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Abstract We propose a Poisson—Lie analog of the symplectic induction procedure, using an appropriate
Poisson generalization of the reduction of symplectic manifolds with symmetry. Having as basic tools the
equivariant momentum maps of Poisson actions, the double group of a Poisson—Lie group and the reduction
of Poisson manifolds with symmetry, we show how one can induce a Poisson action admitting an equivariant
momentum map. We prove that, under certain conditions, the dressing orbits of a Poisson—Lie group can be
obtained by Poisson induction from the dressing orbits of a Poisson—Lie subgroup.
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1. Introduction

Poisson manifolds occur as phase spaces in Hamiltonian mechanics and have important
applications to the theory of completely integrable systems. This is, in particular, the case of
bihamiltonian manifolds, that is manifolds equipped with two Poisson struciyr@sdrr, such
that [r1, 7] = 0, see [910, 15, 16, 19]. The algebras of observables in quantum mechanics
are also relevant to Poisson geometry, as explained in [12].

A Lie group equipped with a Poisson structure such that the corresponding group operation be
a Poisson map, is called Poisson—Lie group. This particularly interesting and rich structure has
first been studied in [5] and [20] (see also [14] and the monograph [22]). Poisson—Lie groups
arise naturally in problems of quantum field theory and integrable systems. For example, a
solution of the quantum Yang—Baxter equation defines a “quantum group” in the sense of [6]
which, by definition, is a Hopf algebra. Formally, the “classical limit” of a quantum group is a
Poisson—Lie group.

On the other hand, there exist integrable systems, as for example the KdV equations, for
which Poisson—Lie groups provide a deeper insight. For such systems, the dressing tansfor-
mation groups play theoté of “hidden symmetry” groups. According to [20], the dressing
transformation group does not in general preserve the Poisson structure on the phase space.
Furthermore, it carries a natural Poisson structure defined by the Riemann—Hilbert problem en-
tering the definition of the dressing transformations, and it turns out that this Poisson structure
makes the dressing transformation group into a Poisson—Lie group.
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In the same context, the Hamiltonian actions of Poisson-Lie groups have clarified several
aspects of the soliton equations. Indeed, the dressing transformations of the soliton equations
which admit a Lax representation, are generated by the monodromy matrix [2], which in this
case is a momentum mapping in the sense of [13].

Our aim in this paper is to generalize and study the procedure of symplectic induction
[11, 7, 8] in the context of Poisson—Lie groups and Poisson manifolds. As we shall explain,
this generalization is possible in the following sense: given a Poisson-Lie g&uns), a
Poisson—Lie subgroufH, 7y) — (G, ng), a Poisson manifoldP, wp) and a Hamiltonian
actionH x P — P with equivariant momentum mappirgy — H*, one can construct a new
Poisson manifold Pyg, 7ing) on which the Poisson—Lie grous, ) acts in a Hamiltonian
way. This statement is our basic result and it is given by Theorem 4.3. As in the symplectic
case, an appropriate reduction procedure (for Poisson manifolds now) is needed. This is easily
obtained putting together known facts about Poisson reductiar2Pl3see Theorem 2.1. We
also need appropriate Poisson generalizations of the natural Hamiltonian actions of a Lie group
G and a Lie subgroupl ¢ G on the cotangent bundie*G from which the induced manifold
is constructed [8]. Propositions 3.1 and 3.3 describe these actions in the Poisson setting.

We finally prove that the Poisson induction procedure can be used in order to find Pois-
son generalizations of the modified cotangent bundles [8] and of the symplectic induction of
coadjoint orbits [34].

Conventions. If (P, wp) is a Poisson manifold, them,ﬁ: T*P — T P is the map defined by
a(nﬁ,(ﬁ)) = np(a, B) Vo, B € T*P. Letnowo:G x P — P (resp.o:P x G — P) be a
left (resp. right) Poisson action of the Poisson-Lie gr@@pzg) on (P, 7p), and let us denote
by o (X) the infinitesimal generator of the action and Gy the dual group ofs. Then, we
say thato is Hamiltonian if there exists a differentiable mdpP — G*, called momentum
mapping, satisfying the following equation, for eaxhe g:

o(X) =w5(I*X")  (resp.o(X) = —m5(I*X)).

In the previous equatioX' (resp.X") is the left (resp. right) invariant 1-form d&* whose value

at the identity is equal tX € g = (g*)*. The momentum mapping is said to be equivariant,
if it is a morphism of Poisson manifolds with respect to the Poisson struetuon P and the
canonical Poisson structure on the dual group of the Poisson Lie ¢&ufs). Left and right
infinitesimal dressing actions g* — X(G) andp: g* — X(G) of g on G* are defined by

AE) =ngE) and p(g) = —ni(E)  VEegh

Similarly, one defines infinitesimal left and right dressing actiong o G*. In the case where
the vector fields.(¢) (or, equivalentlyp (§)) are complete for af € g*, we have left and right
actions of(G*, ng+) on (G, ng) denoted also by andp respectively, and we say th@s, ng)
is a complete Poisson—Lie group.

2. Reduction of Poisson manifolds

The reduction of symplectic manifolds with symmetry has been systematically studied in [18].
Theimportance of this procedure for Hamiltonian dynamics is already very clear as it describesin
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aunified way several properties of Hamiltonian systems. The Poisson generalization of reduction
with symmetry has been carried outin [13] for the special case of a Poisson action of a Poisson—
Lie group on a symplectic manifold, admiting a momentum map. On the other hand, reduction
of Poisson manifolds with symmetry under the Hamiltonian action of an ordinary Lie group can
be found in [22]. Here we will study a somewhat more general situation where a Poisson—Lie
group acts in a Hamiltonian way on a Poisson manifold. Before we state the reduction theorem
for Poisson manifolds with symmetry, we recall the notion of sub-characteristic distribution. If
(P, mp) is a Poisson manifold and a submanifold ofP, then we define the sub-characteristic
distribution ofN as

CN =75 ((TN)) N TN (2.1)
where(T N)° is the annihilator of the tangent bundleN:
(TuN)° = {a € TP | a(v) =0, Vv e TN}.

We will deal only with Poisson actions of Poisson—Lie groups admiting equivariant momentum
mappings. Although this seems to be a strong condition on the Poisson action, it has been
proved ([3]) that, at least for Poisson actions on symplectic manifolds, one can, under reasonable
conditions, be reduced to the equivariant case.

Theorem 2.1. Let (P, 7p) be a Poisson manifold anel: G x P — P a Poisson action of the
connected Poisson-Lie groy@, =g) on (P, 7p) admiting an equivariant momentum mapping
J: P — G*. Letue G* be an element such thdtl) u is a regular value for all the restrictions
of J to the symplectic leaves of ) the submanifold 3(u) has a clean intersection with the
symplectic leaves of P. ThghG, is the isotropy subgroup of u with respect to the left dressing
action of G on G, the sub-characteristic distribution of-3(u) defines a regular foliatiofthat

is of constant dimensidrwhose leaves are the orbits of,GFurthermore if this foliation is
defined by a submersiond~1(u) — P, then the manifold Ppossesses a well-defined Poisson
structure whose symplectic distribution is the projectio8 @) N T J-1(u), where$S(P) is the
symplectic distribution ofP, 7p).

Proof. We observe that the existence of a momentum mapping for the actionplies that
the orbitG - x, for eachx € P, is contained in the symplectic le&fx) throughx and for each

x € J~1(u), the orbitG, - x is contained inS(x), = S(x) N J~1(u). Furthermore, we have
75 (X)((Txd~1(W))°) = Tx(G - x) and the submanifold ~*(u) has a clean intersection with the
orbits of Gin P: T(G-x)NT JX(u) = T(Gy - x). After these remarks, the details of the proof
are asin[13]and [22]. O

The reduction described in Theorem 2.1 is called leafwise reduction because the reduced
Poisson structure is obtained by reducing each symplectic |eRftgf the standard procedure
of symplectic geometry.

3. Hamiltonian actions on the double Lie group

Let G be a Lie group and: H — G a closed Lie subgroup. We have a right actionbf
on G given by right multiplication(g, h) — gh Vg € G, h € H, and a left action of5 on
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itself given by left multiplication(g, g") — gg Vg, g € G. The cotangent lifts of these two
actions are the basis of the symplectic induction [8] and in the left trivializatigh = G x g*
they are given by the relations

((g, ), h) = (gh, Coadh ™) 1) V(g u) € T*G, he H, 3.1

(9, (9, w) — (99, w) VgeG, (9w e T*G. (3.2)
These actions are Hamiltonian and their equivariant momentum mappings are respectively given

by
T*G 5 (g, u) — —i*u € h* V(g, ) € T*G, (3.3)

T*G 3 (g, ) — Coadg)n € g* V(9 ) € T*G (3.4)

where} is the Lie algebra oH andi*: g* — b* is the canonical projection. We will generalize
in this section the previous Hamiltonian actions in the context of Poisson—Lie groups. This
generalization will provide the basis for Poisson induction, as we will see in the sequel.

Let (G, ng) be a connected, simply connected and complete Poisson-Lie group and
i:(H,74) — (G, ng) a closed Poisson-Lie subgroup. ThenDifG) is the double group
of G, we find, by [13, Proposition 11.36], that the right actionD(G) x H — D(G) given by
right multiplication

rd,hy=dh vde D(G), heH (3.5)

is a Poisson action for the symplectic structwteon D (G) and the Poisson structung onH.
We recall here that in the case we are studying the double dbd@) is gobally isomorphic
to the productG x G* with the group law given by the relation

(g7 u) : (hv U) = (gpu—l(h)a )"h_l(u)v) V(g’ u)’ (h7 U) € D (36)

Furthermore, there exist two Poisson structuteqsymplectic) andr_ (Poisson-Lie) oD (G)
given by

m1(d) = 3(Ramo £ Lamo),

wherery € A20 is the bivector defined byo(&1 4+ X1, &+ Xo) = £1(X2) —£2(X1) V& + Xi €
0%, i = 1,2, see [13] for more details. In the defining equationref Ly and Ry are the
extensions to multivector fields, of left and right multiplicationDn

In fact, the right Poisson action given K§.5) is Hamiltonian:

Proposition 3.1. The right Poisson action given b§8.5) is Hamiltonian with equivariant
momentum mapping JD(G) — H* which can be taken equal to
‘JI’ = So I* o p2

where sH* — H* is the inversion on the dual group{i*: G* — H* is the projection of
dual groups induced by the inclusiondl — G, and p: D(G) — G* is the projection onto
the second factor.

Proof. The infinitesimal generator of the right actiGa5) is given by the relation(Y)(d) =
TeLq(i.Y,0) VY € h,d € D(G). Setting now(J*Y")(d) = (n1+ Y1) o TgLg-10 TgR,-1, where
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d=gu, 7 +Y; €d* = g* @ g, andr} (JFY)(d) = (J*Y")], one finds

(JYDE = (TgRy 0 TeLg)[(Y1 — ToLg22(1)(@)) @ (TuRu-1p (YD) (W) — 12)]. 3.7)

The elements); andY; of the previous expression are calculated using the definition of the
momentum mag,. One findsy; = 0 andY; = —i,Coadw ™ H)Y, w = J(d) = (i*u)~t. We
proceed by recalling the following useful properties of Poisson—Lie groups [3]:

Lemma3.2. (1) If w = (i*u)~%, then i,Coadw~1)Y = Coaduw)i,Y Yu e G*, Y € b.
(2) The left and right dressing vector fields on the Poisson—Lie gt@iprg) are related as
follows

p(Coad)§)(9) = —A(§)(9)

for each ge G, ¢ € g*.
(3) If the mapg: G x G* — D(G) given by (g, u) = gu is a global diffeomorphism and
X € g,u e G* then

Adpe)(W(X & 0) = Tepy-2(X) ® (=TuRy1A(X) ()

wherep, is the right dressing transformation of*®n G andx(X) the infinitesimal generator
of the left dressing transformation of G oG

Replacing now in3.7) the values ofj; andYy, using Lemma 3.2 and the fact that the tangent
at the identity of the dressing transformations equals to the coadjoint representation, we find
—(JYN)g = (TyRy o TeLg) (Adp(e) (W) (.Y & 0))
= TeLa(i,.Y ©0),
which proves that); is indeed an equivariant (because it is a Poisson morphism) momentum
map for the right action. O

Using analogous techniques, one can prove the following:
Proposition 3.3. The left actioni(G, ng) x (D(G), 7)) — (D(G), 71) given by
lk(d) = Au(khy-2(9)) -u =2, _,w(K)g-u Vke G, d=gue D(G) (3.8)
is Hamiltonian with equivariant momentum mapB(G) — G* such that
J(d) =pg:(u)  vd=gue D(G). (3.9)

In the trivial case where the Poisson structuggis zero, one ha&* = g* and the dressing
transformations o5* on G are trivial. Furthermore, the dressing transformation& an G*
reduce to the coadjoint action & on g* and the group law ol (G) = G x g* is simply
the semi-direct product structure @riG = G x g*. Then, the Hamiltonian actions and their
equivariant momentum mappings described in Propositions 3.1 and 3.3 reduce to the actions and
momentum mappings given by the relatigBsl), (3.3) and(3.2), (3.4) respectively, because
Ay = 1d Yu e G*.
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4. Induction of Hamiltonian Poisson actions

We recall first [3] for the reader’s convenience some properties of the Hamiltonian actions
of Poisson—Lie groups, very useful in what follows.

Proposition 4.1. (1) Leto: P x G — P be a right Poisson action of the connectsiinply
connected and complete Poisson—Lie gré@prg) on the Poisson manifoldP, 7p), admiting
an equivariant momentum mappingRB — G*. Thenthe maps: G x P — P defined as

5@ p) =c(p.[lap@]™) VgeG, peP (4.1)
is a left Poisson action. Furthermaré is an equivariant momentum map for
(2) Letoi: G x B — PB,i = 1, 2 be left Poisson actions admiting equivariant momentum

mappings i P, — G*, where G is as previously. ThenthemalG x P - P,P =P, x P,
defined by

(9, P) = (61(h3,(p» (), P1), 02(0, P2)), p=(p1, p2) € P (4.2)

is a left Poisson action with respect to the Poisson structye= r; @ 7, on P. Furthermore
J = Mo (J x Jp): P — G*is an equivariant momentum mapping éorwherem: G* x G* —
G* is the group multiplication in G.

Consider a Poisson—Lie grou@, =¢) and leti: (H, 7y) — (G, ng) be a closed Poisson—
Lie subgroup. In order to simplify the discussion, we assumd @at ) is complete, connected
and simply connected, so the double grduG) of G will be isomorphic toG x G* with the
group law given by3.6).

Leto: (H, 7y) x (P, 7p) — (P, wp) be aleft Hamiltonian action ¢H, =) on the Poisson
manifold (P, 7rp) with equivariant momentum mappiny P — H*. By Proposition 4.1, we
have a left Poisson actidh (H, ny) x (D(G), 7)) — (D(G), 7) canonically associated to
the right Poisson action of Proposition 3.1, and if

(P, 7p) = (P, p) x (D(G), ), (4.3)

we also have a left Poisson actién(H, 7p) x (P, m5) — (P, m) admiting an equivariant
momentum mapping: P — H* given by

J(p,d)=I(P I  V(p,d)eP. (4.4)
Explicitly, the actions is given by

(P, d) = (o (kg @(h), P), Fr(d)) V(p.d)e P, heH (4.5)
wheref is the left action with

fh(d) =dis@()™  vde D(G), heH. (4.6)

We now observe that the momentum mapping — H* is a submersion, so each element of
the dual grougH * is a regular value fod. In particular, ife* is the unit ofH*, thenJ—%(e¥) is
a submanifold ofP. Using the fact that, is symplectic, we find that the symplectic leaves of
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(P, mp) are of the formS x D(G), whereSis a symplectic leaf oP. This means tha¢* is a
regular value for all the restrictions dfto the symplectic leaves d¥.

Next, we consider the intersections of the submanifbtd(e*) with the symplectic leaves
of P. Using the expressio.4) of J and Proposition 3.1 we find

J7%e) ={(p,gu) e P=P x D(G) | I(p) =i*(w)}. (4.7

On the other hand, the symplectic le&fm) throughm = (p,d) € P is equal toS(m) =
S(p) x D(G), and

J7Ye") N sm) = {(p,guw € S(p) x D(G) | I(p) =i*(W)}. (4.8)

We see now thal,J(e* ) N TaS(M) = Tn( ~1(e*) N S(m)) for each poinn € J-1e") N
S(m) which confirms that’—1(e*) has a clean inersection with the symplectic leave$ of
Furthermore, the isotropy subgroupeifwith respect to the left dressing transformationgiof
on H* is the groupH itself, and if we assume that the actiontéfon P is proper, then all the
conditions of Theorem 2.1 are fulfilled. The quotient manifold

1)
H
which by construction is a Poisson manifold, is called induced Poisson manifold. We will denote
its Poisson structure asyg.
In order to construct a Poisson action®, 7g) on (Ping, ming), we first study some properties
of the Poisson actions and their momentum mappings of Propositions 3.1 and 3.3.

P|nd =

(4.9)

Proposition 4.2. Leti: G x P — P be the action defined by

(p,d) = (p,lk(d))  VkeG, (p,d)eP (4.10)

where the action:IG x D(G) — D(G) is given by(3.8). Then [ is a Poisson action with
equivariant momentum md,a P G* given by

L(p,d) = J(d). (4.11)

Furthermorg the following identities are valid
Q) Jolk=J VkegG,
(2) J| olrph = J| Yh e H,
@)rholg=Ilkory, Yke G,h e H,
(4)lx o 6h =nolk Vke G, h e H.

Proof. The fact thaf is a Poisson action is evident. In order to prove thatefined in(4.12)
is a momentum map fd it is sufficient to apply Proposition 4.1(2) choosimgas the trivial
action of G on P ando, = |. In that case, the constant m& — G* which to each point
associates the identity &*, is an equivariant momentum map for.

Letnowk € G, h € H andd = gu = u;g; € D(G). Then

(F ol @) = J (A, 1w (K)G - u) = si* (W) = J(d).
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We check now relation (2):
(J orp)(d) = J(dh) = J(u1g:h) = up = J (@),

because) coincides with the projectiopl: D(G) — G* defined bypj(u101) = us (see [13]).
We omit the proof of (3) which is based on similar techniques. We finally check the validity
of (4) making use of the commutativity betwegnandly,. O

We now observe that the momentum maggiven by (4.4) is invariant under the action
I Golop,d) = I(P)Idd) = I(p,d) Yk € G, (p,d) € P, thanks to relation (1) of
Proposition 4.2. Thus, we obtain an actios x J~1(e*) - J~1(e*) which commutes with
the actions of H on the submanifold —1(e*) (we recall that] is equivariant, so we have an
actions: H x J=1(e*) - J~1(e*)). Consequently, we have a left actign: G x Png — Ping
of G on the induced manifoldP,,q. We will show that this action is Poisson. To this end, it
is more convenient to reformulate the Poisson property of an action in terms of differentiable
functions. Thus, using the Lie bracket on the 1-forms on a Poisson mariildr) and
the infinitesimal expression of the Poisson property of an action, one finds that the action
0:(G, ng) x (P, mp) — (P, mp) is Poisson if and only if

o(X){F,H} ={c(X)F,H} + {F, 0 (X)H}+ (6 A0)S§(X)(dF®dH) (4.12)

for eachX € g, F, H € C®(P), wheres: g — AZ2g is the linearization ofrg at the identity
of G. In our case, is: J7X(e*) — Pnq is the projection, ané.: J-1(e*) — P the canonical
inclusion, then the following equation is valid

s*{F,H} =i%(F, H} (4.13)

foreachF, H € C®°(Pyg), whereF, H are arbitrary local extensions gfF, s*H respectively,
such thatlF, dH vanish on the subcharacteristic distributi®d—1(e*) (see [1722]). Taking
into account the fact that the infinitesimal generagpiX) is obtained by projection df x)

VX € g, one can write

s*(lina(X){F, H}) =T(X)(s*{F. H})
=T(X)(i5(F. H}
=iZ(TOOF, AY + (F,TOOA) + 0 AT 8(X)(dF @ dA))
= s*({lina(X)F, H} + {F, lina(X)H}
+ (ling A ling) (X)) (AF ® dH)),

which confirms our assertion. Note that we used the fact that the fud¢¥of is an extension

of T(X) s*F = s* (Imd(X)F) whose differential vanishes on vector fields taking their values in

CI-1(e"): d(I(X)F)(a(Y)) = a(Y)I(X)F = I(X)a(Y)F = 0, thanks to the commutat|V|ty

between the actiorisets (Proposition 4. 2(4)) and to the fact tréi vanishes o€ J—1(e*).
Consider now the momentum mappibgP — G* given by(4.11). By the invariance of the

momentum mapping under the action, we easily find that. is invariant under the actioh.

Thus, L pl’OjeCtS to a well-defined differentiable mapy: Png — G*. Then, the defining

equationl (X) = * (L*X') of L, shows clearly that we also havgs(X) = mq(3:,X")

VX € g, which means thaldig is an equivariant momentum map 1g. We have proved:
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Theorem 4.3. Let (G, ng) be a Poisson-Lie groygH, =) a closed Poisson—Lie subgroup
of (G, ng) ando: (H, my) x (P, mp) — (P, mp) a proper left Poisson action on the Poisson
manifold(P, rp), admiting the equivariant momentum mapRl— H*.If (G, g) is complete
connected and simply connectéuen there exists a Poisson manif@l,g, ing), Obtained in
(4.9) by reduction through the momentum mapping giveri4®), and a left Poisson action
ling: (G, ) X (Pind, mind) = (Pind, Tind), induced by the actio®.10), admiting an equivariant
momentum map given §4.11). The manifold P,g, 7ing) is called induced Poisson manifold.

Examples

Poisson induction from a point.We consider the case where the Poisson manifBldrp) is

a point with the zero Poisson structuRe:= {point} and the Poisson action 0fl, ) is trivial

with the momentum mapping: P — H* given by a fixed elementy € H*: J(p) = uUp. The
equivariance condition for such a momentum mapping is equivalent to the invarianogwfer

the left dressing transformationstdfon H*. Choosing now a Lie group morphisti H* — G*
which commutes with left dressing transformations, we obtain amags* - J: P — G* and

let j (p) = wo. This defines, according to [3], a diffeomorphismi—1(e*) — P x G x HP°
given byl (p, gu) = (p, QUwgl), whereH® c G* is the fibre over the identity of the canonical
projectionG* — H*. Under this identification, the induced Poisson manifold is diffeomorphic
to the associated bundBxy H°, which carries a natural symplectic structure obtained either by
Poisson reduction of the symplectic manif@dG) [3] or by the construction of the symplectic
groupoid of the reduced Poisson sp&&gH [23]. The Poisson induction procedure modifies
this natural structure in the following mannerQf D(G) — D(G) is the diffeomorphism given

by right multiplication with the elemenbgl, then a direct calculation shows thatr, (d)) =

7. (Q(d)) + Ldn_(wgl), which means that the Poisson induction from a point, leads to a
modification of the canonical symplectic structure of the symplectic groupoi@/éi (or,
using the terminology of [3], Poisson cotangent bundi&gH ) identified with the associated
bundleG x4 H°. Clearly, the modification term vanishes whef = €*, becauser_ is a
Poisson—Lie structure oB(G). This is the exact Poisson analog of the modified cotangent
bundle of a homogeneous spaggH [8].

Poisson induced orbitsWe are placed now in the case whé&re= H - v, the orbit of the element
v € H* under the right dressing transformationstbfon H*. This action is Hamiltonian with
momentum mapping given by the inclusion®fin H*. Letw € G* be an element of the dual
group of G such thai *w = v. We make the assumption that the fibra 0fG* — H* overv

is contained in the orbit ofy under the dressing action of the subgradtip

wH° C H-w. (4.14)

The constraint submanifold—1(e*) consists in pairgp, gu) € P x D(G) forwhichp =i*u
and the action oH on J~1(e*) is given by

Sn(p. gu) = (pn-1(p), gh™ton-1(W)),

and therefore the equivalence clags §u] must be written asg, gu] = pg-1(u). But if we
write p = pk-1(v), k € H, thenu = p-1(wu°), u®° € H°, becauseH® is invariant under the
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dressing action oH. Taking into account the conditiq@.14), we find
Pind = G-w

that is the orbit oiv € G* under the right dressing transformations3fis obtained by Poisson
induction on the orbit ob = i*w € H* under the dressing transformationstbf

Remark. The previous example is a Poisson generalization of one of the main results of [4]
concerning the geometry of the coadjoint orbits of a semi-direct product. Indeed, it is shown
in [4] that each coadjoint orbit of a semi-direct product can be obtained by symplectic induction
on a coadjoint orbit of a conveniently choosen subgroup. The symplectic construction, concern-
ing semi-direct products, is obtained from the Poisson one discussed here, if one takes (in the
notation of [4])G = K x, V andH = K, x, V, both with the zero Poisson structure. Let

us note that for a semi-direct product, the conditidri4) is satisfied for all the elements.
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