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Abstract Double-diffusive convective flow in an inclined rectangular enclosure with the shortest

sides being insulated and impermeable is investigated numerically. Constant temperatures and con-

centration are imposed along the longest sides of the enclosure. In addition, a uniform magnetic

field is applied in a horizontal direction. Laminar regime is considered under steady state condition.

The transport equations for continuity, momentum, energy and species transfer are solved using the

finite volume technique. The validity of the numerical code used is ascertained and good agreement

was found with published results. The numerical results are reported for the effect of thermal Ray-

leigh number on the contours of streamline, temperature, and concentration. In addition, results for

the average Nusselt and Sherwood numbers are presented and discussed for various parametric con-

ditions. This study was done for constant Prandtl number, Pr = 0.7, aspect ratio, A = 2, Lewis

number, Le = 2, the buoyancy ratio, N = 1, Hartmann number, Ha = 10 and the dimensionless
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Nomenclature

A aspect ratio, H/L

B magnetic induction, Tes
C vapor concentration
ch concentrations at the le

cl concentrations at the ri
C dimensionless vapor co

(ch � cl)

Cp specific heat at constan
D mass diffusivity
g acceleration of gravity

h heat transfer coefficient
hs solutal transfer coefficie
H cavity height
k fluid thermal conductiv

L cavity width
Le Lewis number, Le = a/
N buoyancy ratio

Nu average Nusselt numbe
Nui local Nusselt number
p pressure

P dimensionless pressure,
Pr Prandtl number, Pr = m
Qo heat generation or abs

�C
RaS solutal Rayleigh numbe
RaT thermal Rayleigh numb
Sh average Sherwood numb
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heat generation, U = 1. Computations are carried out for RaT ranging from 103 to 5 \ 105 and incli-

nation angle range of 0� 6 c 6 180�.
ª 2011 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V.

All rights reserved.
la = N/Am2

ft wall of the cavity

ght wall of the cavity
ncentration, C= (c � cl)/

t pressure

nt

ity

D

r, Nu = hL/k

P = pL2/q*a2

/a
orption coefficient, W/m3

r, RaS = GrS Pr
er, RaT = GrT Pr
er, Sh = hs L/D

Shi local Sherwood number

T local temperature
Tc cold wall temperature
Th hot wall temperature

DT temperature difference
u velocity components in x direction
v velocity components in y direction

U dimensionless velocity component in X direction
V dimensionless velocity component in Y direction
x, y dimensional coordinates

X, Y dimensionless coordinates

Greek symbols
a thermal diffusivity
bT coefficient of thermal expansion

bS coefficient of solutal expansion
U dimensionless heat generation or absorption
h dimensionless temperature, (T � Tc)/(Th � Tc)

l dynamic viscosity
m kinematics viscosity
q local fluid density
qo fluid density at the bottom surface

q* dimensionless density, NC � h
w dimensionless stream function
wmax maximum dimensionless stream function

c inclination angle
r electrical conductivity
1. Introduction

Natural convection is of a great importance in many industrial
applications. Application of natural convection in engineering

can be found in the solar collectors, furnaces, building heating
and cooling system, heat exchangers, and so on. Buoyancy-
induced flow and heat transfer in enclosures have received

considerable attention by many researches both experimentally
and numerically. A good review was reported by de Vahl
Davis [1].

Natural convection heat transfer induced by internal heat

generation has recently received considerable attention because
of numerous applications in geophysics and energy-related
engineering problems. Such applications include heat removal

from nuclear fuel debris, underground disposal of radioactive
waste materials, storage of foodstuff, and exothermic chemical
reactions in packed-bed reactor. Acharya and Goldstein [2]

studied numerically a complicated inclined cavity with inner
heat generation. Two Rayleigh numbers were introduced;
internal Rayleigh number RaI which is based on the rate of
heat generation and external Rayleigh number RaE which is
based on the temperature difference. The study covered a
range for RaI from 104 to 107, RaE from 103 to 106 and cavity
inclination angle from 30� to 90�.

Also, Rahman and Sharif [3] studied numerically the same
geometry with heated bottom and cooled top surfaces and
insulated sides. In their study, both RaI and RaE were

2 · 105 and the aspect ratio ranged from 0.25 to 4. They found
that for RaE/RaI > 1, the convective flow and heat transfer
were almost the same as that in a cavity without internal heat
generating fluid and they observed similar results as in Ach-

arya and Goldstein [2].
Heat transfer in partially divided enclosures has received

attention primarily due to its many applications such as the

design of energy efficient building, reduction of heat loss from
flat plate solar collectors, natural gas storage tanks, crystal
manufacturing and metal solidification processes. AlAmiri

et al. [4] studied numerically buoyancy-induced heat transfer
in a partially divided square enclosure with protruding iso-
thermal heater. Their study covered Rayleigh number in the

range of 104 6 Ra 6 5 \ 107. Various pertinent parameters
such as Rayleigh number, height of the heater, heater width,
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and heater location were carried out to investigate the effect
of the protruding heater on the heat transfer within the
cavity.

In addition, Oztop and Bilgen [5] studied numerically heat
transfer in a differentially heated, partitioned, square cavity
containing heat generating fluid which adds an additional dy-

namic effect to overall convection characteristics. The authors
illustrated that the cold partition decreased heat transfer with-
in the enclosure and the heat reduction was gradually in-

creased with increasing partition height and thickness.
Moreover, heat transfer within the enclosure was also reduced
significantly when the partition was closer to the hot or cold
wall.

Magnetic damping is one of the effective means practiced in
industry for thermally induced melt flow control. It is imitative
from the interaction between an electrically conducting melt

flow and an applied magnetic field to generate an opposing
Lorentz force to the convective flows in the melt. The damping
effect depends on the strength of the applied magnetic field and

its orientation with respect to the convective flow direction.
Substantial theoretical and numerical work, thus far, has ap-
peared on magnetic damping for natural convection [6–14].

Double diffusive convection occurs in a wide range of fields
such as Oceanography, Astrophysics, Geology, Biology,
Chemical processes, Crystal growth, etc. The double-diffusive
convection, which takes place when compositionally driven

buoyant convection and thermally driven buoyant convection
occur simultaneously, arises in a very wide range of fields such
as Oceanography, Astrophysics, Chemical vapor transport

process, Drying process, Crystal growth process, etc. Reviews
on this subject can be found in the publications of Ostrach [15],
Costa [16–17] and Nishimuraet al. [18]. Different enclosure

geometries were studied in these researches including square,
parallelogram and rectangular enclosures.

Chouikh et al. [19] studied numerically the natural convec-

tion flow resulting from the combined buoyancy effects of
thermal and mass diffusion in an inclined glazing cavity with
differentially heated side walls. The numerical approach en-
dorsed the authors to analyze the complex natural convection

flow situations arising in the inclined glazing cavity and to
evaluate the effect of different parameters on the solar still
performance.

Nithyadevi and Yang [20] studied numerically the effect of
double-diffusive natural convection of water in a partially
heated enclosure with Soret and Dufour coefficients around

the density maximum. The right vertical wall has constant
temperature while left vertical wall is partially heated. The con-
centration in right wall is maintained higher than left wall for
case I, and concentration is lower in right wall than left wall

for case II. The effect of the different parameters (thermal
Rayleigh number, centre of the heating location, density inver-
sion parameter, Buoyancy ratio number, Schmidt number, and

Soret and Dufour coefficients) on the flow pattern and heat
and mass transfer has been discussed.

Chamkha and Al-Naser [21] studied numerically the hydro-

magnetic double diffusive convection in a rectangular enclo-
sure with opposing temperature and concentration gradients.
Their cavity and conditions were similar to that of Nishimura

[18] but they imposed magnetic field and heat generation. They
found that the effect of the magnetic field reduced the heat
transfer and fluid circulation within the enclosure. Also, they
concluded that the average Nusselt number increased owing
to the presence of a heat sink while it decreased when a heat
source was present. They reported that the periodic oscillatory
behaviour in the stream function inherent in the problem was

decayed by the presence of the magnetic field. This decay in the
transient oscillatory behaviour was speeded up by the presence
of a heat source. Chamkha and Al-Naser [22] extended their

previous work by changing the boundary conditions of vertical
walls to be at constant heat and mass fluxes.

Teamah [23] made a parametric study and an extension for

Chamkha and Al-Naser [21,22] study. A range for thermal
Rayleigh number is studied from 103 to 106. This range covers
most of the engineering and industrial applications. In addi-
tion, a strong magnetic field required for modern electronic de-

vices is considered in this study. For this reason the Hartmann
number is increased to 200. Also, the heat generation and
absorption coefficients ranged from �50 to +25. Moreover,

the buoyancy ratio varied from �10 to +10. The numerical re-
sults are reported for the effect of thermal Rayleigh number
and the Hartmann number on the contours of streamline, tem-

perature, and concentration.
In addition, Ma [24] also made an extension for Chamkha

and Al-Naser [21] study by developing a temperature–concen-

tration lattice Bhatnagar–Gross–Krook (TCLBGK) model,
with a robust boundary scheme for simulating the two-dimen-
sional, hydromagnetic, double-diffusive convective flow of a
binary gas mixture in a rectangular enclosure. The numerical

results were found to be in good agreement with those of
Chamkha and Al-Naser [21].

From the previous review the steady, laminar, hydro-

magnetic, double-diffusive natural convection flow inside an
inclined rectangular enclosure in the presence of heat genera-
tion or absorption was not explained. Because this situation

is of fundamental interest and because it can have various pos-
sible applications such as crystal growth, geothermal reser-
voirs, nuclear fuel debris removal and solidification of metal

alloys, it is of special interest to consider it in the present work.
The top and bottom walls of the enclosure are assumed adia-
batic and impermeable to mass transfer while the vertical walls
are maintained at constant heat and mass fluxes. The cavity is

considered with a wide range of inclination of 0� 6 c 6 180�.
The magnetic Reynolds number is assumed small so that the
induced magnetic field will be negligible.
2. Mathematical model

The physical model considered in this paper is shown in Fig. 1.

A two-dimensional inclined rectangular enclosure of height, H
and width, L is filled with a binary mixture of gas. The longest
sides are maintained at constant and uniform different levels of

temperatures and concentrations, thus giving arise to double
diffusive free convection flow field. The top and bottom sur-
faces are assumed to be adiabatic and impermeable. The left
wall is the source where the mixture diffuses to the right (sink).

A uniform and constant magnetic field, B is applied normal to
the heated sides of the cavity. The fluid in this enclosure is as-
sumed to be incompressible, Newtonian, heat generating or

absorbing and viscous. Both the viscous dissipation and mag-
netic dissipation are assumed to be negligible. The magnetic
Reynolds number is assumed to be so small that the induced

magnetic field is neglected. These assumptions lead to the
Boussinesq approximation, Eq. (1), with opposite and
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Figure 1 A schematic diagram for the problem with boundary

conditions.
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compositional buoyancy forces which is used for the body
force terms in the momentum equations.

q ¼ qo½1� bTðT� TcÞ � bSðc� clÞ� ð1Þ

The governing equations for the problem under consideration
are based on the balance laws of mass, linear momentum, con-
centration and thermal energy in two dimensions steady state.

In the light of assumptions mentioned above, the continuity,
momentum, energy and concentration in two dimensional
equations can be written as follows:

@u

@x
þ @m
@y
¼ 0 ð2Þ

u
@u

@x
þ m

@u

@y
¼ � 1

q
@p

@x
þ m

@2u

@x2
þ @

2u

@y2

� �

þ sinðcÞ½gbTðT� TcÞ � gbsðc� clÞ� ð3Þ

u
@m
@x
þ m

@m
@y
¼ � 1

q
@p

@y
þ m

@2m
@x2
þ @

2m
@y2

� �

þ cosðcÞ½gbTðT� TcÞ � gbsðc� clÞ� �
rB
q

ð4Þ

u
@T

@x
þ m

@T

@y
¼ a

@2T

@x2
þ @

2T

@y2

� �
þ Qo

qCp

ðT� TcÞ ð5Þ

u
@c

@x
þ m

@c

@y
¼ D

@2c

@x2
þ @

2c

@y2

� �
ð6Þ

The boundary conditions for the problem could be written as

n At x = 0, u = m = 0.0, T = Th and c = ch
n At x = L, u= m = 0.0, T = Tc and c= cl
n And at y = 0 and y= H;
u ¼ m ¼ @T
@y
¼ @c

@y
¼ 0 ð7Þ

The boundary conditions and the governing equations are
non dimensionalized using the following dimensionless
variables

X ¼ x

L
;Y ¼ y

L
;U ¼ uL

a
; v ¼ mL

a
;P ¼ pL2

q�a2
;

h ¼ T� Tc

Th � Tc

and C ¼ c� cl
ch � cl

ð8Þ

After employing the dimensionless variables mentioned

above, the resulting dimensionless governing equations can
be written as

@U

@X
þ @V
@Y
¼ 0 ð9Þ

U
@U

@X
þ V

@U

@Y
¼ � @P

@X
þ Pr

@2U

@X2
þ @

2U

@Y2

� �
þ sinðcÞ

� ½RaTPrðh�NCÞ� ð10Þ

U
@V

@X
þ V

@V

@Y
¼ � @P

@Y
þ Pr

@2V

@X2
þ @

2V

@Y2

� �
þ cosðcÞ

� ½RaTPrðh�NCÞ� þHa2Pr� V ð11Þ

U
@h
@X
þ V

@h
@Y
¼ @2h

@X2
þ @2h

@Y2

� �
þ /� h ð12Þ

U
@C

@X
þ V

@C

@Y
¼ 1

Le

@2C

@X2
þ @

2C

@Y2

� �
ð13Þ

where, Pr is the Prandtl number, RaT is the thermal Rayleigh

number, N is the buoyancy ratio = bs[(ch � cI)]/bT[(Th � Tc)],
Ha is the Hartmann number = BL

ffiffiffiffiffiffiffiffi
r=l

p
, U is the dimension-

less heat generation or absorption coefficient = (QoL
2)/(qcPa),

and Le is the Lewis number, Le = a/D
The dimensionless boundary conditions become

n At X= 0, U = V = 0.0, h = 1 and C= 1

n At X= 1, U = V = 0.0, h = C= 0
n And at Y= 0 and Y= aspect ratio

U ¼ V ¼ @h
@Y
¼ @C
@Y
¼ 0 ð14Þ

The Nusselt and Sherwood numbers calculated as average

values and evaluated along the isothermal walls of the cavity
are given by

Nu ¼ � 1

A

Z A

0

@h
@X

� �
X¼0

dY ð15Þ

Sh ¼ � 1

A

Z A

0

@C

@X

� �
X¼0

dY ð16Þ
3. Numerical method

Numerical solutions of the full conservation equations are
obtained using the finite volume technique developed by

Patankar [25]. This technique is based on the discretization of
the governing equations using the central difference in space.
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Figure 2 Convergence and stability of the solution Pr = 0.7,

N = 1, Le = 1, Ha = 10, c = 60�, Ra = 105and / = 1.
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Figure 3 Comparison for average Nusselt number with Cham-

kha and Al-Naser [21] and Teamah [23] results, N= 0.8,

Ra = 105, Pr = 1, A = 2, c = 0� and Le = 2.
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Firstly, the number of nodes used was checked. During the
program tests (22 · 62) and (82 · 242) grids were used. Because

of minor differences (less than 0.15%) the results presented
here are obtained using number of grids (42 · 122). The 42 grid
points in X-direction were enough to resolve the thin boundary
layer near the vertical walls. To calculate both Nusselt and

Sherwood numbers, the following numerical differentiations
are used, @h

@x

��
X¼0 and

@h
@x
¼ limDX!0

Dh
Dx

� 	
. Therefore, at the isother-

mal wall very fine grids are needed to obtain accurate results.

In X-direction, the width of 5 control volumes close to both
the vertical boundaries were 1/4 the width of the central con-
trol volumes. Also the bottom and top surfaces are assumed

adiabatic and impermeable. Therefore in Y-direction, numeri-
cal differentiations are not needed. Therefore, the height of 5
control volumes close to both the horizontal boundaries were

1/4 the height of the central control volumes.
The discretization equations were then solved by the

Gauss–Seidel method. The iteration method used in this pro-
gram is a line-by-line procedure, which is a combination of

the direct method and the resulting Tri Diagonal Matrix Algo-
rithm (TDMA).

In order to check the convergence of the iteration, the

change in the average Nusselt and Sherwood numbers as well
as other dependent variables through one hundred iterations
were checked. Fig. 2 shows that the change in the average

Nusselt and Sherwood numbers is less than 0.01% from their
initial values which is an indication for the convergence and
stability of the solution.

4. Validation

Prior to calculations, checks were conducted to validate the

calculation procedure by performing simulation for; double-
diffusive convection flow in a vertical rectangular enclosure
with combined horizontal temperature and concentration gra-
dients and in the presence of magnetic field and heat genera-
tion effects which was reported by Chamkha and Al-Naser
[21], numerical simulation of double diffusive natural convec-
tion in rectangular enclosure in the presence of magnetic field

and heat source which was reported by Teamah [23] and lattice
BGK simulations of double diffusive natural convection in a
rectangular enclosure in the presence of magnetic field and

heat source which was reported by Ma [24].
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Firstly, a comparison for the predicted values for the aver-
age Nusselt numbers over a range for Hartmann from 0 to 50
for the present solution and the results published by Chamkha

and Al- Naser [21] and Teamah [23] is given in Fig. 3. The fol-
lowing parameters are kept constant; N= 0.8, Ra = 105,
Isoconcentration  Stream
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Figure 5 The streamlines, isothermals and isoconcentration contours

/ = 1 (a) Teamah [23] (b) Present Code.
Pr = 1, A= 2, c = 0� and Le = 2. The heat generation coef-
ficient equal to zero or one. In addition, Fig. 4 plots the values
of the average Sherwood number for the same previous condi-

tions. The maximum deviation between the results through this
range was within two percent. Some of this deviation may be
 lines  Isotherms 

1.00 0.00 0.50 1.00
0.00

0.50

1.00

1.50

2.00

with Ha = 100, Ra = 106, Pr = 0.7, N = 1, Le = 1, c = 0� and
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from the accuracy in the measuring from the graphs or from
the solution techniques.

Furthermore, another validation for the present numerical

solution is done by making comparisons for the isotherms,
Figure 6 The streamlines, isothermals and isoconcentration contour

/ = 0 (a) Chamkha and El-Naser [21] (b) Ma [24] (c) Present Code.
concentration and streamlines contours of the present work
with previous work. Fig. 5 is a comparison for the isotherms,
concentration and streamlines contours of the present work

and Teamah [23] with the following parameters kept constant;
s with Ha = 50, Ra = 105, Pr = 1, Le = 2, N= 0.8, c = 0� and
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Ha= 100, Ra = 106, Pr = 1, Le = 2, c = 0� and / = 1.
Finally, Fig. 6 is a comparison for the isotherms, concentration
and streamlines contours of the present work and Chamkha

and Al-Naser [21] and Ma [24] with the following parameters
kept constant; Ha = 50, Ra = 105, Pr = 1, Le = 2, c = 0�
and / = 0. Figs. 5 and 6 both show good agreement.
5. Results and discussions

The governing parameters in the double diffusive natural con-

vection in an inclined rectangular enclosure in the presence of
magnetic field and heat source are the Prandtl number, Pr; the
Lewis number, Le; the Rayleigh number, RaT; the Hartmann

number, Ha; the buoyancy ratio, N; the dimensionless heat
generation or absorption coefficient, U and the inclination an-
gle, c. In the present study, the Prandtl number, Pr is kept con-

stant at Pr = 0.7, aspect ratio, A= 2, Lewis number, Le = 2,
the buoyancy ratio, N = 1, the Hartmann number, Ha = 10
and the dimensionless heat generation, U = 1. Computations
are carried out for RaT ranging from 103 to 5 \ 105 and incli-

nation angle range of 0� 6 c 6 180�. The numerical results
for the streamlines, isothermals and isoconcentration contours
for various values of thermal Rayleigh number RaT, will be

presented and discussed for different inclination angles. In
addition, the effect of the Rayleigh number on the average
Nusselt and Sherwood numbers at various conditions will also

be presented and discussed.

5.1. Combined effect of thermal Rayleigh number and inclination
angle on the streamlines, isotherms and isoconcentrations
contours

Fig. 7 shows the effect of thermal Rayleigh number on the
streamlines, isotherms and isoconcentrations contours for

inclination angles; c = 0�, 45�, 90�, 135� and 180� with the fol-
b. Isoa. Streamlines

Figure 7a The streamlines, isothermals and isoconcentration contou
lowing parameters kept constants; Le = 2, Ha = 10, Pr =
0.7, N= 1 and / = 1.

For low thermal Rayleigh number values (Ra = 103) the

conduction regime is dominant in all the cavities as shown in
Fig. 7a. The isotherms and isoconcentration lines are almost
parallel lines to the isothermal walls indicating that most heat

transfer is by conduction. The effect of heat generation is ob-
served as it opposes the heat flow from hot wall. Moreover, the
cold wall receives much heat than that input by the hot one.

Therefore, near the hot wall, the value of temperature gradient
is less than that near the cold wall. In addition, the flow con-
sists of a very weak clockwise rotating cell (one unicell) with
maximum strength wmax = 1.6. Since, the cell is coming to

the hot wall from the cavity bottom and departs from it at
the cavity top, both heat and mass transfer at the cavity bot-
tom is higher than at the top. Also, it is seen from Fig. 7a that

the isothermals and isoconcentrations are closer to the hot wall
in the lower region. In addition, the effect of thermal Rayleigh
number on the streamline, isothermals and isoconcentration

contours for the horizontal cavity (heated from below) is quite
different from other cavities. The flow field does not consist of
uni-cellular flow as the other cavities but it consists of two-cel-

lular flows (Benard cellular flow) with each cell rotating along
the opposite direction. The fluid near the lower wall (the hot
wall) has lower density and it needs to move upwards while
on the other hand the fluid near the upper wall (the cold wall)

needs to move downwards. This causes the cavity to be divided
into two squares each with a unicellular flow rotating along the
opposite direction to its neighboring ones with wmax = 0.022.

The contribution of convection is noticeable at high Ray-
leigh number as evident by the departure of the isotherms from
the vertical pattern and the mechanism of heat transfer is grad-

ually shifted to natural convection. The contours plots of con-
centration are more inclined than this of temperature, which is
due to higher heat rate, 1/Le, with Le > 1. Fig. 7b plots the

contours at Rayleigh number (Ra = 5 \ 103) where convection
c. Isoconcentrationstherms

rs with Ha = 10, Pr = 0.7, Le = 2, N= 1, / = 1 and Ra = 103.



a. Streamlines b. Isotherms c. Isoconcentrations

Figure 7b The streamlines, isothermals and isoconcentration contours with Ha = 10, Pr = 0.7, Le = 2, N= 1, / = 1 and

Ra = 5 \ 103.

c. Isoconcentrationsb. Isothermsa. Streamlines

Figure 7c The streamlines, isothermals and isoconcentration contours with Ha = 10, Pr = 0.7, Le = 2, N= 1, / = 1 and Ra = 104.
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is more pronounced and the flow cell moves upward and its
strength increases. The maximum strength of the rotating cell
is wmax = 5 for the upwards and downwards cavities,

wmax = 5.5 for the inclined cavity at c = 45� and the inclined
cavity at c = 135�. The maximum strength for the horizontal
cavity is wmax = 4.5 which is located at the centre of the cavity.
This is clarified by the fact that the isotherms and isoconcen-
trations are closer to the hot wall in the middle region and sub-
sequently the heat and mass transfer are maximum at this
region.

Moreover, Fig. 7c plots the contours at Rayleigh number
(Ra = 104). The strength of flow cells is higher than Fig. 7b.
The maximum strength; wmax = 7 for the upwards and
downwards cavities, wmax = 8 for the inclined cavity at
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c = 45� and the inclined cavity at c = 135�. This is an indica-
tion for higher convection current within the cavity. The iso-
therms and isoconcentrations are further shifting to the

horizontal distribution in the cavity core.
Further increase in Rayleigh number to Ra = 5 \ 104 and

105 as shown in Fig. 7d and e causes distortion in the central

flowing cell. The maximum strength for the flowing cell in
a. Streamlines b. Iso

Figure 7d The streamlines, isothermals and isoconcentration co

Ra = 5 \ 104.

b. Isotha. Streamlines

Figure 7e The streamlines, isothermals and isoconcentration contou
Fig. 7d is wmax = 16 for the upwards and downwards cavities,
wmax = 15 for the inclined cavity at c = 45� and the inclined
cavity at c = 135�. The streamlines are crowded near the

cavity wall and the cavity core is empty. In addition, two sec-
ondary symmetrical rotating cells developed in the streamlines
contours of the horizontal cavity. The circulation within the

horizontal cavity has maximum strength of wmax = 1.6. The
therms c. Isoconcentrations

ntours with Ha = 10, Pr = 0.7, Le = 2, N= 1, / = 1 and

c. Isoconcentrationserms

rs with Ha = 10, Pr = 0.7, Le = 2, N= 1, / = 1 and Ra = 105.



c. Isoconcentrationsb. Isothermsa. Streamlines

Figure 7f The streamlines, isothermals and isoconcentration contours with Ha = 10, Pr = 0.7, Le = 2, N = 1, / = 1 and Ra = 5 \ 105
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isotherms and isoconcentrations are further shifting to the hor-

izontal position as Rayleigh number increases. But the iso-
therms and isoconcentration of the horizontal cavity show
similar configurations to the case of Ra = 5 \ 103 but with fur-

ther stratifications in the centre of the cavity.
Additionally, similar contribution for high thermal Ray-

leigh number is also noticed in Fig. 7e. The flow cell strength
further increases with maximum strength; wmax = 26 for the

upwards and downwards cavities, wmax = 20 for the inclined
cavity at c = 45� and the inclined cavity at c = 135�. In addi-
tion, multiple secondary rotating cells developed in the upper

corners of the horizontal cavity. The circulation in the horizon-
tal cavity increases reaching wmax = 26. Similar distributions
for the isotherms and isoconcentrations contours toFig. 7d oc-

cur in Fig. 7e.
For even higher values of Ra = 5 \ 105, Fig. 7f shows that

the isotherms and isoconcentration are almost parallel lines to

the isothermal walls. Also, the isotherms and isoconcentration
are in the thin boundary layer and stratified in the core of the
cavity.

This can be attributed to high convection current within the

cavity which also causes a reduction in the temperature gradi-
ent in the centre of the cavity. The strength of the flowing cell
increases with wmax = 26 for the upwards and downwards

cavities, wmax = 34 for the inclined cavity at c = 45� and the
inclined cavity at c = 135� and wmax = 60 for the horizontal
cavity.
0 0.5 1 1.5 2
Y

-1

Figure 8a The local Nusselt number versus Y, with Ha = 10,

Pr = 0.7, Le = 2, N = 1, / = 1 , Ra = 104 and c = 0�, 45�, 90�,
135� and 180�.
5.2. Effect of inclination on the local Nusselt and Sherwood

numbers

Fig. 8a and b illustrates the effect of inclination on the local
Nusselt and Sherwood numbers over the hot wall with the fol-
lowing parameters kept constant; Le = 2, Ha = 10, Pr = 0.7,
N= 1, Ra = 104, / = 1 and c = 0�, 45�, 90�, 135� and 180�.
As shown in Fig. 8a, for the vertical cavity and the cavity

inclined at c = 45�, the local Nusselt number has maximum
values at the cavity bottom and its value decreases as we move
upwards. If we return to Fig. 7c the absolute value for the tem-

perature gradient has maximum value at the bottom of these
cavities and minimum values at the cavities top. The opposite
contribution is for the cavities inclined at c = 135� and 180�,
where the local Nuselt number has minimum values at the
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Figure 8b The local Sherwood number versus Y, with Ha = 10,

Pr = 0.7, Le = 2, N = 1, / = 1 , Ra = 104 and c = 0�, 45�, 90�,
135� and 180�.
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Figure 9a The effect of thermal Rayleigh number on the average

Nusselt number for inclination angle range of 0� < c < 180�.
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Figure 9b The effect of thermal Rayleigh number on the average

Sherwood number for inclination angle range of 0� < c < 180�.

280 M.A. Teamah et al.
cavity bottom and its value increases as we move upwards.
Also this is clarified by referring to Fig. 7c where the absolute
value for the temperature gradient has minimum value at the

bottom of these cavities and maximum values at the cavities
top. In addition, the horizontal cavity experiences different
behavior. The local Nusselt number has minimum values at
the cavity bottom which then starts to increase as we move up-

wards until it has maximum value at the cavity center (Y= 1).
Then the local Nusselt number starts to decrease once again
reaching its initial value at the cavity top. Fig. 7c emphasizes

this behavior of the local Nusselt number for the horizontal
cavity. The absolute value for the temperature gradient has
minimum value at the bottom of the cavity and it starts to in-

crease as we move upwards reaching the maximum value at the
centre of the cavity and then decreases once again reaching the
initial minimum values at the cavity top. Furthermore, Fig. 8b

shows the local Sherwood number over the hot wall. Similar
contributions to Fig. 8a are obtained but with higher values
for the local Sherwood number. Finally, referring to Fig. 8a
and b it is clarified that the highest values for the local Nusselt

and Sherwood numbers are at the cavities inclined at c = 45�
and 135�.

5.3. Effect of thermal Rayleigh number on the average Nusselt
and Sherwood numbers

Fig. 9a and b illustrates the effect of thermal Rayleigh number

on the average Nusselt and Sherwood numbers for inclination
angle range of 0� 6 c 6 180�. Fig. 8a shows that generally for
all inclination angles, as Rayleigh number increases the aver-

age Nusselt number increases. For the horizontal cavity,
c = 90�, at lower values of Rayleigh number, Ra = 103, the
average Nusselt number has the lowest value in comparison
with other cavities. This is clarified by referring to the iso-
therms contours in Fig. 7a where the isotherms are parallel
lines and hence the conduction regime is highly dominant com-
pared to other cavities. For 103 < Ra < 5 \ 104, the average

Nusselt number of the horizontal cavity has the maximum va-
lue when compared to other cavities. This is also clarified by
referring to the isotherms in Fig. 7b and c where the isotherms

of the horizontal cavity are closely attached to the heated wall
in the middle region over a larger distance when compared to
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the other cavities. This means that @h
@X

� 	
atX ¼ 0 (along the

heated wall) has larger values when compared to other cavities
and hence larger average Nusselt number. In addition, for

5 \ 104 6 Ra < 5 \ 105, the average Nusselt number of the
horizontal cavity starts to decrease unlike other cavities. This
behavior is clarified by again referring to the isotherms con-

tours in Fig. 7d and e. The isotherms are closely attached to
the heated wall in smaller areas and subsequently the average
Nusselt number decreases. Finally, for higher values of Ray-

leigh number Ra = 5 \ 105, it is expected that the average
Nusselt number for the horizontal cavity decreases but the
opposite occurred due to the high instabilities that occur in
the case of cavities heated from below (Rayleigh Benard

instability).
Fig. 9b shows similar consequences for the effect of

Rayleigh number on the average Sherwood number for the

same range of inclination angles. The values of the average
Sherwood number are higher than those of the average Nusselt
number. Also, generally for all inclination angles as Rayleigh

number increases the average Sherwood number increases.
The exception is for the horizontal cavity as mentioned above.
Over the range of 103 6 Ra 6 5 \ 104 the same results of the

average Nusselt number are applied here for the average Sher-
wood number. In contrast, the instabilities started to appear
earlier at Ra = 105 and continued for even higher values of
Rayleigh number Ra = 5 \ 105. In conclusion, referring to

Fig. 9a and b, it is clarified that the highest values of the aver-
age Nusselt and Sherwood number are at the cavities inclined
at c = 45� and 135�.

6. Conclusion

Steady heat and mass transfer by natural convection flow of a

heat generating fluid inside an inclined rectangular enclosure in
the presence of a transverse magnetic field was studied numer-
ically. The finite-difference method was employed for the solu-

tion of the present problem. Comparisons with previously
published work on special cases of the problem were per-
formed and found to be in good agreement. Graphical results

for various parametric conditions were presented and dis-
cussed. It was found that the heat and mass transfer mecha-
nisms and the flow characteristics inside the enclosure
depended strongly on the thermal Rayleigh number. Increas-

ing the source term in the momentum equation, by increasing
the Rayleigh number, always lead to increases on the heat and
mass transfer performance of the enclosure. This is clarified by

plotting the average Nusselt and Sherwood numbers with dif-
ferent values of thermal Rayleigh number and for different
inclination angles. Also, the different flow characteristics of

the horizontal cavity were discussed in details (Rayleigh–Be-
nard convection). Furthermore, results revealed that the best
inclination angles are c = 45� and 135� since both cases have
higher values of local and average Nusselt and Sherwood

numbers.
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