-perhaps in 

the Form of a metric-on (our basic domairs, as De Bakker and Zucker [2] do. 

Moreover, in our paper we have not considered the possibility of the parallel 

composition operator being used in one or more of the individual processes. It is 

indeed possible to generalize the theory to deal with such a construct, but we 

preferred not to develop such a theory at this stage, since there seems to be many 

unanswered questions even at the operational level, especially with respect to 

distributed termination, in such a language and these questions ought to be answered 

before attempting to define the denotational semantics of such a generalized 

language. 

Before concluding it should be remarked that an approach quite similar to the 

one proposed in the current paper also works for a concurrent programming language 

in which processes interact through shared variables (rather than CSP type I/O 

statements). Such an approach would be preferable to (and ‘more abstract’ thaii) 

the standard approach of Milner [4] and Plotkin [5] involving powerdomains. This 

will be the topic of a future paper. 

Acknuwledgment 

Much of this work was done while the author was on an extended visit to the 

TLU Institute of Fundamental Research, Bombay. The author would like to thank 

S Irun Kumar, K. Lohya, S. Mahadevan and P. Pandya of the Tata Institute for 

nlriily Y ruitful discussions. 

>inccre thanks are also due to Marty Marlatt for her efficient typing of the paper. 



304 !+I. Soundararajan 

References 

[I] L. Boxssxr and hl. Nivat, Adherence of languages, KSS 20 ( 1980). 

[2] J.W. rle Bakker and J.I. Zucker, Processes and the denotational semantics of concurrency, hformarion 

and Control 54 ( 1982). 
[3] N. Francez, C.A.R. Hoare, W.P. de Roever and D. Lehmann, Semantics of non-determinism, 

concurrency and communication, JCSS 19 (1979). 
[4] R. Milner, Processes: A mathematical model of computing agents, Logic Colhyuiunt ‘73 

( Noith-Holland, Amsterdam, 1975) pp. l57- 174. 

[5] G.D. Plotkin, A powerdomain construction, SIAM J. Contpwf. 5 ( 1976). 
[6] A. Pnueli, N. Francez and D. Lehmann, A linear history semantics for languages for distributed 

programming, IEEE Zlsr S_vnp. on Fowdatiorts of Computer Science, 1980. 


