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Abstract

This paper analyzes conditions under which dynamical systems in the plane have indecomposable
continua or even infinite nested families of indecomposable continua. Our hypotheses are patterned
after a numerical study of a fluid flow example, but should hold in a wide variety of physical
processes. The basic fluid flow model is a differential equatioR4rwhich is periodic in time,
and so its solutions can be represented by a time-1Fdp? — R2. We represent a version of this
system “with noise” by considering any sequence of miapSRZ — RR2, each of which ig-close to
F intheC1 norm, so that ifp is a point in the fluid flow at time, thenF,,(p) is its position at time
n + 1. We show that indecomposable continua still exist for small 1999 Elsevier Science B.V.
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The motivation and origins of this paper lie in a computer investigation of a model of
fluid flow, and that makes it quite different from most topology papers. The hypotheses
for our rigorous results are based on the numerical observations in that investigation. Our
purpose is to study the topology present in the model (and ideally in the actual fluid), the
topology that is forced to occur given that our observations hold. Although our observations
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were made by studying this particular model of a nondiffusive, incompressible fluid, we
feel that they often hold for actual fluid flows, and thus our results have applications to a
variety of problems.

We prove that when our hypotheses hold, indecomposable continua must be associated
with our flow and its Poincaré return map. An important aspect of our work is that
the topological structure we find (which involves indecomposable continua), persists in
the presence of small random fluctuations in the flow. When random fluctuations are
introduced, it is no longer possible to talk about invariant points, periodic orbits, and
invariant sets (except for the cylinders themselves), but the indecomposability remains,
forever tangled around downstream cylinders and downstream continua and floating in the
stream.

This is the second paper we have written concerning this fluid flow model. The first,
“Indecomposable continua in dynamical systems with noise: fluid flow past an array of
cylinders” [9], was written for physicists, and contains extensive information about the
model and the observations which are only summarized here. This paper, on the other
hand, contains a careful discussion of the rigorous results coming out of that fluid flow
investigation. In particular, proofs left out of the physics paper are included here. Two
related papers, also written for physicists, are [10,7].

1. Brief discussion of the model and the observations

Rather than study fluid flow via the usual Navier—Stokes equations, we used a model
based on Lagrangian dynamics. The rationale here is much the same as a cancer researcher
who studies cancer in rats in order to understand the more complicated problems of cancer
in humans. It is currently impossible to obtain sufficiently accurate numerical solutions to
Navier—Stokes equations for the topological investigation presented here, since we require
an accurate time-1 Poincaré return map. The flow associated with Navier—Stokes has a
very thin boundary layer with a large derivative too close to the fixed cylinders in our flow
for meaningful observations and study. Thus, as in [7] which had one cylinder, our team
physicists created a plausible 2-dimensional stream function that is an area-preserving flow
(formally identical to Hamilton’s equations), with terms to give the background stream
flow, vortices, and the cylinder obstacles. The model yields a flow whose velocity goes
to 0 near the cylinders with the expected vortices being spun off downstream from each
cylinder in a periodic fashion, flowing downstream, and then dying.

A schematic diagram of the experiment is provided in Fig. 1. (The “cylinders” are
actually invariant simple closed curves that are nearly circular. We call the curves
cylinders because we are thinking of the fluid model representing a layer of a 3-
dimensional fluid flow. Thus, our “cylinders” stick out of the page.) The initial investigation
involved extensive numerical studies of the model by Miguel Sanjuan using the software
Dynamicg6]. Because of the periodicity in time involved in the models, it was natural to
simplify our problem by investigating the Poincaré return map associated with the flow.
Thus, our differentiable flow)s is associated with a plane diffeomorphisidefined
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Fig. 1. The figure shows an array of cylinders, with the fluid flowing downstream. Vortices are shed
periodically behind each cylinder, they move along the chaSrehd they die out. In most of our

pictures the vertical scale is changed so that the cylinders appear highly elliptical. The horizontal
lines show the range of (—2 < y < 2) used in all the figures.
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Fig. 2. Several continuous time trajectories are shown, illustrating the chaos between cylinders.

by F(x,y) = ¥(x,y,1), since we have periodicity 1 in time built into the flow. The
flow is thus viewed stroboscopically. While the second figure shows actual trajectories
in the flow, the remaining figures are associated with the Poincaré return map of the
flow.

The flow trajectories plotted in Fig. 2 illustrate the chaos between the cylinder obstacles
causing the complications in the flow. (Recall that the “cylinders” are actually simple
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Fig. 3. The figure shows the exit times, the time required to pass to the next cylinder, in different
shades of black-to-gray in the regiom2% < x < 1.7 and—0.6 < y < 0.5. This region is to the
immediate right of a cylinder, and the two invariant bubbles (white) are clearly visible in this region.
Solid color regions have small exit times, while the speckled region has long exit times.

closed curves that are nearly circular. They appear elliptical here because of the choice
of the y-scale.) In particular, note that a number of the trajectories actually cross from
above the cylinders to below, and vice versa. In Fig. 3 we show a study of exit times
(relative to the Poincaré map) for points. The different bands represent different numbers
of iterations for the shaded points to exit the screen. The speckled region reveals the
existence of a chaotic region, because those points requiring long exit times (where the
“pile up” of layers occurs) are those near the bounded trajectories, since in those regions
some points never leave the screen (the region viewed). Fluid flows downstream, from
left to right in the figures, but points inside and on the boundaries of the cylinders are
fixed. Far away from the cylinders, above and below, the flow is almost perfectly horizontal
(due to the background flow component functlafiow). We studied the set$™ (xg) and
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S~ (x0). The setST(xp) is defined to be the set of points, y) at time o = 0 with
the property that the trajectoryx(z), y(¢)) satisfiesx(¢) > xo for all time (positive and
negativg. The points inS~(xg) have the trajectories satisfying(z) < xo for all time.
Notice thatS™ (xg) includes all cylinders to the right ofy. We add the point ato in the
plane to the set§*(xg) andS~(xo) purely for convenience: it means we can discuss our
work in the setting of compact sets. Most trajectories flow from —oo to x = +o0.
An important aspect of our work is that the topology of the $6téxg) and S~ (xo) of
semi-bounded trajectories persists in the presence of small random fluctuations in the
flow.

Suppose thaR2 = R? U {55} denotes our compactified plane, and tiatR2 — R2
(F (c0) = o0) denotes the Poincaré time-1 return map of our flow. Note that since the vector
field is periodic inx with period 2z, if (x,y) = F(x, y), thenF (x + 2, y) = (x + 2n, y).
(The distance between the centers of consecutive cylinders.)sThere is a non-empty,
connected, invariantsét i.e., F(S) = S, such that there is a uniform bous@n | y| for all
(x,y)in §. Also, (x, y) € S implies (x + 2ri, y) € S for all integers.. There is a uniform
¥ > 0 such that if(x, y) ¢ S, then thex-coordinate ofF'(x, y) is greater than + ¢, that
is, everywhere outside the baSdthe fluid moves uniformly to the right. (The sgis the
nearly horizontal band in the plane outside of which the flow is laminar. This is built into
the model via théflowterm.) We made the following observations based on the numerical
studies.

Observation 1. Let L(xg) be the vertical line withc-coordinatexg. There is a valueg

such thatF maps each point ol (xg) strictly to the right ofL(xg). (This indicates the
flow is generally from left to right even inside the basidActually we found several such
lines between each pair of cylinders. The first we found was to the right of a cylinder, but to
the left of the associated quadrilategs] (discussed below), and was difficult to find. Later
we discovered that many easy-to-find such lines occur betywgeand the next cylinder.)

See Fig. 4.

Observation 2. There is a quadrilaterd)o that satisfies théockout property That is, if
g € Qo and for somé > 0, FX(q) ¢ Qo, then further iterates af remain outsideo; i.e.,
F"(q) ¢ Qo if n > k. We observe thafg lies betweer. (xp) and L (xg + 27).

Observation 3. The map F is a hyperbolic horseshoe map apgy in the sense of
Smale [11]. WriteA, B, C, D for the vertices ofQp as in Fig. 5. In particular, if

G :R? — R? is a horseshoe map oflp, then the topDC and bottomAB have images

G (AB) andG (DC) that lie outsideQ and the imag& (Qo) of Qg stretches at least twice
acrossQg as shown in Fig. 6, without intersecting sid&B or BC. Also, for almost every

g € Qo there is am > 0 depending oy for which G"(q) ¢ Qo. Now every horseshoe
map (associated with a diffeomorphism) must contain at least two saddle fixed points. We
let po denote any one of these. Our mapis of the formG2—again this is inherent in

the model. Thus, our observations indicate thiat +/F is itself a horseshoe map, so that
F(Qo) stretches four times acrogk. (See Fig. 7.)
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Fig. 4. The valuerg was chosen carefully in the figure so that all points on it are mapped to the right

by the time-1 mapF. The curve shown is the image of this segment shown-atxg. While it is

hard to see, there is a gap between this line segment and its image, so that the segment maps strictly
to the right.

Now defineQ; to be the horizontal translate bby=27i of Qg. Note that because of the
periodicity assumption we can assume tiathas properties analogous to thosey.
Also, letCyl, denote the cylinder just to the left gfp, and letCyl; denote theth cylinder,

i.e., the one which a horizontal translate®fl, by 27i.

Suppose thaf : RZ — R? is a C1-diffeomorphism of the plane, anglis a hyperbolic
fixed point of F (i.e., none of the eigenvalues associated Mith(p) has norm 1). Thep
is either an attracting fixed point, a repelling fixed point, or a saddjeidfa saddle point,
then there are sets of points attracted to and repelled frofihe set of points attracted to
p is called thestable manifoldf p, is denotedV* (p), and is a continuous, differentiable,
one-to-one image of the real life The set of points repelled fromis called theunstable
manifold of p, is denotedW*(p), and is also a continuous, differentiable, one-to-one
image of the real linéR. Now our fluid flow mapF :R? — R? is an area-preserving
c*-diffeomorphism of the plane, and it cannot have attracting or repelling points. All
hyperbolic fixed points foFF must be saddle points. The fact that our observations indicate
that F is a hyperbolic horseshoe ofip (and thus on eacl®);) means that there is an
invariant Cantor sef (C;, respectively) inQo (Q;) which contains a dense set of periodic



J. Kennedy et al. / Topology and its Applications 94 (1999) 207-242 213

T T T T T T

1 1 1 L i

Fig. 5. The points shown inside the quadrilatefgl constitute the Cantor set, whose trajectories of
points remain insid€ for all timesr =0, £1, £2, ....

points, and at least two hyperbolic fixed points. Thus, both must be saddle points, and we
were able to locate these (approximately) numerically, and also to compute numerically
the approximate eigenvalues associated with th&ssmgmicg6] has this capability.)

We observed that:

Observation 4. If p; denotes one of the saddle fixed points contained;inthe unstable
manifold of p; intersects transversally both the stable manifoldppfand the stable
manifold of p; 1. See Figs. 8 and 9.

Observation 5. There is a connected segmaiit of the unstable manifold op; and a
connected segmeist; of the stable manifold op; 1 which have the same end points
and together bound a regionthat contains the cylindeyl, , , in its interior but excludes
the cylinderCyl; , ,. See Fig. 10.

Observation 6. For eachi, there is anx; € (x;, x; + 2) such thatF(L(x;)) is to the
right of L(x;), L(x;) lies to the right ofQ;, and there is an intege¥ with the property
that if g € Q; and F(g) is not in Q;, thenF¥ (g) is to the right ofL(x;). (The integeN

is independent of the choice gf In our example we found such a line with = 2. See
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Fig. 6. The figure shows a horseshoe. The crosses are the images of the vertices of the quadrilateral
Qo under the action of5. This mapG is a special map that is the “square root” Bf that is,
G(G(x,y)) = F(x,y) forall (x, y) € Qg. See the discussion of the model for more details.

Fig. 11. Observation 6 is not assumed as a hypothesis until we introduce noise into the flow
in Section 4.)

Observation 7. Finally, we observed the presence of several invariant open sets (“bub-
bles”) between th€p andC cylinders. These open sets do not intersect the quadrilaterals
Q;, are typical features of Hamiltonian systems, and represent points that neither flow
downstream nor come from upstream. They would thus be contained in ol 'satp

and S~ (xp) of semi-bounded trajectories. The interior of all bubbles between cylinders
Cyly andCyl; must be mapped to itself undé—they are trapped for all time between
theCyly andCyl,; cylinders. By the periodicity inherent in the model, such trapped bubbles
occur between each consecutive pair of cylinders. (See Fig. 3.)

Remark. How “good” are our observations? In particular, are they based on questionable
numerics?No, they are not Our observations (except possibly for Observation 7)
entailed making only short computations, using well understood algorithms. Finding the
quadrilateralQg and vertical lined.(xg) was difficult, but once located, the computations
were not. While the computation of a large part of the unstable manifold (such as that
seen in Fig. 9) involves more computation and is perhaps somewhat less certain, it was not
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Fig. 7. The picture shows the first iterai€ Q) of the quadrilateral, which is alsG2(x, y).

used to make our basic observations about the crossings of the various stable and unstable
manifolds, nor the images of the vertical line$xg) and quadrilaterafo. The pictures
involving more extensive computations are included becausedheythe objects that

must be there, given our basic observations and the mathematics they imply. These figures
behave as expected and predicted, and they offer additional numerical evidence that our
conclusions are correct.

2. Background and notation for the rigorous results

A continuumis a compact, connected metric space. A subset of a continuum which
is itself a continuum is aubcontinuumA continuum isindecomposablé it is not the
union of two (necessarily overlapping) proper subcontinua. Equivalently, a continuum
is indecomposable if every proper subcontinuum has empty interior (relative to the
continuum). Ifx is a pointin the continuun¥, then thecomposant Coix) in X containing
x is the set of all pointg in X such that there is a proper subcontinuunXithat contains
both x and y. The collectionC(X) of all composants of an indecomposable continuum
X partitions X into ¢ (the cardinality of the real numbers) many mutually disjoint,
first category,F, -set connected sets. (For more information and references concerning
indecomposable continua, see [4].)
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Fig. 8. The horseshog on Qg in Figs. 5-7 has some fixed points. One of thesg,is shown here.

The stable and unstable manifolds jf intersect at a poing # pg. The closure of such a set of
intersection points is the Cantor set shown in Fig. 5, and it was created by plotting the intersections
of the stable and unstable manifolds.

If X is a space and is a subset ok, then we use the notatio®, A, andd A to denote
the interior, closure, and boundary afin X, respectively. IfY is a subspace of (with
the inherited topology)A C Y, and we wish to discuss the interior, closure, or boundary
of A in the subspac#, we use the notatiomty (A), Cly (A), andBdyy (A), respectively,
to avoid confusion. The symbol, N, andN are used to denote the integers, the positive
integers, and the nonnegative integers, respectively. We use the usual metric in the plane,
i.e., forx = (x1,x2), y=(y1.y2) € R?,

=yl =d(r, ) = (1= 302+ (2 — ¥2)2.

If ¢ >0, A,BCR? let D,(A) ={y e R? | |y — x| < ¢ for somex € A}, and let
d(A,B)=inf{lx — y| | x € A, y € B}. Forx = (x1, x2) € R2, we denote the projections
of x, to thex- andy-axes asri1(x) = x1, andma(x) = x2, respectively.

Suppose thatX, d) is a metric space, and: X — X is a homeomorphism. I§ >

0, {xj}f:j1 is a sequence of points i, then{xj}j?:j1 is as-chain(of lengthn = jo — j1
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Fig. 9. The figure shows that Observation 5 is satisfied by our example. The cylinder is encapsulated
by the segments of the stable and unstable manifolds of the fixed pej@atisd p1, respectively. The

fixed pointzg in Theorem 3.15 (and then Corollary 3.16) can be any point of the cylindegand

is any point of any other cylinder. Of course, all cylinder points are automatically fixed points. The
fixed pointspg and p1 arenotin the segments used for encapsulation.

fromx;, tox;,), if d(f(x;),x;j4+1) <8 foreachj e {j1,..., j2}. We also allowj; = —oco

and j2 = oo, in which case it may not be possible to speak of the length of the chain,
nor the points at which it begins and ends. A poinh X s-shadows{x.,»}j?:jl provided
d(f’(y),x;) <efor j1 < j < jo. The homeomorphisnyi is expansiven X if there exists
some positive constantsuch that for each pair, y of distinct points ofX, there is some
integern, , such thatd (f"+» (x), f*>(y)) > c. If A is a closed subset of such that
f(A) = A, thenA isinvariantunder f. If there is some neighborhodd of X containing

the closed invariant set in its interior and(,,.;, /" (U) = A, then A is anisolated set

for f, andU is anisolating neighborhoofor A undery.

Suppose thaf : X — X is a homeomorphism on a compact metric spgcandp is a
point in X. Then theforward limit set of p, denotedw(p), is the set of all accumulation
points of the sequenck(p), F2(p), ..., and thebackward limit set ofp, denotedx(p),
is the set of all accumulation points of the sequeRce(p), F2(p), .... Theorbit of
p, denotedO (p) or Oz(p), is the set{ F"(p) | n € Z}. Theforward orbit of p, denoted
O™ (p)or Og(p), is the se{ 7" (p) | n € N}, and thebackward orbit of p, denoted? ~ (p)
or 0z(p), is the sef{ F ~"(p) | n € N}. The pointp is wanderingif there is an open set
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Fig. 10. The setSt(xg) shown is the set of points whose trajectories remain for all time
(t=0,+£1, £2,...) to the right of the dashed line at= xq.

in X such that the collectiofF" (o) | n € Z} is mutually disjoint; and we say that the open
seto is awandering open set
Suppose thaf : R* — R” is aC*-diffeomorphism ofR”. Fix a pointp in R”. A tangent
vector atp is a pair(p, v) wherev € R", and is writterw,. The collection of all vectors
at the pointp is thetangent space gp, and is denoted by, R". The tangent spacg,R"
is a vector space witlip, v) + (p, w) = (p, v + w). The disjoint union of the tangent
vectors at different points is called ttengent bundler thetangent spacef R”, is denoted
TR", and is isomorphic t®R” x R". An invariant setA has ahyperbolic structurdor a
diffeomorphismf on the differentiable manifold if
(1) at each poinp in A, the tangent spacg, = T,R" to R" splits as the direct sum of
EY andEy, ie.. T, =E, & Ej,
(2) the splitting is invariant under the action of the derivative map in the sense that
Df(P)(Elu;) = E?(p) ande(P)(Ef;) = E;f(p): and ~
(3) there exist O< A <1 andC > 1 such that for alk € N,
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Fig. 11. In our example, the vertical line(xg) (shown above withc-coordinatexg) is mapped to

the right of itself (as is the lin& (xp)); in addition, Observation 6 is satisfied because for each point
g € Qpforwhich F(q) is notinQg, F2(q) is to the right ofL (¥g), and the same is true for ait* (¢)

for n < 2, since once a point is to the right bfxg), it must stay to the right. The curve shown is the
image of this segment shown.at xg.

[Df"(p)@*)| < CA"*|  forv® € ES, and
|DF (P @] < CAlp"| forv" € Ej,.

If an invariant setA has hyperbolic structure fof, we also say thatt is a hyperbolic
invariant set.If Q is a closed subset &”", then f is hyperbolicon Q if f is hyperbolic
on(),ez f"(Q) (which is an invariant set fo).

We need the following facts pertaining to invariant hyperbolic sets. (See [8] for proofs
and more details.)

Corollary to the Stable Manifold Theorem for Hyperbolic Sets. Suppose thaX is a
differentiable manifoldd denotes acompatibl@ metric onX, f: X — X is a diffeo-
morphism, andi is a closed, invariant, hyperbolic subset’dfunder f. If A is anisolated
set for £, andU is an isolating neighborhood faf, then A is totally disconnected.

Shadowing Theorem. Suppose thaX is a differentiable manifoldf denotes gcompati-
ble) metric onX, f: X — X is a diffeomorphism, and is a closed, invariant, hyperbolic
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subset ol underf. If ¢ > 0, then there exist positive numbgrandn such that if{x,-}:j?:j1
is aé-chain for f with d({x;}, A) < n for j1 < j < jp, then there is somgin X whiche-
shadowij}j?:jl. If j1 = —o0 and j, = oo for the§-chain, theny is unique. Ifj; = —o0,
Jj2 =00, and A is an isolated invariant set, then the unique poiris in A.

Expansiveness TheoremSuppose thatX is a differentiable manifoldd denotes a
(compatibl@ metric onX, f: X — X is a diffeomorphism, and is a closed, invariant,
hyperbolic subset ok under f. Then f is expansive o, i.e., the homeomorphism
flA: A — Ais expansive.

Suppose thaF': X — X is a C1-diffeomorphism of the differentiable-manifold X,
and p is a hyperbolic saddle fixed point X under the action of-. Suppose further that
WS (p), and W*(p) denote the stable and unstable manifolds, respectively, of the point
p, and suppose tha¥“(p) is one-dimensional. Denote the two branchedif(p) by
Wt (p) andW"~(p). If o is an open set that contaips then W, .(p) is the component
of W*¥(p) that containg in o and is called the local stable manifold pf Similarly, we
can defineW,¢.(p), the local unstable manifold gf, and its two local bl‘anCher'é'g(p)
andW,.. (p). (If X is the plane, then botW* (p) andW*(p) are continuous, one-to-one
images of the real lin®, and each is differentiable.) (See [8] or [1] for more information.)
We need the following theorem (see [1]).

Horseshoe Theorem.Let f:R? — R? be a diffeomorphism and Igi be a hyperbolic
saddle fixed point foy. If the stable and unstable manifoldsptross transversally, then
there is a hyperbolic horseshoe for some itergfeof f.

Marcy Barge [2] proved the following theorem. We state a modified version (the version
we need) of his theorem for a 2-manifold. The original theorem is more general.

Barge’s Theorem. Suppose thak is a differentiable2-manifold, F: X — X is a C1-
diffeomorphism with hyperbolic saddle fixed poipt and F satisfies the following
properties

(B1) wu+(p) is compact and nowhere denseXnand

(B2) (W**(p) N W*(p)\{p} is not empty, butV“* (p) is not a subset o* (p).
ThenWu+(p) is an indecomposable continuum.

Suppose that is a plane homeomorphism (not necessarily a diffeomorphism). Then we
say that the mayy is a topologica) horseshoe map on the quadrilater@lwith vertices
A, B, C,andD and sideAB, BC, CD, andDA if
(1) the side<CD andAB have image& (AB) andG(CD) that lie outsideQ;
(2) if K isanarc inQ that intersects both sid€&D andAB, thenQ N G(K) consists at
least two components each component of which intersectsGiotindAB; and
(3) G(Q) does not intersedA or BC.
If the mapG is, in addition, a diffeomorphism, the@ is ahyperbolic horseshoe map on
a quadrilateral Q with verticesA, B, C, andD and sideAB, BC, CD, andDAif itis a
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horseshoe map o@ (i.e., it satisfies the conditions above), andiidenotes the invariant
set(),ez G"(Q), thenG is hyperbolic onl".

We say that the closed neighborhaBdatisfies théockout propertyif wheng € B and
for somek > 0, G¥(¢q) ¢ B, then further iterates af remain outsideB; i.e., G"(¢) ¢ B if
n>k. o

In the material that follows, we giviR2, S, L(xg), ST (xo), andS~(xg) the meanings
they had in the previous sections. Likewigdien we speak of a fluid flow diffeomorphism
F, then for each integer, Cyl; denotes théth cylinder, Q; denotes théth quadrilateral
(betweenCyl; and Cyl;,,), and p; denotes a saddle fixed point i;, with p;y1 =
(pi1+ 27, pi2) wherep; = (pi1, pi2)- o

Now sinceR? is homeomorphic to the 2-sphere, there is a mefrion R? which is
compatible with its topology. Sinilﬁ2 is a compact metric space, so is the spagR?)
consisting of all closed subsets B with the topology induced by the Hausdorff metric
v (relative to the metricl). Thus, if H and K are in F(R?), thenv(H, K) = inf{e > 0|
each point ofH is within ¢ (under the metri@/) of some point ofk and each point ok
is within & (under the metrid) of some point ofH}.

Another topology on collections of closed subsets of a compact slbeeR? that we
need is the quotient topology. Suppose thas a compact subset &2, andD denotes a
decomposition oD into disjoint closed sets which is upper semicontinuous. The collection
D, when endowed with the quotient topology, is a compact metric space (with the points of
D (considered as space) being the sets in the colle@ifmonsidered as collection &?)).

Let P: D — D denote the projection map associated with the decomposition. The?map
is continuous and onto. We say that the Beis aquotient Cantor seif there is an upper
semicontinuous decompositidn of D such thatD endowed with the quotient topology

is a Cantor set. Note tha® c F(R2). Every set that is open in the quotient topology on
D is also open in the topology induced by the Hausdorff metridonf D € D, thenD

is apoint of continuityof D if every sequencei, Dy, ... in D which converges tad

in the quotient topology also convergesoin the topology induced by the Hausdorff
metric onD. The points of continuity of an upper semicontinuous decomposition on a
compact metric space contain a detigesubset of the decomposition space. Whenever
X is a compact metric space afidis an upper semicontinuous decompositiorkothen

the quotient spac® is itself (i.e., endowed with the quotient topology) a compact metric
space. WhenevexX is a compact metric space, then= {C: C is a componentok} is an
upper semicontinuous decompositiongfand the quotient space is a totally disconnected
compact metric space. (See [5] for more information.) We say that thB gt quotient
Cantor set of continud there is an upper semicontinuous decomposifioof D such that

D endowed with the quotient topology is a Cantor set and each point of this Cantor set is a
continuum in the spack.

Another tool from dynamics that we need is the Lambda Lemma:

The Lambda Lemma. Suppose thaF is a plane diffeomorphism, anglis a hyperbolic
saddle fixed point of’. Suppose that a differentiable curfecrosses the stable manifold
W+ (p) of p transversally(that is, there is a poing in W*(p) N L such that the angle
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between the tangent lines W° (p) and W*(p) at the pointg is neitherO nor ). Then
each point in the unstable manifold pfis a limit point of |, F(L).

n>0

3. Observations become hypotheses: the fluid flow theorems with and without noise

Now we turn our observations into the hypotheses of the theorems. In the statements
that follow, F' can be taken to be the Poincaré return map associated with our model, and,
unless explicitly stated otherwise, it can also be taken to be any plane diffeomorphism
satisfying the hypotheses given. Wheneyeis a homeomorphism oRZ, it is always
possible to extend to a homeomorphism oR2 = R? U o by defining F(50) = 0. In
the results and statements that follow, when a homeomorphism or a diffeomorplosm
R2 is discussed, we assume tifats defined orR2 in this way. We call the Poincaré return
map associated with our model the fluid flow diffeomorphiSnTo make this precise, we
call F thefluid flow diffeomorphisrif it has the following properties:

(F1) F is area preserving oR?, and for eachi € Z,

(F2) there is a numbex; € [27i, 27 (i 4+ 1)] such thatF (L(x;)) is completely to the
right of L(x;),

(F3) F(S) =S, andQ; is the quadrilateral ifR? located in the almost horizontal band
S between théth cylinderCyl; and(i 4+ 1)st cylinderCyl, , ; with Q; € V;, where
V; = [x; — 2mi, x; + 27wi] x [<38,8] C S,

(F4) F is a hyperbolic horseshoe on each quadrilatérgland p; is a saddle fixed
pointin Q;,

(F5) F satisfies the lockout property ai;, andQ; C S*(x;),

(F6) F(x)=x for each point in | ;5 Cyl;,

(F7) (W (pi) n W"(pi)\lpi} #9,

(F8) there is a poingy in (W*(p;) N W*(p;+1))\{pi} such that the angle between
W (p;) andWs(p; 1) atq is not equal to 0 ofr, but W (p; 1) N WS (p;) =0,

(F9) there are connected segmebifsof the unstable manifold of; andS;1 of the
stable manifold ofp; 11 that have the same end points and bound a region
§ that contains the cylindeCyl;, 1, while other cylinder<Cyl; (j # i) do not
intersect/;,

(F10) if F(x,y)=(x,), thenF(x + 27, y) = (X + 27, y), and
(F11) there are positive numbetsandx such thatif(x, y) isnotinsS, thenm F(x, y) —

x>0, and|mF(x,y) —y| <A <1.

Now consider a new assumption.

Adding noise. Let ¢ > 0. Instead of applying the fluid flow diffeomorphisi at each
time i, we instead assume that for eacla diffeomorphism¥; which is close toF in the
sense thatF(q) — F;(q)| <e and|DF(q) — DF;(q)| < ¢ for eachi andg, is applied.
Further, assume that each painvhich is in one of the cylinders is fixed. We referdas
the “noise level”.



J. Kennedy et al. / Topology and its Applications 94 (1999) 207-242 223

With this assumption we can still talk about the trajectory of a point if we replace
F(q0) with Fo(qo), F?(go) with F, o Fo(qo), and so forth. In general, the trajectory of
qo is the bisequence..¢-2,9-1,90,91,..., Whereq; = F;_1 0 F;_2 o --- o Fp(qo) and
q-i=(F j0F y0---0F ) Xgo) =F 'o---0 F7} o Fi(qo) fori > 0. It no longer
makes sense to talk abomwariant Cantor setsinvariant points, orinvariant continua.
However, wecantalk about those points thecoordinate of whose forward trajectory does
not go to+oo, and those points the-coordinate of whose backward trajectory does not go
to —oo. Define then thentrainment sef+ (xo) to bethe set of pointgx, y) whose entire
trajectory (under a sequence of noisy masto the right of xo, defineS— (xo) to bethe
set of pointgx, y) whose entire trajectorgunder a sequence of noisy majssto the left of
xo0, and defineZg to be theset of all pointgx, y) whose entire trajectorfunder a sequence
of noisy mappis inside the quadrilaterafo. Similarly, and as before, we can define the
setsST (xi), S- (x;), andZ; for each integef. We also need an additional assumption for
the fluid flow diffeomorphisn¥, which corresponds to Observation 6 (not necessary if for
eachi, F; = F). Thus we assume thdt, in addition to satisfying properties (F1)—(F11),
also satisfies (F12):

(F12) Strong lockout propertyfor eachi, there is anx; € (x;, x; + 27) such that
F(L(x;)) is to the right of L(X;), L(X;) lies to the right ofQ;, and there is an
integerNr with the property that iy € Q; and F(¢) is not in Q;, then FNF (¢)
is to the right ofL(x;). (The integeVr is independent of the choice gfor of ;.

It is also the case, because of the background flow (property (F11)) that there is
someY > 0 such thati(L(x;), F(L(x;)) > T.)

To avoid cumbersome notation, define for integers< n, Fn,m =F,0F, 10
--- o Fy. Thus, the trajectory of the poiaj is the bisequence..q¢-2,9-1, 90,41, ...,
where g; = Fi_1 0 Fi_p o --- o Fo(qo) = Fi—10(qo) and g_; = (F.1 0 F_ 0 --- o
F_i)"Yqo) = (F_1,-)"Y(qo) = F ' o -0 F 73 o F~{(qo) for i > 0. Suppose then that
the diffeomorphisn¥; is applied at integer timé Note that for a sufficiently small choice
of ¢, eachF; has the following properties:

(Fil) for eachi’ € Z, there is a number; € [27i’, 2 (i’ + 1)] such thatF; (L(x;/)) is
completely to the right of. (x;/),

(Fi2) F; is a hyperbolic horseshoe on each quadrilatéxal

(Fi3) F;(x) = x for each point in | ;. Cyl;,, and

(Fi4) for eachi’, there is arx;: € (x;/, x; + 27) such thatF; (L(x;/)) is to the right of
L(*y), L(x;) lies to the right ofQ;, and ifg € 0, and F; () is not in Q¢, then
F* () is to the right ofL (%),

(Fi5) if (x, y)isnotinsS, thenm1 F;(x, y) —x > 9/2, and|m2F (x, y) — m2F;i(x,y) | <
£ < 2A.

Proposition 3.1. Suppose thaf’ is an area preserving plane homeomorphigihjs a
quadrilateral in the plane, for almost every poipin Q there is some positive integey
such thatF (q) ¢ Q, and F satisfies the lockout property ap. Then for almost every

q € Q,limsup,_, ., F"(g) =0.
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Proof. Let B denote the sef(Q) — Q. Since F has the lockout property o®, so
does eachF”(Q), and each finite unioU’jzk F/(Q) (0< k <1). Also, F(B) does not
intersectB, so thatF*(B) does not intersecE*~1(B). By the lockout propertyF (B)

does not interseoP, and soF (B) does not intersec® U F(Q). Then FX(B) does not
intersectU’;:O F/(Q), from which it follows that the members of the finite sequence
B, F(B), ..., F¥"1(B) are mutually disjoint. But each of these disjoint sets has the same
nonzero area a8, becauseF is area-preserving. Le be a bounded open set R?.

Let By C B be the set such thate By implies thatF”"(b) € V for all n > 0. We claim

By has area 0. The seBy/, F(By), F2(By), ..., are disjoint because* (By) € FX(B).
Furthermore allF* (By) have area equal to the area®f. Since allF*(By) liein V,

o0

areaV) > Z area( F¥(By)) = oo x area(By).

Hence, the area aBy is 0, since otherwise the union of & (By) would have infinite
area, proving the claim. It follows that for almost every: O there is some > 0 such
that F"(g) is notinV. Thus, for almost every € Q, limsup,_, ., F"(¢) =00. O

The situation for the noisy case is more complicated, and we need to know more about
F, namely that points that leau@ are eventually mapped outside a set contairihmn
its interior which has the property points mapped into that set cannot leave it. For us, that
means assuming that the homeomorphigmsatisfies property (F12), which is really a
stronger version of the lockout property. Foe R, let

L(x)= {Z =(z1.22) €R% 71 :x}
and let

LY (x)={z=(z1.22) e R* 21> x},

L™ (x)={z=(z1,22) € R% z1 <x}.

Proposition 3.2. Suppose thaf" is an area preserving plane homeomorphighhis a
guadrilateral in the plane such that has the lockout property oQ; for almost every point

g in Q there is some positive integey such thatF"«(¢) ¢ Q; and there are some positive
integer Nr and somex € R such thatF(L(x)) is to the right of L(x), LT (X) N Q = ¥,
andifg € Q and F(gq) is notin Q, thenF™(q) isin L*(x), form > Ng. There ise > 0
such that if for each nonnegative integgr F; is an area-preserving homeomorphism
on R2 such that for eachy € R?, |F(q) — F;(g)| < ¢, then for almost every € Q,
limsup, _, o Fr.o(q) =3

Proof. Let N = Np, and let

t=inf{lx—yxeQ, yeLT(®}>0, and
O<t <inf{|Fx) - F(WI: x€Q, yeL*T®}, ' <t/2
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Let B = F(Q)\Q. Choose’ > 0 so thatifFy, ..., Fy is a collection ofV area preserving
homeomorphisms oR2 such that
(i) Fi(L(x))isin Lt (x) foreach 1<i < N;
(i) foreachg e R?, |F(q) — E(q)| < ¢ andifig, ... iN is a permutation of the finite
sequence l.., N, then the compositionﬁ1 o-- v has the property that if
q € Dy(F(Q)— Q),thenF;, o---0 Fiy(¢q) isin L+(x) (m other words, each; is
chosen so close tB that the resultlng composition & homeomorphisms satisfies
an appropriately modified version of (Fi4)); and
(i) ¢ <7'.
Thereise’ > ¢ > 0 such thatifF is a plane homeomorphism ahil(g) — f(q)| < ¢ for
eachy € Q, then

F(FY(D:(Q))) € Do(Q) and F~1(Q) C D:(F1(Q)).

Then suppose that for each nonnegative intggef; is an area-preserving homeomor-
phism onR2, and for eacly € R2, | F(q) — Fj(q)| < .

For eachn € N, let B, denote the seF, (Q) — Q, and letB™ = J, .5 B». ThenB™ C
D.(F(Q) — 0), FN 1(B*) lies completely to the right of.(x), andarea(FN 1(BT)) =
area(B1). Let V be a bounded open setR? that containsB+. Let By € B* be the set
such thatbg € By implies thatb, = F,,,o(bo) e V for all n > 0. We claimBy has area
0. SinceFy 1(B1) ¢ Lt (x), Fy.1(B™) N Q = ¢, and moreoverd(Fy.1(B), Q) >t
so thatd (Fy411(B1), Bt) > 1 /2, and Fyi1.1(BT) N BT = ¢. Since noF; moves a
point back across the liné(x), F2N+l 1(BT) € L(x), so thatd(F2N+1 1(BT),0) >
t, d(Fany21(B1), BY) > 1//2, and Fay421(B1) does not intersecB™. Because
F2N+2 Nazisa homeomorphlsnF2N+2 1(B™) does not |nterseoT2N+2 N+1(BT). Con-
tinuing, it follows that if k is a positive integer, the members of the finite sequence
BF, Fini1(BY), Fentav+1(BT), -y Fink —1v-+e—1) (BT) are mutually disjoint.
But each of these disjoint sets has the same nonzero aBks &gcause each is area pre-
serving. Thus, the SGTBV,NFkNJrk,l(Bv), Fthk,NJrl(Bv), oo Fansk (—)N+—1) (BY)
are all disjoint, since eachy+«.in+i (Bv) € Fxn+k.in+i (BT). It follows that

k-1
areaV) > kli_)moo 2; area Fenx,in+i (Bv)) = 00 x areaBy).
1=

Hence, the area aBy is 0, proving the claim. It follows that for almost evefye Q the
trajectory ofg eventually leaved’. Thus, any point that leaves has a trajectory that is
eventually to the right of the lin& (x), and for almost every € Q, limsup,_, o Fn.0(q) =
co. 0O

Proposition 3.3. Suppose tha¥ is the fluid flow diffeomorphism aritlie Z. There isc > 0
such that if for each nonnegative integgr F; is an area preserving homeomorphism
on R2 such that for eachy € R?, |F(q) — F;(g)| < ¢, then for almost every € O,
lim,, .00 Fr.0(¢) = 3 and, in particular, thex-coordinate ofF, o(¢) tends to+oc as
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n — oo. Furthermore, almost every € Q;/ is a wandering point forF, and for almost
everyqg € Qi/,

lim F'(g)=050, and lim 71(F"(gq)) = occ.
n—o0 n— oo

Proof. We use the notation and results of the previous proposition. Thus, we define

LY&) ={(z1.22) eR®|z1>Xy}, N =N,
t=inf{lx—y||lxe Qy, ye L*(x)} >0, and
O<t' <inf{|F(x)— FW)I|Ixe Qy, ye LTxn}, ' <t/2

(Note thatr is independent of the choice 6f) Chooses’ > 0 so that ifFy, ..., Fy is a
collection of N area preserving homeomorphismgﬁ%such that
() Fi(L(G))isin Lt (x;) for each 1<i < N;
(i) foreachg e R?, |F(q) — E(q)| < ¢ andifi1, ..., iy is a permutation of the finite
sequence 1.., N, thenthe compositioﬁ-l o---0 EN has the property that if
q € Dy(F(Q)— Q), thenFy, o---0 F;, (¢) is in L (x) (in other words, each; is
chosen so close tB that the resulting composition 8f homeomorphisms satisfies
an appropriately modified version of (Fi4));
(iii) if (x,y)isnotins, thenrrll?i(x, y) —x >1/2,and|m2F(x,y) — nzl?,-(x, y) | <
g’ <21 foreach 0<i < N; and
(iv) ¢ <7’
Thereise’ > ¢ > 0 such thatifF is a plane homeomorphism ahil(g) — f(q)| < ¢ for
eachg € Q;/, then

F(F7Y(D:(Q0))) € De(Qo) and F~1(Qo) € D:(F~1(Q0)).

Then suppose that for each nonnegative intggef; is an area-preserving homeomor-
phism onR2, and for eacly € R2, | F(q) — F;(q)| < .

Without loss of generality, let = 0. For each: € N, let B, denote the sef;, (Qo) — Qo,
and letB* =, .5y B.- ThenB™* € D.(F(Qo) — Qo), and if V is a bounded open set in
R? that containsB™, andBy C B™ is the set such that € By implies thatF,, o(bo) € V
for all n > 0, then, applying the previous propositia®y has area 0. It follows that for
almost everyyo € Qo the trajectory oy eventually leaved’. There is somé/ > 0 such
thatM /2 > 2. Nowif V = [Xo— 2mm, Xo+ 2mm] x [—8 —4mM ()), § +4m M (3)] for
somen > 0, then a trajectory of a point which is leaviiygmust leave it through either the
(right) line L(xo + 2m), or the top or bottom lines = +@ +2mMO)). If a trajectory
leavesV through the top or the bottom line, then after & applications of the appropriate
mapsF;, the point cannot have re-entered the sfijpnd thex-coordinate will have moved
to the right of the linel.(xo + 2m). Thus, any point that leavds has a trajectory that is
eventually to the right of the lin& (xo + 2m ), and for almost every € Qo,

lim Foo(go) = lim g,=150, and lim m1(F0(90) = lim m1(gs) = oo.
n—00 n—oo n—oo n—oo
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That almost every € Q; is a wandering point foF follows from the observation that
if for eachi, we choosds; = F, then for almost every € Qo,

lim F"(qo0) =30, and lim m1(F"(g0)) = oc. ]
n—o0 n— o0

Theorem 3.4. Suppose that” is a plane homeomorphisn@ is a quadrilateral in the
plane such thafF is a horseshoe o, for almost every poing in Q there is some positive
integern, such thatF"s(q) ¢ Q, ands ands’ denote the opposite sides @fthat F(Q)
intersects. Then
Q) Z ={x: F"(x) € Q for all n € Z} is a nowhere dense, invariant, closed set
contained in the interior ofQ, and Z = {C: C is a component o} endowed
with the quotient topology is a totally disconnected, compact metric space
(2) Z’=(C: C € ZandC is not an isolated point cE} < Z is an invariant closed
set, andZ’ = {C: C € Z and C C Z’} endowed with the quotient topology is a
Cantor set, andZ’ is a quotient Cantor set of continya
(3) Z” = J{C: C € Z’ such that, for some sequen(:E*"(El-)};?io, each member
of which is a component ofY;, F'(Q) that intersects bothy and s’, C =
lim; o F~'(E;) (in the quotient topology C Z’ is an invariant closed seiZ” =
{C: C is a component o£”} endowed with the quotient topology is a Cantor set,
and Z” is a quotient Cantor set of continpand
(4) Z7 = |J{C: Cis apoint of continuity o£”} € Z” is an invariant closed set,
Z" ={C: Cisacomponentat”} endowed with the quotient topology is a Cantor
set,Z" is a quotient Cantor set of continua, andlfe Z”, x € C, thenx € Z"\C.

Proof. Suppose that (> 2) is the fold number ofF'. ConsiderZ ={g € Q| F"(q) € O
forall n € Z}. If K is an arc inQ that intersects both opposite sideands’ of Q, then
QN F(K) contains at leas¥ components each of which intersects ho#inds’. For each
n, ﬂf}:o FJ/(Q) contains at least/” components each of which intersects botnds’,

and no component cm;'-zo FJ(Q) intersects either of the other two sides. Further,

n+1 n
[ F/(Q) Clintg ( N F-’(Q)>,
j=0 j=0

and applying the properties of a horseshoe rﬁaﬁ_o FJ(Q) = By consists of a collection
of continua each of which intersects eitheor s’. Since for almost every point in Q,
there is some positive integey such thatF"« (¢) ¢ O, we know that each component of
By is nowhere dense i®. Now for eachn € N,

F"(ﬂ Ff'(Q)) =(F(@> () F/(@>-->()F(Q,
Jj=0 Jj=n j=n—-1 j=0

so that

F"(ﬂ Fj(Q)> c-c[F(Q.
j=0

Jj=0
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Thus,Z = ﬂ;’i_oo F/(Q) is a nowhere dense, invariant set of continua, none of which
intersects Q, and, applying the properties of the quotient méps {C: C is a component
of Z} endowed with the quotient topology is a totally disconnected, compact metric space.
FurthermoreZ’ = | J{C: C € Z andC is not an isolated point o} C Z is an invariant
closed set, an&’ = {C: C € Z andC c Z’} endowed with the quotient topology is a
Cantor set so tha’ is a quotient Cantor set of continua.

Consider therz” = | J{C: C € Z’ such that, for some sequendes}™, of positive
integers and E;}:°, of continua each member of which is a componerﬁ;go Fi(Q)
that intersects both and s’, C = lim;_, o F" (E;) (in the quotient topology) By
construction,Z” is closed. Note that if for each, G, = {G,1,...,Gn,} ={G: G is
a component o (Q) N F~"(Q) with nonempty interio, theng, is a mutually disjoint
cover of F~"(By) by closed neighborhoods. (If a componénhof F"(Q) N F~"(Q) has
empty interior, thernF"+t1(C) N Q = @. Thus, we can assume without loss of generality
that each component @t (Q) N F~"*(Q) has nonempty interior.) Suppose further that
G, =1{Gn1,.--.Gna,} Gy ={Gn1,...,Gnp,}, WhereG, contains all those members
of G, which contain som& " (C), whereC is a component o§o that intersects both
s ands” (and the listing of members @, reflects this property). The@' =, >0, is
a countable base for the s&t, where eaclG,; in G, contains at leasM” members of

"1, butG 1 may contain neighborhoods not contained jiw, . For eaciC € 2", there

are a positive integeNc and a unique nested sequerd€g, ;,}»>n~. 0f members oG’
such thatC = ﬂ@zvc Gp.i, € G,. From this, it follows that the se2” € Z’, thatZ” is an
upper semicontinuous decompositionf, and thatzZ” is a quotient Cantor set.

Finally, considez” = [ J{C: C is a point of continuity of£2”} € Z”, andZ"” = {C: C
is a component oZ”’} endowed with the quotient topology. Then, applying the properties
of upper semicontinuous decompositions of compact metric spacdéds a quotient

Cantor set of continu&”” is invariant, and ifC € Z”, x e C, thenx € Z/\C. O

Theorem 3.5. Suppose that” is a plane homeomorphisn® is a quadrilateral in the
plane such thar is a horseshoe op; for almost every poing in Q there is some positive
integern, such thatF"«(q) ¢ Q; F satisfies the strong lockout property gn(i.e., there
are a positive integer intege¥r, T > 0, and a poinfx in R such thatF (L(x)) C LT (%),
Q C L™ (), d(F(L(X)),L(X))>1);if g Q and F(q) is not in Q, then FNF (¢) is in
L*(x); ands ands’ denote the sides @ that intersectF (Q). There ise > 0 such that if
for each integerj, F; is a homeomorphism dR? such that| F (x) — F;(x)| < ¢ for each
x in R?, then
(1) Zo={qo € Q | the trajectory{q;}32_, C Q},is anowhere dense, invariant, closed
set contained in the interior af, and Zo = {C: C is a component of } endowed
with the quotient topology is a totally disconnected compact metric space
(2) Z=J{C: C € ZpandC is not anisolated point afp} C Z is an invariant closed
set,Zy={C: C € ZpandC C Z;} endowed with the quotient topology is a Cantor
set, andZ;, is a quotient Cantor set of continua
() Z5 = UIC: C € Z; such that, for some sequen¢€;}i2,, each member of
which is a component q’ﬂi>1 F (0 that intersects both ands’, and for
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some sequende; }7°, of positive integersC = lim; . Fnj}o(Ei) (in the quotient
topology} € Z; is an invariant closed setZ; = {C: C is a component of
Z;} endowed with the quotient topology is a Cantor set, fjds a quotient Cantor
set of continuaand

(4) zy' =UJ{C: Cisapoint of continuity o} C Z; is an invariant closed set, and
Zy'={C: Cisacomponentafg} endowed with the quotient topology is a Cantor
set,Zy' is a quotient Cantor set of continua, andvit C € Zj’, thenx € Z()”T.

Proof. Suppose that/ (> 2) is the fold number of. Let N = N, and let

t=inf{lx—yxeQ, yeLT™(®}>0, and
O<t' <inf{|Fx)—F(WI: x€Q, yeL™®}, '<7/2

Let B = F(Q)\Q. Chooses’ > 0 so that ifFy, ..., Fy is a collection ofN homeomor-
phisms orR2 such that
(i) Fi(L(x))isin Lt () foreach 1<i < N;
(i) foreachg € R?, |F(q) — I’i-(q)| < ¢ andifi1, ..., iy is a permutation of the finite
sequence 1.., N, thenthe compositiol, o --- o F;, has the property that if
q € Dy(F(Q)— Q), thenF}, o---0 F;, (¢) is in L* (%) (in other words, each; is
chosen so close tB that the resulting composition 8f homeomorphisms satisfies
an appropriately modified version of (Fi4));

(iii) for each i, F; is a horseshoe map o@ having the same fold number &

(i.e., if K is an arc inQ that intersects both opposite sidesinds’ of Q, then

Q N F;(K) contains at leas¥ components each of which intersects betand

s', Fi(s Us") N Q =@, and F; (Q) does not intersect either of the other two sides
of 0); and

(iv) ¢ <.

There is¢’ > ¢ > 0 such that ifF is a plane homeomorphism ah8(q) — f(q)| <e
for eachq € Q, then F(F~Y(D,(Q))) C Do(Q) and F~1(Q) ¢ D.(F~1(Q)). Then
suppose that for each integgr F; is a homeomorphism oR2, and for eachy € R?,
|F(q) — Fj(q)| <. Consider

Z ={qo € Q| the trajectoryg,}3> ., C O}

NotethatZ =---NF 1 2(Q) N F_11(Q) N QN Fyg(Q) NF5(Q)N---.

Then, as in the unperturbed cage,N F,(Q) = Q0N Fn,n(Q) contains at least/
components each of which intersects betland s’ as doesQ N F(Q); Q0 N F,(Q N
F,_1(0) =0nNF,(Q)N Fn,n_l(Q) contains at leasM? components each of which
intersects botty ands’ as doesQ N F(Q) N F2(Q), etc. Thus, for eaclm <n, QO N
(ﬂ'}zm F,,,.,'(Q)) contains at leas¥”~"*+1 components each of which intersects beth
ands’ as doesﬂ’};g’*l FJ(Q). Also, if for eachn > m, E, ,, = {C: C is a component
of 0N (ﬂf}:m Fn,‘,(Q)) that intersects both ands’}, thenE,, ,, has at leasys” distinct
members.
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Further,

on ( N F,,,.,'(Q)> c |ntQ(Q N ( N Fn,‘;(Q)>>-

j=m—1 j=m

As before,0 N (ﬂ‘;il F_l,_.,»(Q)) = By is a nowhere dense, closed set each component
of which intersects eitheror s’, and it follows that

o0 - o -
Zo=0Qn (ﬂ Fl,j<Q>> N ( Fj,c}(Q))
Jj=1 j=0

is a nowhere dense, closed set contained in the interiQr dfpplying the properties of the
quotient map 2o = {C: C is a component oZo} endowed with the quotient topology is a
totally disconnected, compact metric space. Furtherniyye; [ J{C: C € Zp andC is not
an isolated point 0Eop} € Zo is a closed set, andy = {C: C € Zp andC C Z;} endowed
with the quotient topology is a Cantor set so tAgtis a quotient Cantor set of continua.

Consider therZ; = U{C:N C € 2| such that, for some sequendg }:°,, each member
of which is a component By that intersects bothands’, and for some sequenge }°;
of positive integersC = lim; . F, (E:) (in the quotient topology) By construction,
Z" is closed. Note that if for each, G, = {G,.1,...,Gn,8,} ={G: G is a component
of F_1_,(Q) N F, 5(Q) with nonempty interioy, theng, is a mutually disjoint cover
of fnfé(ﬁo) by closed neighborhoods. (If a componehof F_1 _,(Q) N F, {(Q) has
empty interior, theranyO(C) N Q = . Thus, we can assume without loss of generality
that each componentdt 3 _,(Q) N F, §(Q) has nonempty interior.) Suppose further that
G,=1{Gn1,....Gna,} €Gy ={Gn1,...,Gnp,}, Whereg, contains all those members
of G, which contain soméfvnfO(C), whereC is a component oﬁo that intersects both
s ands’ (and the listing of members @, reflects this property). Theg’ = Un>og,’l
is a countable base for the sé&f, where eaclG,; in G, contains at least/” members
of G, .4, butG, , may contain neighborhoods not contained_ifg, . For eachC € Z7,
there are a positive integéfc and a unique nested sequefcs, ;, },>n. Of members of
G’ such thatC = (> v Gn.i, € G,. From this, it follows that the seZj € Z, that 2
is an upper semicontinuous decompositiorZgf and thatZ; is a quotient Cantor set of
continua. The last part then follows as beforel

The next two results tell us that for the fluid flow diffeomorphism itself, the situation is
simpler than in the two previous theorems, i.e., for each quadrilaggrah which F is a
hyperbolic horseshoe, the corresponding invariangZsét Q; is a Cantor set, and thus the
various decompositions considered in the two previous results are trivial and all the same,
namelyZ; itself. The hyperbolicity makes the difference.

Corollary 3.6. Suppose thaf is the fluid flow diffeomorphism, ande Z. ThenZ; =
{ge Q;|forallneZ, F'(g) € Q;} is a Cantor set contained in the interior ¢f;.

Proof. That Z; is a nowhere dense, invariant, closed set with the upper semicontinuous
decompositiorg; = {C: C is acomponent of;} which is a totally disconnected, compact



J. Kennedy et al. / Topology and its Applications 94 (1999) 207-242 231

metric space in the quotient topology, which contains a Cantor set, and which is contained
in the interior of Q;, follows from a previous theorem. (That for almost every pgint

in Q; there is some positive integer, such thatF"(q) ¢ Q; follows automatically

from the assumption thaf is a hyperbolic horseshoe a;.) However, becausé’ is
diffeomorphism andF is a hyperbolic horseshoe @ with Q an isolating neighborhood

for Z;, Z; is a Cantor set. O

Theorem 3.7. Suppose that” is the fluid flow diffeomorphism. There is> 0 such
that if for each integerj, F; is a diffeomorphism ofR? such that for each; € R?,
|F(q)— Fj(@)l <eand|DF(q) — DFj(q)| < ¢,thenZ; ={q € Qi | Fn0(q) € Q; forall
neN and(Fflyfn)*l(q) € Q; forall n e N} is a Cantor set in the interior of); .

Proof. Suppose that is the fold number of", ands ands” denote the opposite sides of
Q; that F(Q;) intersects. Choose> 0 so that ifF’ is a diffeomorphism oiR2, and for
eachy e R2, |F(q) — F'(q)| <&, and|DF(q) — DF'(g)| < ¢, thenF’ satisfies properties
(Fi1)—(Fi4). (This choice ot needs to be modified later in the proof, but these are the
constraints we need now.) Then suppose that for each infederis a diffeomorphism on
RR? such that for each € R?, |F(q) — Fj(q)| <&, and|DF(q) — DF;(q)| <e.

We also assume that*works” for Proposition 3.3, i.e., for each pair of integerg, if
for eachg € R2, |F(q) — Fi(q)l <e and|DF(q) — DF;j(q)| < ¢, then for almost every
g€ Q;,lim,_ I?nyo(q) =0 and, in particular, the-coordinate oﬂ?,,,o(q) tends to+oo
asn — 0.

Note that for each integer, Q; N F,(Q;) contains at leas¥ components intersecting
boths ands’. Then, as in the unperturbed case, for eacd n, Q; N (ﬂf}:m Fn,j(Qi))

contains at leasy” 1 components intersecting bottands’ as doeﬂ;'.;g’*l FI(Q)),
each extending from sideto opposite side’. Further,

Qﬁ« N Eﬂ@Ocm@<Qﬂ<f]EAQO)

j=m-1 j=m

As before,0; N (M52, F_1._j(Q)) = Bo consists of a closed set with uncountably many
components and each component intersects either the sidéhe sides’, and does not
intersect either of the other two sides. Now for eachN,

0 1
Bon (ﬂ(Fj,O)l(Qi)> > Bon (ﬂ(fj,O)l(Qi)> D
j=0

j=0
o
3%m<ﬂww)%gﬁ=a.
j=0
In fact, each component &y = o:N (ﬂ?il f,l,,j (Q;)) contains at leas components
of BpN (ﬂ?zo(F/.,o)*l(Qi)), each of which contains at leasf components ofBg N
(ﬂ}ZO(Fi ) "X(0)), etc., so that each componenti& contains at leas” components
of BoN (ﬂ;f;é(fj 0)*1(Ql-)), with nesting of these components occurring at each step.
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Thus,Z; = BoN (ﬂ;’io(ﬁ/,o)—l(Q,-)) is a closed set with uncountably many components,
none of which has interior inQ; (because the trajectory of almost every point@n
converges tax), and none of which intersectsQ;. Note thatZ; is also the sefq €
Qi | Fao(q) € Qi foralln e Nand(F_; _,)"Y(g) foralln e N}.

Recall that, applying the previous corollargy, = {g € Q; | F"(q) € Q; for all
n € Z} is a Cantor set contained in the interior@f, and F is hyperbolic onCg,. Then
F is expansive orCyp,, and there is a constant> 0 such that ifp # g € Cyp,, there is
some integen, , = n such that F*(p) — F"(¢q)| > c. Also, we can extend the splitting
E: x E¥ from on Cy, to a neighborhood of Cy, in Q;. There is some’ such that if
x € Cg,;, thenDy(x) C V, and if we letB, (¢') = E{ (') x E¥(¢) C T (R?) denote all
vectors inEs x E* of norm less thaw’, andw, (¢) ={x+v € R? | v € B, (")} C R?, then
wyx(c) C V,andwy(¢') = Dy (x).

Next, coverCg, with a finite collection{us, uo, ..., u,,} of mutually disjoint open sets
in R2 with the following properties:

(i) forl<k<m, uy NCp, =ux NCgp;;

(i) sup{diam(ux)} <a < maxc/64,c’'/64}; and

(i) inf{lx —y||x €ug, y €up, k#k'} >a’ > 0.
There is a Lebesgue numb€f such that ifg € Cy,, thenDy»(g) C uy for somek.

Chooses” > 0 such that’ < min{c/64, «/16, o’ /16, «” /16}. SinceQ; is an isolating
neighborhood foilCyp,, we apply the shadowing theorem and fihe- 0 andn > 0 such
that if {xj}f“;—oo is ad-chain for F with inf{|x; — y| | y € Cg,, j € Z} < n, then there is
a unique poinyy in Cg, such thaty 8/'Shad0W3.Xj}j.i_oo. Finally, modify the choice of
once again:

(i) Chooses < min{s, n, ¢'}.

(if) There are a positive integéf and O< u < 1 such that fox in Cyp,,

IDFX () (v*) | <Cuf v’ forv* eES, and
IDF X (x)(0") | < CuX|v"| for v e Y.

There ise > 0 such thatif for eachin Cp, and for each integer, |F(z) — F,(2)| <

cand|DF(z) — DF,(z)| < ¢, thenif{i1, ..., igx} denotes a collection of integers

andG = F;, o--- o Fj,, then there is some > 1 such that ifx is in Cyp,, and

(a) vi € E] andv¥ € EY with [vY| > |v]], then|v’},{(x)| >a |v;,<(x)| and|vl(’;(x)| >
a |v‘z;(x)|

(b) v$ e ES andv¥ e Eg; with [v¥] < [vi], then|vl;_,((x)| < (l/a)|vjp_,((x)|, and
[0 1| < W/@)lvg, 1.

(Of course, thig: still satisfies the first part of the proof. Thus, we are merely adjusting
the size ofe downward again, if necessary.) As before, suppose that for each integer
j, Fj is a diffeomorphism orR? such that for eacly € R2, |F(q) — Fi(¢)| < ¢, and
|IDF(q) — DFi(q)| <e.

Then the resulting set

Zi=0QiN (ﬂ F—l,—j(Qi)) N (ﬂ(ﬁ},oH(Q,-))
j=1

Jj=0



J. Kennedy et al. / Topology and its Applications 94 (1999) 207-242 233

is a closed set with uncountably many components contained in the inter{@y. dote
that if {q,}?ifoo is the trajectory of a poinjg in Z;, then{q‘/}?‘;foo C Zi, and{q‘,}?‘;foo
is as-chain for F (since|F(q;) — Fi(g;)| = |F(q;) — qj+1] <& <9).

Suppose thatZ; contains a nondegenerate continudi If ¢ = go € E, then the

trajectory{qj}‘/?‘;_OO is contained inQ;. Let Eg = E, and for each positive integer

En = Nn,O(E) - Fn,O(Zi)

= ( N Fn,_,/<Q,->> NnQiN ( N (F,»,n+1)1<Q,->> c ;. and

j=—n j=n+1
E_p=(F-1-n) Y(Eo) C (F-1-»)"YZ))

= ( N fnl,,(Qi)) noin (ﬂ(f,»,ml(Qi)) < 0.

j=—n+1 Jj=n

Choosepo # go in E. Thenthere are unique points andy, in Cop, such thaty, andy, &’-
shadow the trajectoridp;}2_ and{q;}72_,, respectively. Ify, # y,, then becaus&
is expansive o', , there is some integésuch that F! p) — F! (¥¢)| = c. Then consider
E;:since|Fl(yp) — pil <& <c/64,|F (y,) — qil <&’ <c/64,andp; andg; are inEy,
diam(E;) > 31¢/32. Note that for each; in E;, the corresponding trajectoﬁy{,}?ifoo
(“centered” atx; rather tharnxg), is contained irZ;. But this means we have a problem: for
eachy; in E;, there is a unique point, in Co, whiche¢’-shadows the trajector{;xj}f/?i_oo,
ands’ < o”, so thaty; € Dy (yy) C U’};luj. Sincediam(u ;) < ¢/64, it follows that for
somew; andz; in E;, the corresponding,, andy, are indifferentmembers:; andu ; of
the cover ofCy,, respectively, and for each memberf E;, the associateg, is in some
ui. But this is a contradiction t&,; being a nondegenerate continuum. Thgn= y, =y,
andy &’-shadows each trajectofy)j}j?":foo, wherepg € Eg. Thendiam(E,)) < ¢’ for each
integern.

Hence, for each € Cy;,,

B, (') =E(¢') x B(¢') C T,(R?), and
wy (e = {x +veR?|ve ]Bx(s’)} C 0;.

In particular, for each integer, E, C wy(¢') = Dy ().

Suppose that for each > 1, G, = {G,1,...,Gn,} = {G: G is a component of
F_1_,(Q) N F, 5(Q) with nonempty interioy, and G, = {Gu1..... Gna,} S Gn =
{Gn1,....Gng,}, WhereG, contains all those members ¢, which contain some
fnfé(C), whereC is a component oo = (0,51 F7; _,(Q;) that intersects both and
s’ (and the listing of members @, reflects this property). As before, without loss of
generality, we can assume that eaghis a mutually disjoint cover oﬂ?,l,,,,(Q) n
ané(Q), and ifG) ={GNZ;: Geg,}, then Un>1g,;’ is a clopen base foZ;. Note
that if for somen, a continuumk is contained in som& € G, and K intersects both
F,3(s) andF, g(s"), then F, o(K) intersects bothy ands’. Likewise, if r and:’ denote
the other two sides of); (i.e., the sides that are neithemnor s’) and K intersects both
F, 0 andfflﬁn ), thenf:ifn(K) intersects both and¢’.
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But then we again reach a contradiction: The splitting is preserved under the application
of F, and eachDF,, has been chosen so closed& that the stretching and contracting
directions are quite close to those Bf Thus, Eg is either not contained i*(y) or
it is not contained inW*(y), and in at least one of the positive or negative directions,
the continuumky is eventually “stretched across” somg, which means that, after a
sufficient number of applications of the appropri#igs (either in the forward direction
or the negative), the image of the continuufp must intersectZ; and R?\ Q,. Thus,

Ep cannot be nondegenerate. Using a similar argument, it follows that no poitisf
isolated, and it follows thak; is a Cantor set. O

Theorem 3.8. Suppose that' is a homeomorphism @2, Q is a quadrilateral inR?, F

is a horseshoe map o@, for almost every poing in Q there is some positive integer
ng such thatF"s(q) ¢ Q, and F has the lockout property o@. In the Hausdorff metric,
the sequenc®, F(Q), F2(Q), ... of continua inR2 has a unique limit poinB, B is an
invariant, nowhere dense continuum, ads the closure of the sdk e R2| F"(x) €

Q for all sufficiently largen}. Furthermore, B contains an invariant, indecomposable
continuuma, A is the largest indecomposable continuum containeBl,iand A contains
the quotient Cantor set”” defined in Theorer@.4.

Proof. Suppose) has sidess, s, 53, s4, With so ands4 denoting the opposite sides which
do not intersect'(Q), ands1 andsz denoting the opposite sides that do intersecp).
By Theorem 3.4~ Fi(Q) is a closed, nowhere dense set@h each component
of (Mo F'(Q) intersects eithesy or s3, and ﬂl>0 F'(Q) has uncountably many
components. LeBo = (N, F'(Q). For eachn > =izn FI(Q)=F"(Boy) is a
closed, nowhere dense sethiti(Q), and each component &, intersects either the side
F"(s1) of F”(B) or the S|deF”(s3) For eachn, B, C Bn+l ConS|derUn>0 B,, = B.
SlnceB - B,,+1 for eachn, B is the Hausdorff limit of the sequendﬁb Bl, Bz, ..
SlnceF(B ) = Bp+1, F(B)_

Let O denote an accumulatlon point (relative to the Hausdorff metric) of the sequence
0, F(Q), F2(Q), ... of continua inR2. Then there is an increasing sequenggiy, . . . of
positive integers such th&'1(Q), F"2(Q), ... converges ta@). Now B € Q, but we need
to show thatQ < B. For 0< m < n, let E,,, = Mi_,, F/(Q). There is a subsequence
Rgys Roys - .- Of 1, mp, ... SUCh thatEndl,,,(rz, E converges toB (relative to the
Hausdorff metric). If1, g2, . . . is a sequence of positive numbers that convergesto 0, then
Dgl(E,,{rl ,102) DSZ(E,,{rl Moy ) . converges B (relative to the Hausdorff metric).

Suppose that is a posmve integem > 2. Then ifx € F"(Q) N Q, butx is not in
ﬂj:OF/(Q), then there is some leagt> 0 such thatx is not in F/(Q). Thus,x is in
(ﬂ,ﬁ;é FX(Q)\F/(Q), and F~/(x) is not in Q. But this means thaF/(F~/(x)) = x
is not in Q, because of the lockout property. This is a contradiction. It follows that
F'(Q)N Q CVIZgF/(Q), andF"(Q) N Q@ =(}_o F/(Q).

g Moy» =+
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Now the sequencé&”s1(Q), F"2(Q), ... converges to@, and if ¢; denotes the least
upper bound of the Hausdorff distances frafii (Q) to F"?i (Q) for j > i, then the
sequences, 2, ... converges to 0. Further, for eath

F'it1(Q) = (F"i+1(Q) N F"i (Q)) U (F"i+1(Q)\F"i (Q))
= Engi,ngi_*_1 ) (FnaHl(Q)\Fn{ri (Q))
Then

topttogey C Engynoy g U (F" L (Q\F"(Q)) = F"i+1(Q) C De; (Eng, ;. ,)-

Thus, é B.

Let 66 ={C: C is a component 0By that intersects botk ands’}, and B/, = UB/
Then 66, when endowed with the quotient topology, is a totally disconnected, compact
metric space. For each > 0, let H, = {H, 1, Hu2, ..., Hyy,} be a listing of the
components of \'_o F' (Q) that intersect botl andss. Thus,C € B} if and only if
there is some unique sequengeiy, ... of positive integers such that = ﬂ”>lH,, in
SinceF (H,_;,) N Q contains at leas¥ components that intersect batfnandsg, and each
H, ; contains at least one of thef'ﬂé‘componentsIS0 is a Cantor set, anB’ is a quotient
Cantor set.

Let Lo denote the closure dfJ{C: C is a point of continuity of3! o). Then Lois a
quotlent Cantor set of continua with respect to the upper semicontinuous decompaosition

Ly={C: C is a component ofLo}. It is easy to check that the quotlent Cantor set
Z"" of Theorem 3.4 is contained nao For eachn > z 0, let L,, = F”(Lo) and let
E ={F"(C): F"(C) is a component of,, }. Thus, eaclL, is a quotient Cantor set.

ConS|derUn>0 L,, = A. SlnceL C L,,+1 for eachn, A is the Hausdorff limit of
the sequenceLo, L1,Lo,.. SlnceF(L,,) Lyy1, F(L) = L. Let 1/2 >¢>0bea
positive number such thangl(Lo)U 0 Cc JH1. Let M1 ={Hq, ,mDsl(Lo) 1<j <l
Inductively, having chose:n 1, choose; to be a positive number less thgn 1 /2 and less
than ],/2’ such thathl (Loyuo C UH,;. LetM; = {H1,j N Dy, (Lo): 1< j <y1}. Thus,
eachM; = {L N Lo L € M;} is a clopen cover oL, relative to the topology inherited
by the subspaceo, and M = Ul>1/\7, is a basis foll.o. For each, let Lo, = /\7,-, and
foreachn > 0, Ietﬁ,, i ={F"(L). L e/\/l }.

For eachn, L, is a collection of components. For each poinin L,,, x is contained
in some componerk, , of L,,. ThenRy , € Ry ,+1 for eachx, eachn, and F (R ,) =
Rr(x),n+1. Note thatR, , C Z,, C F"(Q), andR, , “runs through”F"(Q), in the sense
that it intersects the opposite side%(s1) and F" (s3) of thenth image of the quadrilateral
Q. Clearly, R, is first category inA and connected. For eaeh> m > 1, eachR, ,,
is someEy .y € Ly, aNd Ey ,, , IS @ cOmponent Oﬂmgzgn F'(Q). Also, for each
m,n, F"(Ry n) “runs through”(M, ., ~i>,, Fi(Q) in the sense that il. € £,, ,, then
L N F"(R: ) contains at least one component that intersects both the opposite sides
F™(s1) andF™(s3). SinceL,, is a basis foim, R, is dense inA. Further, ifR, N Ry # @
for somex, y in U, >0 Ly, thenR, = R,. Thus,R = {R,: x € Um0 L.} partitions the
setlJ,, > Lm- It follows that( J,,~ L is connected, that is a continuum, and tha® is
uncountable.
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Suppose thatt is decomposable. Then there exists some proper subcontifuafm
such thatd has interior relative to the subspade Chooser from Zo. ThenR, intersects
bothint, (H) andint,(A\ H), and there is some such that

(i) Rc,N(F"(s1)U F"(s3)) does not intersect some componéndf R, , N H, and

(i) CNInta(H)#@.

Choosen > n so that
() Exnm N (F"(s1) UF"(s3)) does not intersect some compon€hof E, , , N H,
and

(i) C’'Nninty(H) #£ 0.

But H is a proper subcontinuum ofi, and by the choice of, , ,, the component
C’ of Ex,.m N H, which intersectdnt, (H), but does not contai#/, is clopen inH
(sinceEy n.m N (F™(s1) U F"(s3)) N C' = @). ThenH is not connected. Thus, we have a
contradiction, and it must be the case thaits indecomposable. O

Remark. Note that the continua in the s§b need not be arcs, sincdé may not be a
diffeomorphism. The components 8§ could even be hereditarily indecomposable.

Theorem 3.9. Suppose that” is a plane homeomorphisn@ is a quadrilateral in the
plane such thatF is a horseshoe orQ, for almost every poing in Q there is some
positive integen, such thatF"s(q) ¢ Q, and thatF satisfies the strong lockout property
on Q, i.e., there are a positive integer integdtr, ¢ > 0, and a pointx in R such that
F(L(Xx)) Cc L*(X), Q Cc L™ (X), d(F(L(X)),L(X)) > 7, and ifg € Q and F(q) is not
in Q, then FN7(g) is in L*(x). There ise > 0 such that if for each negative integer
j» F; is a homeomorphism oR? such that| F(x) — F;(x)| < e for eachx in R?, then
the sequence, f,l,,l(Q), f_l,_z(Q), ... of continua inR2 converges in the Hausdorff

metric to a unique limit poin3. Considered as a subset BP, B is a nowhere dense
continuum, and it is the closure of the §ep € R2 | F;'  (xo) € Q for all sufficiently
large n}. Furthermore, B contains an indecomposablé continuum A is the largest
indecomposable continuum contained & and A contains the quotient Cantor set
7" discussed in Theorefs.

Proof. This proofis just an appropriately modified version of the last proof. Thus we omit
the proof. O

Theorem 3.10. Suppose that' is the fluid flow diffeomorphism, aridt Z. There isc > 0
such that if for each integej < 0, F; is an area preserving diffeomorphism &% such
that for eachy € R?,

|F(q)— Fj(@)| <& and |DF(q)— DF;(q)| <e,

then the Hausdorff limit of the sequean F_1(0), F_1 _2(0;), ... of continua in

R2 is an indecomposable continuurh;. Furthermore, A; \{oo} is the set{x € R? |

(F_ 1.-n) " X(x) € Q; for all sufficiently largen}, and A; is contained in the boundary
95T (xo) of ST (x0).
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Proof. Suppose; has sidesy, s2, s3, 54, With s ands4 denoting the opposite sides which
do not intersec¥ (Q;), ands; andssz denoting the opposite sides that do intergeep; ).
As in the last proof, choosg > 0 so that ifF’ is a diffeomorphism oik2, and for eacly
R?, |F(q) — F'(¢)| < ¢ and|DF(q) — DF;(q)| < ¢, then F'satisfies properties (Fil)—
(Fi4); for almost every € Q;, lim,,_, » Iﬁfnyo(q) ="o0; and, in particular, the-coordinate
of fn,o(q) tends to+oco asn — oo (Proposition 3.3). There is> 0 such that Theorem 3.7
applies, and < ¢’. Then suppose that for each negative integdf; is a diffeomorphism
on R2, and for eachy € R?, |F(q) — Fi(g)l < ¢ and|DF(q) — DFj(q)| < €. Then

={g€Qi|Fuolq)e Qi forallneNand(F_1_,)"1(g) forall n € N} is a Cantor
set in the interior ofD; .

As in the last proofQ; N (ﬂj<0 f,l,j(Ql-)) is a a closed set with uncountably many
nowhere dense components. Because of Theorem 3.7, and arguments similar (only simpler,
since we only have to consider the forward direction) to those used in the proof of
Theorem 3.7, it follows thaBo = Q; N (N, F-1.;(Q:)) is a Cantor set of continua
in Q;, i.e., Bo = {C: C is a component ofBp} is a decomposition ofByg, which is
a Cantor set with respect to the topology induced by the Hausdorff metric. For each

n>0, B, =<, F-1;(Q) is a Cantor set of continua iR _,(Q;). For eachn,
B C B,,+1 Con5|derU >0 Bn = B. SlnceB - B,,+1 for eachn, A is the Hausdorff
limit of the sequenceBo, Bl, Bz, ..., and A; is also the Hausdorff limit of the sequence

0i, F-1.-1(0)), f71,72(Q~i) e

We can partition eaclB, into its components: denote this collection of components
as B,,. For each pointr in En, x is contained in some componeRy , of En. Then
Ren € Ryny1 for eachx, eachn, and F 1, 10 (F_1,) " (Ri.n) = R..ny1, Where
z=F_1_ny_10(F_1,)"Y(x). Note thatR, , C B, C F_1_,(Q;). Clearly, R, is first
category inB and connected. For each> 1, eachR, o is in the interior (relative to
the subspac®;) of some component of); N (ﬂlgzgn f,l,,l(Qi)), and moreover, the
collection {Q; N (ﬂlggn f,l,,I(Qi))};’;l forms a neighborhood base i@; for the
componenk, o. Thus, for eaclm > 0 and each > m, eachr, ,, is in the interior (relative
to the subspacé_1 _,,(Q;)) of some component, ,, , of Q; N (MNici<n F_1_1(0)
and, moreover, the collectiopQ; N (ﬂmgzgn F_l,_z(Qi))};’,ozl forms a neighborhood
base for the componerRx m Of By,. In fact, if £ > 0, there is somé&Vg such that if

> No, x € Bo, then De(Re0) 2 Qi N (ﬂ1<,<n F_ 1.-1(0;)). Thus, for eachn, there
is someé > 0 such that for each in B,,, (F_1 m)(Dg/(RZ 0)) € D¢ (Ry ), Wherez =
F,ly,m,l o (F,lym) 1(x). It follows that if x is in someB,,, lim,_ o V(Rx.m, Ex.mn) =
0. Thus,R, is dense inB.

Further, if R, N R, # @ for somex, y in B, then R, = R,. Thus,R = {R,: x €
U,0 B} partitions the setJ, ¢ B, It follows that( J,o B, is connected, thab is a
continuum, and thaR is uncountable. Then, finishing with essentially the same argument
as in the proof of Theorem 3.8, it follows that is an indecomposable continuumg
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The last proof is just an appropriately modified version of the corresponding proof in
the last section. That is also the case with the remaining results in this section, and thus we
omit the proofs.

Theorem 3.11 (Intermingling Theorem)Suppose thafF is a diffeomorphism oR?, p1
and p» are hyperbolic saddle fixed points fét, and F satisfies the following conditions

(1) fori =1, 2, W"(p;) intersects transversallW* (p;) in a point other tharp;,

(2) fori =1,2 Wu(p;) is nowhere dense iR?,

(3) p1¢ W4 (p2), but W#(p1) intersectsW* (p») transversally at some point, and

(4) fori =1, 2, and for some quadrilatera); containingp; in its interior, F satisfies
the strong lockout property 0@);.

Then

(a) each of A1 = W#(p1) and A2 = W4(p2) is an indecomposable continuum and
A1D Az, but A1 # Ay;

(b) there ise > 0 such that if for each integey < 0, F; is a diffeomorphism otR2
such that for eacly € R?, |F(q) — F;(q)| < &, and|DF(q) — DF;j(q)| < ¢, then
for some open se#; containing p;, the sequence;, F_1._1(0;), F_1,_2(0;), . ..
converges in the Hausdorff metric @®? to a unique limit point/Ti, which is an
indecomposable continuyrand

(c) for i =1,2, A; = {q: (F_1._,)"X(q) € o; for all sufficiently largen}, and A2 C
Xl, bUtXZ * /TJ_.

Proof. That A1 = W%(p1) and A2 = WH(p>) are indecomposable continua follows from
Barge’s Theorem, if we note that each branch of ed€Hp;) is dense inA; because
of the Lambda Lemma. It also follows from the Lambda Lemma thatc A1. Since
P1¢ Wi (p2), A2+# Ax.

Applying the Horseshoe Theorem, fioe= 1, 2, we can find an open set contained in
Q; and containingp; such thaf; is homeomorphic td0, 1] x [0, 1], and such that for
some positive integeN, FV is a hyperbolic horseshoe @h. Without loss of generality,
we can think ob; as being a quadrilateral in the plane. Sidé is a hyperbolic horseshoe
ono;, for almost every point in o;, there is some positive integaf, such thatFVx (x)
is not ino;. Thus, Theorem 3.9 applies #©" ono;, and we can choosé so small that
Theorem 3.9 is satisfied faf"Y ono; relative tos’. Then choose < ¢ so that for anyNV
diffeomorphisms?y, F». ..., Fy satisfying|F(q) — Fj(q)| < ,and|DF (q) — DF;(q)| <
¢ for eachy in R2, then|FN (¢)— F1.n(q)| <&, and|DFVN (q)— DF1 x(q)| < ¢ for each
g in R?. The result follows. O

Corollary 3.12 (Intermingling theorem for the fluid flow mafpuppose thak is the fluid
flow diffeomorphism. Then
(@) A; = Wut(p;) = We=(p;) and A; 11 = W4t (p;11) = W' (p;i41) are indecom-
posable continua which both contain the pa#at but neither intersect any C‘}yl
(b) A; is contained in the bounda@S™ (x;) of ST (x;) and A;\{c0} = {g: F"(q) is
in Q; for all sufficiently largen};
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(c) there ise > 0 such that if for each integej < O, F; is an area preserving
diffeomorphism ofR2 such that for each) € R?, | F(g) — Fi(g)l <sand|DF(g)—
DF; (¢)| < €, thenin the Hausdorff metric, the sequenize F_1(Q;), F-1.-2(Q;),

... of continua inR2 has a unique limit pointA; which containsss and is an
indecomposable continuum, but does not intersect any; Cyl
(d) A; is contained in the bounda®S+ (x;) of S*(x;) and

A} = {g: (F-1,-2)"Y(g) isin ©; for all sufficiently largen},

and
(e) for j>i, A; D Aj,butA; #A;.

Proposition 3.13. Suppose thafF is a diffeomorphism oR?, 51 and p» are hyperbolic
saddle fixed points faF, there is a connected segméntof the unstable manifold* (p1)

of p1 and a connected segmesi of the stable manifold gf, which have the same end
points, one componetitof R2\ (U1 U S») contains a fixed poindy, and another component
J’ (£ J) of R2\(U1U S») contains another fixed poini. Then each arc fromyg to z; must
intersectW (p1).

Proof. Suppose there is an aycfrom zg to z1 which does not intersedv“(p1). Then

y must intersecS>. Then for eachh > 0, F"(U1) is a connected segment of the unstable
manifold W" (p1) of p1 andF"(S>) is a connected segment of the stable maniféid p2)

of p» which have the same end points, aRtl(J) is the component oR?\ (U1 U S»)
that contains the fixed poinb, and F(J) is the component dR?\ (F" (U1) U F"(S2))
contains the fixed poing;. Theny must intersect#” (S2) for eachn, so there is a point
x, € F"(S2) N y. Since asn increases, the length af”(S2) converges to 0 and the
segmentd™” (S2) converge to the poinp2, the sequences, xo, ... converges tg>. But
this means thaps is in W*(p1) N y. Thus, we have a contradiction

Finally, putting all the fluid flow results together, we have our main fluid flow result.

Theorem 3.14 (Main fluid flow theorem, with and without noise3uppose thar is the
fluid flow diffeomorphism. There is> 0 such that if for each integey < 0, F; is an
area preserving diffeomorphism @&? such that for eacly € R?, |F(q) — Fi(g)| <eand
IDF(q) — DF;(q)| < ¢, then for eachi € Z,
(1) Cg, = {x: F"(x) € Q; for all n € Z} is an invariant Cantor set irQ;;
(2) Z; = {xo: the trajectory{x.,'}‘]?ifoo is contained inQ;} is a Cantor set inQ;;
(3) A; = W“(p;) is an invariant indecomposable continuum, in the Hausdorff metric
the sequenc®;, F(Q;), F2(Q;), ... of continua inR2 has the unique limit point
A;, and A; containsoo, but does not intersect any le
(4) in the Hausdorff metric, the sequen@e, F_1(Q;), ﬁ,l,,z(Qi), ... of continuain
R? has a unique limit pointA; which is an indecomposable continuum and which
containsoco, but does not intersect any (;yland
(5) each arc from Cylto Cyl,, ; must intersectA; and A;.
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Remark 3.1. Thus, in the noisy case, each continuuta gets “caught around” all
subsequent cylinders, as does each contindynit follows that the complement of each
A; consists of infinitely many connected components.

It is frequently the case that whem is a hyperbolic saddle fixed point for an area
preserving diffeomorphism on a 2-manifold that each branch of the unstable manifold
W*(p) is dense in some open setcontainingp. For example, this is the case for the
hyperbolic toral automorphisms. In this situation, Barge’s Theorem does not hold because
condition (B1) is not satisfied. However, in such a case, an indecomposable continuum
is still involved, as the next theorem demonstrates. This result has been independently
obtained by Marcy Barge [3], who used other techniques to prove it. It may describe the
situation when we consider our fluid flow diffeomorphiginwhen we restricF to R?, to
be the lift of a diffeomorphisnk on $* x R, with projection mam : RZ — S x R defined
sothatp F = Fg. ThenA = ¢(Ag) is a continuum ins® x R, ¢ (po) = po is a saddle fixed
point for F, and W* (pp) just keeps “wrapping around” itself. Thus, it may well be dense
in an open set that contaifs.

Theorem 3.15. Suppose thal is a compact2-manifold (with or without boundary,
F:X — X is a diffeomorphism, ang is a hyperbolic saddle point foF which is
not in the boundarp X of X (if X has a boundary Further, suppose that one branch
W4t (p) of the unstable manifold gf intersects the stable manifold* (p) in a point
other thanp, but that W“*(p) and W*(p) do not contain an arc in their intersection.
(Homoclinic tangencies are allow§dThen there is a homeomorphisin X — X, a
continuous surjectiorf : X — X, and an indecomposable continuutrin X such that

(1) fh = Ff (thatis,h factors overF),

(2) h(A) = 4,

(3) f(A)=Wut(p), and

(4) for x € X, the preimagef ~(x) is either a single point or an arc.

Proof. Since F is a diffeomorphismW*(p) is a smooth curve, and it is a one-to-one
image of the reals. Thus, at each painbf W*(p) there is a unique tangent link,
and a unique lineV, perpendicular taL,. There is a one-to-one, continuous function
a:R — WH(p) such thaix([0, co)) = W*T(p). Without loss of generality, assume that
F(W“*t(p)) = W*t(p) (otherwise replace” by F?). There is a continuous function
B:R — (0,1] such that (1)8(0) = 1, (2) B(x) = B(—x), (3) liMy_ 400 B(x) = 0. (We
might take the functiom (x) = 1/(1 + x?), for example.) Next “slice” the space along
WH(p) and at each point = «(z,) of W(p), insert a closed line segme@ into the
spaceX of Iengthﬁ(zx) < B(t,) which is centered at and lies along the lin@/,., with the
resulting functiong : [0, oo) — (0, 1] continuous and decreasing. (We assume that these
inserted intervalsv, are all disjoint.) Let\ = {N;: x € W*(p)} and letN+ = {N,: x €
WU+t (p)}. There is a continuous one-to-one surjectjorR x [—1,1] — (JN such that
for each(s, ¢), ¢(t,8) = a(t), ande({r} x [-1,1]) = Kf; The result of all this is a new
spaceX, which is homeomorphic t& in a natural way, but which has the property that
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X is a quotient ofX. Precisely, letM = A U {{x}: x ¢ |JN}. ThenX is the quotient
spaceX /M and the mapy": X — X defined byf (z) = x for eachx in |V, z € Ny, and
f(x) = for x ¢ ((JN) is continuous and monotone. Thus, the nﬁaps the quotient map
of Xto X. By construction, there is a homeomorphlgmx — X (and, of courseg # f)
Note thats (R x {1})) N /=1 (W* (p)\[p}) # 0. o

There is a homeomorphisi: X — X induced byF: Defineh(x) = f1F f(x) for
x ¢ UN and forz = ¢(t,¢), z € Nx € N, defineh(z) to be the unique point in
Np(x) N (@R x {&}) (i.e., h(Ny) = Np(x) for Ny e NV, andh(¢(R x {e}) = ¢ (R x {&})
for ¢ € [—1, 1]). Thus,k is one-to-one and onto. A little checking reveals thas also
continuous, so that is a homeomorphism. Furthefh = F f.

Finally, we need to prove thai([0, co) x {1}) = A is an indecomposable continuum.
Sinceg ([0, o) x {1}) is connected, andl is compactA is a continuum. NowV+(p) is
dense inW“*(p), and, because of the hyperbolicityatfor eacty, in [0, co), a([ty, 00))
is dense inW“+(p). Further, for 0< s < ¢, a([s, 7]) is nowhere dense iW“*(p). Then
d([ty,00) x {1}) < f_l(W“+(p)) and is dense i ([ty, 00) x {1}) = A, and fore €
[=1. 11, 7, €10, 00), ¢([1y,00) x {e}) 2 ¢([0, 00) x {1}) = A. Let C = ([0, o0) x {1}),
and fore e [—1, 1], let C. = ¢ ([0, 0) x {¢}). Note thatf|C,:C. — W“T(p) is one-to-
one and onto.

Suppose thatt is decomposable. Then there exists some proper subcontifuafm
such thatd has interior relative to the subspageThere exist 4 numbets < <13 <14
such thawe(;) = y;, CN f’l(yi) =z;, andzy, zz are notinH, while z», z4 are inH.

Suppose thab is an open set ifX that containg, is homeomorphic to an open disk,
and is sufficiently small thaW“* (p) separate®), as well as any open subset 6f that
containsp. Thenf—1(0) is an open set that contaiﬁé. There is a positive intege¥ such
thath =N (z;) is in f~1(0) for each 1< i < 4. Fori = 1, andi = 3, there are arcsf; and
M3 such thatM; andN?;v(/Zi) intersect in an aray; containsh—N (z;) in its interior, both
endpoints of\/; are i”U|s|<1 Ce, and(M1 U M3) Nh~—N(H) = @. There is some segment
[¢;,t,]in R such that ([, t./] x {1/2}) intersects eacM; and is contained irf—l(O),
and there is somg) such thaty ([0, 7o] x {1/2}) intersects eaclM; and is contained in
f7X(0). ThenS = M1UM3U ¢([1;. 1] x {1/2) U ¢ ([0, 10] x {1/2}) separateg —1(0),
and one component (ﬁ—l(O)\S contains the poimi—" (z2) of =~ (H) but not the point
h=N(z4) of =N (H). But S does not intersedi—" (H), while it does separate™" (H)
(sincehN(zp) is “inside” S and N (z4) is “outside” ). Then S separates " (H),
which is a contradiction ta~" (H) being a subcontinuum of. O
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