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Dedicated to Paul Erdiis and Ronald Graham, double stars! 

The double star S(n, m), where n * m a 0, is the graph cons isting of the union of two stars 

&I and &n together with a line joining their centers. Its rsmsey number r(S(n, m)) is the 
least number p such that there is a monochromatic copy of S(n, m) in any 2-coloring of the 
edges of Kpa It is shown that r(S(n, m)) = max (2n + 1, n + 2m + 2) if n is odd and m G 2; and 
r(S(n, m)) = max (2n + 2, n + 2m + 2) otherwise, for n ~&z or n 3 3m. 

1. Introduction 

It is by now a well-known definition that the ramsey number of a graph G is the 
least integer p such that if the lines of the complete grafih I$ are 2-colored red 
and blue, then either the red subgraph or the blue subgraph of I$ contains a copy 
of G. Ramsey numbers (and various generalizations) lhave been computed for 
many classes of graphs, including stars, paths, and cycles:; see [l] for a compilation 
of the results known in 1973 and [6] for a listing of open questions as of 1975. 

Our object is to investigate the ramsey numbers of the double stars. We define 
a double star as the union of two stars with a line joining the centers. When the 
ratio of the number of spikes on the two stars is either greater than or equal to 3, 
or between 1 and fi inclusive, we determine this ramsey number exactly. 
Although we have not been able to extend the proof techniques used here, we 
conjecture that the results obtained will also hold for the remaining cases. 

More precisely, for n 3 m 2 0 the double star S(n, m) is the graph on the points 

1 00, 01, . . . , u,,, wo, wl, . . . , w,,,} with lines 

{(Uo, Wo), (Do, Ui), (Wo, Wj) : 1 g i G n, 1 s i g m}. 

Note that S( n, m) is not defined if n C m. For convenience the line (u,, w,) is 
called the bridge of S(n, m) and the subgraphs (II~, . . . ,%,) and (wo, . . . , w,) are 
called the n-star at u. and the m-star at w. respectively. We denote the ramsey 
number of S(n, m) by r(S(n, m)) in the usual way. Notation and terminology not 
specified here can be found in [S]. 
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Our principal results are that the ramsey numbers of the double stars satisfy 

(1) t(S(n,m))=max(2n+l,n+2m+2) if n is odd and ms2; and 
(2) r(S(n, m)) = max (2n + 2, n + 2m + 2) if n is even or m 23, provided that 

nc&m or na3m. 
In Section 2 we show that these numbers are lower bounds for all double stars. 

Section 3 contains the proofs that these numbers are upper bounds for the 
specified cases. We also obtain a weaker upper bound that holds in general. We 
conclude with a list of several related unsolved problems. 

2. Lower bounds 

In this section we 
stars. We begin by 
provide their proofs via a series of lemmas. 

establish lower bounds for the ramsey numbers of all double 
presenting these lower bounds in Theorem 2.1, and then 

Theorem 2.1. The ramsey numbers of the double stars satisfy 

r(S(n, m)) 3 
max(2n+l, n+2m+;l) if n is odd and m~2, 

max (2n + 2, it + 2m + 2) otherwise. 

Lemma 2.2. r(S( n, m)) 3 n + 2m + 2. 

Proof. Consider a coloring of Kn+*,,,+ 1 where the red subgraph consists of 
K n+p,.+ I U K,,,, so that the blue one is the complete bipartite graph K(n + m + 
1, m). It is easy to see that there is no red S(n, m) since S(n, m) is connected and 
has n + m + 2 points. As the blue subgraph is K(n + m + 1, m), there is no blue 
S(n, m), since S(n, m) contains two adjacent points with degrees n + 1 and m + 1 
respectively. 

Lemma 2.3 

r(S(n, m)) a I 2n+l ifnisodd, 
2n + 2 if n is even. 

Proof. This follows immediately from the ramsey numbers of stars given in [3] 
since S(n, m) contains K1,,+l, the star 14th n + 1 spikes. 

Lemma 2.4. If m 3 3 and n is odd, then r(S(n, m)) 3 2n + 2. 

Proof. Since n+2m+222n+2 if n62m, we may assume n>2mMj in view of 
Lemma 2.2. We will show that the following coloring of Kzntl does not contain a 
monochromatic S( rr, m). 

We first construct a graph G with 2n + 1 points. Let V(G) = W U X U Y where 
IWl=3 and IXl=IYI= n - 1. Also let ( W) be &, let (X) be regular with degree 
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X 

regular graph 

with n-l points 

and degree n- 5 
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Fig. 1. The red subgraph of a coloring or’ Kz,+l which does not contain a monochromatic S(n, m), 
where II is odd and n >2m ~6. 

n - 5 (which is possible since n is odd), and let (Y) be K,,_,. Finally the lines 
between W and X form the complete bipartite graph on W and X, those joining 
X and Y form a regular bipartite graph of degree 2 on X and Y, and there are no 
W - Y lines. This graph is illustrated in Fig. 1. 

Now color K2n+l so that its red subgraph is G. It is c:asy to check that the only point 
in either monochromatic subgraph with degree at least n + I is the center point u 
of the red path in W, whose degree is n + 1 in the red subgraph. Thus the only 
possible monochromatic S(n, m) is red and has bridge (u, U) for some v E 
W U X- {u}. However, there are at most two red lines from v to points not in the 
red n-star at u. Therefore if m B 3, there is no monochromatic S(n, m). 

Combining the results of Lemmas 2.2, 2.3, and 2.4, we see that the proof of 
Theorem 2.1 is completed. 

3. Upper bouds 

This section establishes upper bounds for the ramsey number:; of double stars. 
Theorem 3.1 provides a weak upper bound that holds for all double stars. 
Theorems 3.2 and 3.3 show that the lower bounds given in Section 2 are also 
upper bounds for each of the cases m ~2 and n odd, n 3 3~72, and n d%n. 

We begin by stating these theorems and then again present the proofs via a 
series of lemmas, thus completing the proof of the results stated in the introduc- 
tion. 

Theorem 3.1. The rumsey numbers 

r(S(n, m))G2n+m+2. 

of :he double stars satisfy 

Theorem 3.2. The ramsey numbers of the double stars satisfy 

r(S(n, m))Sn+2m+2 if nd%n. 



250 J. W. Grossman et al. 

Theorem 3.3. The ramsey numbers of the double stars satisfy 

r(S(n, m)) s 
2n+1 if n is odd and ms2, 
2n + 2 otherwise, if n 3 3 m. 

We begin by introducing some notation which will be used throughout this 
section. Let a red-blue coloring of the lines of a complete graph K be given. For a 
point v and a subset W of points in K, let red-d(v) be the number of points 
joined to v by red lines; let red-d,(v) be the number of these points in W; 
blue-d(v) and blue-d,(v) are defined similarly. Our proofs focus on a fixed point 
u in K Nith maximum monochromatic degree. Thus without loss of generality, we 
may assume that red-d(u) a red-d(v) and red-d(u)2 blue-d(v) for all v. Write 
red-d(u) = m + n - k, where the integer k is not necessarily positive. Finally let 

A = {v : the line (u, v) is red} 

and let 

B = {v : the line (u, v) is blue}. 

Note that IA I= n + m - k. 
We now prove two lemmas which will be used repeatedly in this section. 

Lemma 3.4. If k CO, then every 2-coloring of Ku contains a monochromatic 
S(n,m) for p*n+2m+2. 

Proof. Clearly it is enough to prove the lemma for p = n +2m +2, and we may 
ignore the trivial case n = 0. Note that IAl 2 n + m + 1 since k < 0. Now if 
red-d(v) 2 m + 1 for some v E A, then K n+2m+2 contains a red S(n, m) with bridge 
(u, VI. To see this, note that after we form a red m-star at v, there are at least n 
points left to form a red n-star at u. Hence we may assume that for every v E A 
we have red-d(v) G m and therefore 

blue-d(v)>n+2m+l-m=n+m+l. 

Combining this fact with IAla n + m + 1 and n + m + 1 >i(n +2m +2), we see that 
there must be a blue line between some pair of points of A. Clearly any such blue 
line forms the bridge of a blue S(n, m). 

ILemma 3.5. If k 2 0 and there are more than k(n ‘1 m - k) red lines between A and 
.B, then KP contains a monochromatic S( n, m) for p 2 n + 2m + 2. 

Proof. If there are more than k(n + m - k) red lines between A and B, then 
red-d,(v) 2 k -t 1 for some v E A. Furthermore red-d(v) > blue-d(u) since red- 
d(u) 2 blue-d(v), so 
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We can thus construct a red S(n, m) with bridge (u, 5) by using at least k + 1 
points from B and at most m -(k + 1) points from A -{u} to form the red m-star 
at t). This leaves at least 

m+n-k-1-(m-(k+l))=n 

points in A -{u} to form the red n-star at u. 

We are now ready to give the proof of Theorem 3.1, which gives a weak upper 
bound. 

Roof of Theorem 3.1. We must show that (every 2-coloring of) K2n+m+2 
contains a monochromatic S(n, m). Note that IAl = n + m - k, IBI = n + k + 1 and 
necessarily k c&n - 1). By Lemma 3.4 we may assume k 20, so 1~13 n + 1. If 
there is a point w E B such that blue-d,(w) a m, then there is clearly 
S(n, m) with bridge (w, w). Hence we may assume that 

red-d,(w)a(n+m-k)-(m-l)=n-k+l 

for each w E B, so there are at least (n - k + l)(n + k + 1) red lines between 

a blue 

A and 

B- If &n+tn+2 does not contain a monochromatic S(n, m), then by Lemma 3.5 
there are at most k(m + n - k) red lines between A and B. Thus we have 

(n+l)*-k’=(n-k+l)(n+k+l) 

sk(m+n-k)=k(m+n)-k2 

s$(m-1)(2n)-k*<mn-k*sn*-k* 

which is clearly impossible. 

Next we consider the case in which n < 2m. 

Lemma 3.6. If n s2m and k 2 0 and there are fewer than (m - k + l)(m + k + 1) 
red lines between A and l3, then K n+2m+2 contains a monochromatic S(n, rn). 

proOf. Recall that IA\ = m + n - k, so now (B I= m + k + 1. Thus if there are 
fewer 
m-k 

than (m - k + 1)( m + k + 1) red lines between A and B, then red-& (w) G 
for some w E B, and so 

blue-d,(w)*IA(-(m-k)=n. 

Since 1~1> m + 1, this implies that Kn+2m+2 contains a blue S(n, m) with bridge 

(w 4. 

Lemma 3.7. If n ~2n2 and k 3 n -m, then Kn+2m+2 contains a monochromatic 

S(n, m). 

Proof. As above we have IAl = m + n- k and lBl= m + k + 1. By Lemma 3.5, if 
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K n+2tn+2 does not contain a monochromatic S(n, m) then there are at most 
k(n + m - k) red lines between A and B, and hence at least 

(IBI - k)(n + m - k) = (m + 1) IAl 

blue lines between A and B. Noting that IAl a 1~1, we see that blue-d,(w) 2 m 
for some w E B. Now since k 3 n - m, we have 

IB)am+(n-m)+lan+l, 

so there is a blue S(n, m) with bridge (w, w). 

We can now prove our second theorem. 

Proot of Theorem 3.2. We must show that K n+2m+2 contains a monochromatic 
S(n, m) if n sfirn. Suppose not. Then by Lemma 3.4 we have k >O, and 
furthermore 

(m+1)2=(m-k+l)(m+k+1)+k2 

sk(n+m-k)+k2 by Lemmas 3.5 and 3.6 

= k(n+m)<(n-m)(n+m) by Lemma 3.7 

=n 2-m2 

s2m2- 172~ = m2 since n 4Zm 

which is clearly false. 

Finally we look at the case n > 2m. For m 2 3 or n even, the following lemma 
contains the crucial argument. Lemma 3.9 will then deal with the remaining case. 

Lemma 3.8. If n 3 2m and k 2 0 and there are fewer than (n - 2m)(n - m + k) red 
lines between A and B, then K 2n+2 contains a monochromatic S(n, m). 

Proof. Note that IA)=n+m-k and )BI=n-m+k+l, and so 

(n-2m)(n-m+k)s(n-2m)!RI. 

Thus if there are fewer than (n - 2m)( ii - n2 + k) red lines between A and B, then 
1 

red-d,(w)s n -2m - 1 

for some w E B, and hence 

blue-d,(w)>(n+m-k)-(n-2m--1)=3m-tAl n I I. 

Suppose that blue-d(w) 3 n + 1. Then we can construct 
(w, U) by using at least 3m - k + 1 points from A and 
n - 3m + k - 1 points from B to form the n-star at wq . 

a blue S(n, m) with bridge 
at most n-(3m-k+l)= 
This leaves at least 

(n-m+k)-(n-3m+k-1)=2m+lam 
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points in B to form the m-star at w. On the other hand, suppose blue-d(w) G n. 
Then red-d(w) 2 n + 1, and in particular there is a point tl E A joined by a red line 
to w. We claim that K 2n+2 then contains a red S(n, m) with bridge (w, u). Since 
red-d(w) B n + 1, there is an n-star (excluding the line (w, v)) at w. It uses at most 
n - 2m - 2 points from A because red-d,(w) G n - 2m - 1. By the proof of 
Lemma 3.5 we may assume that red-d,(u) s k, so at most k pints in B, together 
with the previously mentioned n - 2m -2 points in A, are not available for 
forming an m-star at 0. Since r&&~) B blue-d(u) = n - m + k + 1, there are at 
Beast 

(n-m+k+l)-k-(n-2m-2)am 

poirb?s availabie, and thus the red S(n, m) exists. 

bmma 3.9. If m ~2 and n ~2m and n is odd, then K2n+l contains a mono- 
chromatic S(n, m). 

Proof. We begin with the case m = 2. We must show that Kzn+* contains a 
monochromatic S(n, 2) for n 3 5. Note that 2n + la. n + 2m + 2. Following our 
previous notation we write red-d(u) = n + 2- k. Because the number of points 
with odd red degree cannot be odd we must have k c 1. If k C 0, then by Lemma 

3.4, &n+l contains a monochromatic S(n, 2). If k = 0, we may assume that there 
are no red lines between A and B by Lemma 3.5. Hence, for any w E B we have 
blue-d,(w) = n + 2 so I&,+ 1 contains a blue S(n, 2) with bridge (w, u). Finally 
suppose k = 1. By Lemma 3.5 we may assume that there are at most n + 1 red 
lines between A and B. Since n + 1<2(n - 1) = 2 IBI there is some w E B with 
red-d,(w) G 1. Therefore blue-&(w) 2 (n + 1) - 1 = n and thus K2n+l contains a 
blue S(n, 2). _ 

We omit the proof for m = 1, since it is similar. For m = 0, S(n, m) is simply the 

star &,,+1 whose ramsey number was computed in [3]. 

Combining Lemmas 3.8 and 3.9, we are ready to prove the last theorem. 

Proof of Theorem 3.3. Since Lemma 3.9 provides the proof for n odd and m s 2 
we may assume n 23~1.. Supppose that K2n+2 does not contain a monochromatic 
S(n, m). Then by Lemma 3.4 we may assume k > 0. Now it follows that 

m(n-m+k&(n-2m)(n-m+k) since na3m 

s k(n+ m - k) by Lemmas 3.5 and 3.8. 

The above inequality reduces to (n - m - k)( m - k) < 0, which i5 impossible since 
both factors are positive. This is easily seen from the inequalities 

n+m-k=red-d(u)an+132m+l. 



254 J. W. Grown In et al. 

4. Unsolved problems and furtfner results 

(1) We make the natural conjecture for the remaining casGs. 

Conjecture. The ramsey numbers of the double stars are 

P(S(& m)) = 
max(2n+l, n+2m+2) if n is odd and ms2, 

max (2n + 2, n + 2m + 2) otherwise. 

In addition to the results contained in this paper, we have verified the 
conjecture for m s 4. Thus all that remains to be proved is that r(S(n, m)) s 
max(2n+2, n+2m+2) f6Jr JZm<n<3m, mH. 

(2) In [ 1] Burr conjectured that r(T) for an arbitrary tree T is equal to the 
lower bound determined by a simple “canonical coloring” of the type given in 
Lemma 2.2 and Lemma 2.3 above. The construction of Lemma 2.4 disproves this 
conjecture. Are there treles whose ramsey numbers are arbitrarily greater than 
these lower bounds? 

(3) The double star S(V, m) has a path P2 joining the centers of the n-star and 
the m-star. We may generalize to S(n, m; k), which has a path Pk joining the 
centers of the n-star and the m-star. Burr and ErdGs [2] show that 

r(S(n, m; 4)) = max (2n +3, n +2m +5). 

In general what is r(S( n, m ; k))? 

(4) In [4] Grossman studied unicyclic graphs with stars emanating from points 
on the cycle, while in [2] Burr and Erdiis considered complete graphs with a star 
emanating from one point. What effect in general does adding stars emanating 
from points on a graph have on the ramsey number? 
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