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A b s t r a c t - - W e  analyze the problem of the computation of the solution of the nonlinear matrix 
equation X = ~+=c~ XiAi, arising in queueing models. We propose a technique based on regular 
splittings, that on one hand leads to a new method for computing the solution, and on the other 
hand, it may be used to construct nonlinear matrix equations equivalent to starting one, that can be 
possibly solved by applying different algorithms. @ 2000 Elsevier Science Ltd. All rights reserved. 

K e y w o r d s - - R e g u l a r  splitting, Markov chain, M/G/1 type matrices. 

1. I N T R O D U C T I O N  

Let  P be t he  inf ini te  co lumn s tochas t ic  m a t r i x  

p = [!i Q A1 Ao 

A2 A1 Ao (1) 

defined by the  k x k blocks B i + l ,  Ai ,  i _> 0. A nonnega t ive  m a t r i x  M (denoted  wi th  M > O),  

poss ib ly  infinite,  is cal led co lumn s tochas t ic  if en-M = e T, where  e is the  vec tor  having  all the  

ent r ies  equal  to  1. Mat r i ces  of s t ruc tu re  (1) are known in l i t e r a tu re  as s tochas t ic  ma t r i ces  of 

M / G / 1  t y p e  [1] and  arise in a wide var ie ty  of queueing p rob lems  mode led  by a Markov  chain 3d ,  

where  p T  is the  t r an s i t i on  m a t r i x  assoc ia ted  wi th  Ad. One of t he  m a j o r  p rob lems  re l a t ed  to 

Markov  chains  is t he  c o m p u t a t i o n  of t he  nonnega t ive  vec tor  7r such t h a t  

rc = P'a', eq-rc = 1. (2) 
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If system (2) has a unique solution, P is called positive recurrent and 7r is called the probabili ty 
invariant vector associated with P.  In the ease where P has structure (1), the computat ion of 7r 
can be reduced (compare [1]) to the computat ion of the minimal nonnegative solution G of the 

nonlinear matr ix  equation 
+ec 

X = Z X~A~' (3) 
i=0 

where X is a k × k matrix. If the matr ix  P is irreducible and positive recto'rent [2], equation (3) 
has a unique nonnegative solution, which is colmnn stochastic [1]. 

Once the matr ix  G is known, an arbi trary number of components of the vector 7r can be 
recovered by means of a recursive numerically stable formula, called Ramaswami ' s  formula [3], 

which involves the block entries Ai, Bi of the matrix P in (1) and G. 
In this p~per, we derive a new method for solving the matrix equation (3), that  consists of 

rewriting equation (3) in terms of a linear system and applying an iterative method,  based on 
regular splittings, for its solution. More precisely, equation (3) can be rewritten as the following 

block Toeplitz block Hessenberg infinite system: 

- A 2  I - A1 - A o  
[a ,  G 2, G3, . . . ]  - ..A3 - A 2  I - A1 - A o  

' ,  ' , .  ' .  ",. 

= [Ao, O, O , . . . ] .  (4) 

In order to solve the above system, we generate, by means of regular splittings, a sequence of 
equivalent systems having block Toeplitz block Hessenberg matrices. We prove that  the sequence 

of t ransformed systems converges to the system 

[G, e 2, G3, . . . ]  I - A ;  = [A•, O, O, . . .1 ,  (5) 
" ,  ",.  

from which we obtain G = A;. In this way, we generate a sequence of nonlinear matr ix  equations 

X = ~-~=o XiAI  ~) n >_ O, whose solution is still G, that  converges to the linear matr ix  equation 

X = A;,  that  is immediately solved. 
This approach on one hand leads to a new method for computing the solution G of (3), and on 

the other hand, it may be used to construct nonlinear matr ix  equations equivalent to (3), that  

can be possibly solved by applying different algorithms. Indeed, there is some numerical evidence 
tha t  functional iterations applied to the matr ix  equation obtained after few steps of the rnethod, 
converge faster than functional iterations applied to (3). 

The  paper  is organized as follows. In Section 2, we analyze the convergence properties of the 

proposed method, considering also the case where the matrix power series }-~:~0 A~zi is rational. 
In Section 3, we relate the regular splittings method with functional iterations, and show some 

numerical results. 

2. T H E  R E G U L A R  S P L I T T I N G  M E T H O D  
A N D  I T S  C O N V E R G E N C E  P R O P E R T I E S  

In this section, we explain the idea which the method is based on and analyze its convergence 
properties. 

Denoted by H,  C, and X the coefficient matrix, the right-hand side, and the unknown of 
system (4), respectively, we consider the following splitting: H = M - N, where 

l !: ]k./ = _ - A 2  I - A1 , N = O Ao 
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obtaining the equivalent system 

X (I - N~. f - : )  = C M  - i .  (6) 

M is a nonsingular matrix such that  M -1 is nonnegative and N is a nonnegative matrix. Split- 
tings with these properties are called regular splittings in [4] and are encountered in the numerical 
solution of finite Markov chains by means of iterative methods (see [5]). 

Since M and N are block triangular block Toeplitz matrices, the coefficient matrix H (1) and the 
right-hand side C (1) of the resulting system have the same structure of the initial ones; nmnely, 

I - A ~  1) -A(o 1) 0 

-A~ ~) I- A?) -A~" 
H ( 1 ) =  I -  N ~ : / " - 1 =  _A~I) - A  (1) I -  Ai t) - A  (') 

: " . .  " .  ' .  ' ,  

a.nd 

C(1) = C M - I  = [A(ol) 0 , 0 ,  ] , . . .  , 

where A(i 1) = AoBi+l, i = 0 , 1 , . . . ,  and B1 . . . .  (I  A:) -1, B, (I  A1) -1 ~h=l':-I A~+l-hBh, 
i > 2, are the block entries of the first block column of M -1. Moreover, it can be easily verified 
that  AI 1) > 0, i = 0, 1 , . . .  and that  V'+°° a(1) - , z.,~=0 "'i is a column stochastic matrix. 

So we may iterate this transformation process obtaining a sequence of equivalent systems 

= [ 4  . . . .  ] ,  j _> ,, (7) 
with [I- 4 ~) -4/) ] 

A~ j) -A(o j) 0 I - A~ j) 
H(~ : [ -_4,) A~3~ z 4 ~) A(:) (8) 

where the blocks A~ j) are defined by the recursions 

A (j+D z l ( J )  I z ~ ( J )  i : 0, 1 , . .  , j  > 1, (9) 

and 
i - i  

= - B i = I -  A~ j A(J) ~(J) i > 2, j > 1 (10) 
' " ~ i + l - h ~ h  ' - -  - -  ' 

h=l 

From (7) and (8), it follows that  G = v'°~ ~iA(J)" in this way, at each step of our method, Z..~ i=0 v i 
we construct a new nonlinear matrix equation having the same nonnegative solution G. 

Formulae (9) and (10) relating the blocks {AIJ)}i obtained at two subsequent steps can be 
expressed in functional form in terms of formal matrix power series. Indeed, if we associate the 
sequence {AIJ)}i, at step j with the formal matrix power series ~(J)(z) ~ ,=o  A(j) i = ~ ~i z , w e o b t a i n  

that,  for j _> 0, 

/ '  ( ) ~(J+l)(z) -- ~(J)(0) I -  AlJ)z i-1 -- 99(J)(0) I ~(J)(z) - ~(J)(0) -1 
- (II) 

Z i=1 / 
XVe prove that ,  if the matrix A0 is nonsingular, the generated sequence of systems converges to 
a. system that  is easy to solve. More precisely, we prove that  the sequences {H(J)}j converges to 
the matrix 

I - A ;  , 

O . .  " .  

where A; = limj--.o~ A (j). From (7), we conclude that  G = limj~o~ A(o j). This result is expressed 
in flmctional form by the following theorem. 
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THEOREM 1. Let { Ai }i be a sequence of k x k nonncgative matrices, such that  ~+=o~ As is column 

stochastic and det A0 ¢ 0. Let ~(J)(z) Y~4=0-(J) i = oo ~i  z , j = 1 ,2 , . . .  be detined according to (11), 
oo . $ where ~(°)(z) = Y~4=o Ai zi, then limj-~o~ ~(J)(z) = limj~o~ A~ j) = A o and A 0 = G. 

PROOF. First, we prove that  the limj-~oo A(0 j) exists. Since the following inequalities hold: 

A~J+I)=A~J)(I-A~J))-I~ A~ j), eTA~ j) ~e T, ~j, 

the sequence {A j} is nondecreasing, bounded, and hence, convergent. Denote with A~ the limit 

matrix• 
Then we prove by induction on i that  limj--.o~ AI j) = O, i > 1. 

• Step 1. limj-~o~ A~ j ) =  O. Indeed, 

A(o j )  = A(o O) ( I -  A~°))  - 1  ( I -  A ~ 1 ) ) - 1 . . .  ( f -  A I J - 1 ) )  -1  

implies 
o~ 

A ;  : A 0 l - I  ( Z -  A~J))  -1  . 
j=0 

If det A0 # 0, then l-]j~=o(I- A~J)) -1 = A o l A ;  is a convergent product. 
hand, it is easy to see that  

On the other 

Vn_>0,  
j=o j=o 

hence, also the series }-~j°~_ o A~ j) is convergent, implying limj~oo A~ j) = 0. 
• . ~(j) 

• Inductive Step. Assuming that  llmj--.oo-a k = 0, k = 1, i, we prove that  limj~oo A(j) • " ' ' " ~i-]-I 
= 0. From relations (9) and (10), we have 

A(J+I) zl(J) ]r~(J) 
i ~ ~ 0  ~ i + l  

i 

- -  i + 2 - h  h " h= 1 

We isolate in the sum the term containing the matrix g J )  obtaining ~ i + 1 ,  

i 
A(J+ 1) zl(J+l) zi(J) ~(J) A(oY+ ~) i = ~-0 ~i+1~1 + E A(j)'~+2-hB(j)h" (12) 

h=2 

For j going to oo, the left-hand side of (12) goes to 0, by inductive hypotheses; since 

i g j )  ~(J) contains matrices A ( f  with k < i, the second A(0 j-I-l) is bounded and ~-~h=2 ~ai+2-h~'h 
term in the right-hand side of (12) goes to 0, too. Hence, 

l i m  A ( J + I ) A ( J )  iQ(J) = 0. (13) ~*0 ~ i + 1 ~ 1  j ~ o o  

A(J,,) If, by contradiction, A(J) does not converge to the null matrix, a subsequence { ~+1 }h " ' i+1  
and a nonnegative matrix R, R ~ 0 exist such that  A (j') > R, for any lz. Then i-1-1 -- 
"~oA(Jh+l)A(J~')~(J~')"~i+l ~'1 - > ~o~+IA A(J,,) _> AoR, Vh; that is, the subsequence {A(J"+l)g(J~")~(Jn)0 i+1~1 }h 
is bounded away from zero, being det A0 ~ 0, and this contradicts (13). | 
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In the rational case, that  is, when ~o (°)(z) is written as a fraction of two polynomial matrices 

the sequence {~(Y)(z)}j is expressed in the same way 

~(J)(z) = p(J)(~)Q(J)(~)-~. 

It, is easy to prove tha t  the polynomial matrices associated with p(J+l)(z) and with p(-/)(z) are 

related by the following formulae: 

p(J+~)(~) = p(~)(0)Q(J)(0)-~Q(~)(~), 

(1,~) 
Q(2+I ) (z )  : (~,(J)(z) -- P ( J ) ( z )  -- P("-I-1) (Z) j ~ O. 

Z 

_Moreover, if P(z) and Q(z) are polynomials of degree p0 aml qo, respectively, the degrees ot the 

~wo sequences {P(~)(~)b and {Q(J)(~)L do not increase: 

= deg  < max(po, Go), 

qy = deg (Q(J)(z)) <_ m a x ( p o ,  qo). 

[tence, in the rational case, it is more convenient to use formulae (14), rather than ( l l ) ,  .qnce 

the degree of c2(J)(z) could increase. 

3. R E G U L A R  S P L I T T I N G S  A N D  
F U N C T I O N A L  I T E R A T I O N  M E T H O D S  

In this section, we point out some relations between a regular splitting method and functional 
iteration methods.  These considerations, together with the results of numerical experimentations,  
suggest tha t  we apply a few steps of the method, and then solve the nonlinear matr ix  equation 

obt~tined in this way by functional iteration methods. 

The most commonly used functional iteration inethods are based on the recursion 

X,~+l = F(X,d,  ,~ >_ O, (15) 

where Xo is a nonnegative matr ix  and F(.)  is given by 

F(X)  = ~ X~A, (16) 
i:=0 

or  

F ( X ) =  A o + ~ - ~ X i A i  ( I - A 1 )  - l  (17) 
i=2 / 

or  

F(X)  = Ao I - Xi-IA~ (18) 
i=1 

In [6,7], it is proved that  in the case where X0 = 0, the method based on (18) is faster than 
the method based on (17) and that  the method based on (17) is faster than the method based 
on (16). This property holds experimentally true also when X0 is a stochastic matrix. 
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We observe that  the method based on (17) coincides with the method based on (16), applied 
+ o o  

to solve the matr ix  equation X = ~ i=0 , i# l  XiAi  where A~ = A ~ ( I  - A1) -1, i = 0, 2, 3 , . . . ,  are 
obtained by writing (4) as 

[c,a~ c3 ...] (±_ ~ . ~ , , - 1 ) :  [Ao, O,O,. . . ]~- ' ,  
where 

0 Ao @ 

2 f I =  I - A 1  , N =  Aa A2 O "'. 

This splitting cannot be iterated since the blocks on the main diagonal of f I  (11 = I - N M  -1 are 

identity matrices. 
Consider now the matr ix  equation 

(3O 

X = ~ X i A !  1) (19) 
{ = 0  

2 
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where the blocks AI 1) are obtained after one step of the regular splitting method described in the 
( 11 

previous section. From (11), it follows tha t  the formal matr ix  power series ~ i = 0  A, z' associated 

with the functional iteration (19) coincides with the formal matrix power series associated with 

the fastest fimctional iteration (18). This observation suggests that  we apply a ibw st(,i)s ()f 
regular splittings, and then apply the fimctional iteration method (16). 

We have tested this idea to solve a problem arising in telecommunication modeling, where 
the size of the blocks Ai is 16, and the number of nonzero blocks is 241 (we t'~fi~l to [8] ti)r 

more details). We have applied h = 1,5, 10 regular splittings, and then functional iteration ( |6),  

with X0 = 0 and X0 = I.  In Figures 1 and 2, we rel)ort the logarithm of the resi(hml et'ror 

t Xrz - Ei~°= o X~zAI h> It l of X n ,  versus the number of iterations n, for the different, vnlu(> ()t I,. 
From the figures, we observe tha t  the asymptot ic  convergence is imi)roved, as h grows, also in 

the case X0 = I.  
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