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Abstract: We propose a Poisson–Lie analog of the symplectic induction procedure, using an appropriate
Poisson generalization of the reduction of symplectic manifolds with symmetry. Having as basic tools the
equivariant momentum maps of Poisson actions, the double group of a Poisson–Lie group and the reduction
of Poisson manifolds with symmetry, we show how one can induce a Poisson action admitting an equivariant
momentum map. We prove that, under certain conditions, the dressing orbits of a Poisson–Lie group can be
obtained by Poisson induction from the dressing orbits of a Poisson–Lie subgroup.
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1. Introduction

Poisson manifolds occur as phase spaces in Hamiltonian mechanics and have important
applications to the theory of completely integrable systems. This is, in particular, the case of
bihamiltonian manifolds, that is manifolds equipped with two Poisson structuresπ1 andπ2 such
that [π1, π2] = 0, see [9,10,15,16,19]. The algebras of observables in quantum mechanics
are also relevant to Poisson geometry, as explained in [12].

A Lie group equipped with a Poisson structure such that the corresponding group operation be
a Poisson map, is called Poisson–Lie group. This particularly interesting and rich structure has
first been studied in [5] and [20] (see also [14] and the monograph [22]). Poisson–Lie groups
arise naturally in problems of quantum field theory and integrable systems. For example, a
solution of the quantum Yang–Baxter equation defines a “quantum group” in the sense of [6]
which, by definition, is a Hopf algebra. Formally, the “classical limit” of a quantum group is a
Poisson–Lie group.

On the other hand, there exist integrable systems, as for example the KdV equations, for
which Poisson–Lie groups provide a deeper insight. For such systems, the dressing tansfor-
mation groups play the rˆole of “hidden symmetry” groups. According to [20], the dressing
transformation group does not in general preserve the Poisson structure on the phase space.
Furthermore, it carries a natural Poisson structure defined by the Riemann–Hilbert problem en-
tering the definition of the dressing transformations, and it turns out that this Poisson structure
makes the dressing transformation group into a Poisson–Lie group.
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In the same context, the Hamiltonian actions of Poisson–Lie groups have clarified several
aspects of the soliton equations. Indeed, the dressing transformations of the soliton equations
which admit a Lax representation, are generated by the monodromy matrix [2], which in this
case is a momentum mapping in the sense of [13].

Our aim in this paper is to generalize and study the procedure of symplectic induction
[11,7,8] in the context of Poisson–Lie groups and Poisson manifolds. As we shall explain,
this generalization is possible in the following sense: given a Poisson–Lie group(G, πG), a
Poisson–Lie subgroup(H, πH ) ↪→ (G, πG), a Poisson manifold(P, πP) and a Hamiltonian
actionH × P→ P with equivariant momentum mappingP→ H∗, one can construct a new
Poisson manifold(Pind, πind) on which the Poisson–Lie group(G, πG) acts in a Hamiltonian
way. This statement is our basic result and it is given by Theorem 4.3. As in the symplectic
case, an appropriate reduction procedure (for Poisson manifolds now) is needed. This is easily
obtained putting together known facts about Poisson reduction [13,22], see Theorem 2.1. We
also need appropriate Poisson generalizations of the natural Hamiltonian actions of a Lie group
G and a Lie subgroupH ⊂ G on the cotangent bundleT∗G from which the induced manifold
is constructed [8]. Propositions 3.1 and 3.3 describe these actions in the Poisson setting.

We finally prove that the Poisson induction procedure can be used in order to find Pois-
son generalizations of the modified cotangent bundles [8] and of the symplectic induction of
coadjoint orbits [3,4].

Conventions. If (P, πP) is a Poisson manifold, thenπ]P: T∗P → T P is the map defined by
α(π

]

P(β)) = πP(α, β) ∀α, β ∈ T∗P. Let nowσ : G × P → P (resp.σ : P × G → P) be a
left (resp. right) Poisson action of the Poisson–Lie group(G, πG) on(P, πP), and let us denote
by σ(X) the infinitesimal generator of the action and byG∗ the dual group ofG. Then, we
say thatσ is Hamiltonian if there exists a differentiable mapJ: P → G∗, called momentum
mapping, satisfying the following equation, for eachX ∈ g:

σ(X) = π]P(J∗Xl ) (resp. σ(X) = −π]P(J∗Xr )).

In the previous equationXl (resp.Xr ) is the left (resp. right) invariant 1-form onG∗ whose value
at the identity is equal toX ∈ g ∼= (g∗)∗. The momentum mapping is said to be equivariant,
if it is a morphism of Poisson manifolds with respect to the Poisson structureπP on P and the
canonical Poisson structure on the dual group of the Poisson Lie group(G, πG). Left and right
infinitesimal dressing actionsλ: g∗ → X(G) andρ: g∗ → X(G) of g on G∗ are defined by

λ(ξ) = π]G(ξ l ) and ρ(ξ) = −π]G(ξ r ) ∀ξ ∈ g∗.

Similarly, one defines infinitesimal left and right dressing actions ofg onG∗. In the case where
the vector fieldsλ(ξ) (or, equivalently,ρ(ξ)) are complete for allξ ∈ g∗, we have left and right
actions of(G∗, πG∗) on (G, πG) denoted also byλ andρ respectively, and we say that(G, πG)

is a complete Poisson–Lie group.

2. Reduction of Poisson manifolds

The reduction of symplectic manifolds with symmetry has been systematically studied in [18].
The importance of this procedure for Hamiltonian dynamics is already very clear as it describes in
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a unified way several properties of Hamiltonian systems. The Poisson generalization of reduction
with symmetry has been carried out in [13] for the special case of a Poisson action of a Poisson–
Lie group on a symplectic manifold, admiting a momentum map. On the other hand, reduction
of Poisson manifolds with symmetry under the Hamiltonian action of an ordinary Lie group can
be found in [22]. Here we will study a somewhat more general situation where a Poisson–Lie
group acts in a Hamiltonian way on a Poisson manifold. Before we state the reduction theorem
for Poisson manifolds with symmetry, we recall the notion of sub-characteristic distribution. If
(P, πP) is a Poisson manifold andN a submanifold ofP, then we define the sub-characteristic
distribution ofN as

CN = π]P((T N)◦) ∩ T N (2.1)

where(T N)◦ is the annihilator of the tangent bundleT N:

(Tx N)◦ = {α ∈ T∗x P
∣∣ α(v) = 0, ∀v ∈ Tx N

}
.

We will deal only with Poisson actions of Poisson–Lie groups admiting equivariant momentum
mappings. Although this seems to be a strong condition on the Poisson action, it has been
proved ([3]) that, at least for Poisson actions on symplectic manifolds, one can, under reasonable
conditions, be reduced to the equivariant case.

Theorem 2.1. Let (P, πP) be a Poisson manifold andσ : G× P→ P a Poisson action of the
connected Poisson–Lie group(G, πG) on(P, πP) admiting an equivariant momentum mapping
J: P→ G∗. Let u∈ G∗ be an element such that: (1) u is a regular value for all the restrictions
of J to the symplectic leaves of P; (2) the submanifold J−1(u) has a clean intersection with the
symplectic leaves of P. Then, if Gu is the isotropy subgroup of u with respect to the left dressing
action of G on G∗, the sub-characteristic distribution of J−1(u) defines a regular foliation(that
is of constant dimension) whose leaves are the orbits of Gu. Furthermore, if this foliation is
defined by a submersion s: J−1(u)→ Pu, then the manifold Pu possesses a well-defined Poisson
structure whose symplectic distribution is the projection ofS(P)∩ T J−1(u), whereS(P) is the
symplectic distribution of(P, πP).

Proof. We observe that the existence of a momentum mapping for the actionσ , implies that
the orbitG · x, for eachx ∈ P, is contained in the symplectic leafS(x) throughx and for each
x ∈ J−1(u), the orbitGu · x is contained inS(x)u = S(x) ∩ J−1(u). Furthermore, we have
π
]

P(x)
(
(Tx J−1(u))◦

) = Tx(G · x) and the submanifoldJ−1(u) has a clean intersection with the
orbits ofG in P: T(G · x)∩T J−1(u) = T(Gu · x). After these remarks, the details of the proof
are as in [13] and [22]. ¤

The reduction described in Theorem 2.1 is called leafwise reduction because the reduced
Poisson structure is obtained by reducing each symplectic leaf ofP by the standard procedure
of symplectic geometry.

3. Hamiltonian actions on the double Lie group

Let G be a Lie group andi : H ↪→ G a closed Lie subgroup. We have a right action ofH
on G given by right multiplication,(g, h) 7→ gh ∀g ∈ G, h ∈ H , and a left action ofG on
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itself given by left multiplication,(g, g′) 7→ gg′ ∀g, g′ ∈ G. The cotangent lifts of these two
actions are the basis of the symplectic induction [8] and in the left trivializationT∗G ∼= G×g∗

they are given by the relations

((g, µ), h) 7→ (gh,Coad(h−1) µ) ∀(g, µ) ∈ T∗G, h ∈ H, (3.1)

(g, (g′, µ)) 7→ (gg′, µ) ∀g ∈ G, (g′, µ) ∈ T∗G. (3.2)

These actions are Hamiltonian and their equivariant momentum mappings are respectively given
by

T∗G 3 (g, µ) 7→ −i ∗µ ∈ h∗ ∀(g, µ) ∈ T∗G, (3.3)

T∗G 3 (g, µ) 7→ Coad(g) µ ∈ g∗ ∀(g, µ) ∈ T∗G (3.4)

whereh is the Lie algebra ofH andi ∗: g∗ → h∗ is the canonical projection. We will generalize
in this section the previous Hamiltonian actions in the context of Poisson–Lie groups. This
generalization will provide the basis for Poisson induction, as we will see in the sequel.

Let (G, πG) be a connected, simply connected and complete Poisson–Lie group and
i : (H, πH ) ↪→ (G, πG) a closed Poisson–Lie subgroup. Then, ifD(G) is the double group
of G, we find, by [13, Proposition II.36], that the right actionr : D(G)× H → D(G) given by
right multiplication

r (d, h) = dh ∀d ∈ D(G), h ∈ H (3.5)

is a Poisson action for the symplectic structureπ+ on D(G) and the Poisson structureπH on H .
We recall here that in the case we are studying the double groupD(G) is gobally isomorphic
to the productG× G∗ with the group law given by the relation

(g,u) · (h, v) = (gρu−1(h), λh−1(u)v
) ∀(g,u), (h, v) ∈ D. (3.6)

Furthermore, there exist two Poisson structures,π+ (symplectic) andπ− (Poisson–Lie) onD(G)
given by

π±(d) = 1
2(Rdπ0± Ldπ0),

whereπ0 ∈ 32d is the bivector defined byπ0(ξ1+ X1, ξ2+ X2) = ξ1(X2)−ξ2(X1) ∀ξi + Xi ∈
d∗, i = 1,2, see [13] for more details. In the defining equation ofπ±, Ld and Rd are the
extensions to multivector fields, of left and right multiplication inD.

In fact, the right Poisson action given by(3.5) is Hamiltonian:

Proposition 3.1. The right Poisson action given by(3.5) is Hamiltonian with equivariant
momentum mapping Jr : D(G)→ H∗ which can be taken equal to

Jr = s B i ∗ B p2

where s: H∗ → H∗ is the inversion on the dual group H∗, i ∗: G∗ → H∗ is the projection of
dual groups induced by the inclusion i: H ↪→ G, and p2: D(G) → G∗ is the projection onto
the second factor.

Proof. The infinitesimal generator of the right action(3.5) is given by the relationr (Y)(d) =
TeLd(i∗Y,0) ∀Y ∈ h, d ∈ D(G). Setting now(J∗r Yr )(d) = (η1+Y1)BTgLg−1 BTd Ru−1, where
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d = gu, η1+ Y1 ∈ d∗ ∼= g∗ ⊕ g, andπ]+(J∗r Yr )(d) = (J∗r Yr )
]

d, one finds

(J∗r Yr )
]

d = (TgRu B TeLg)
[(

Y1− TgLg−1λ(η1)(g)
)⊕ (Tu Ru−1ρ(Y1)(u)− η1

)]
. (3.7)

The elementsη1 andY1 of the previous expression are calculated using the definition of the
momentum mapJr . One findsη1 = 0 andY1 = −i∗Coad(w−1)Y, w = Jr (d) = (i ∗u)−1. We
proceed by recalling the following useful properties of Poisson–Lie groups [3]:

Lemma 3.2. (1) If w = (i ∗u)−1, then i∗Coad(w−1)Y = Coad(u)i∗Y ∀u ∈ G∗, Y ∈ h.
(2) The left and right dressing vector fields on the Poisson–Lie group(G, πG) are related as

follows:

ρ(Coad(g)ξ)(g) = −λ(ξ)(g)
for each g∈ G, ξ ∈ g∗.

(3) If the mapφ: G × G∗ → D(G) given byφ(g,u) = gu is a global diffeomorphism and
X ∈ g, u ∈ G∗, then

AdD(G)(u)(X ⊕ 0) = Teρu−1(X)⊕ (−Tu Ru−1λ(X)(u)
)

whereρu is the right dressing transformation of G∗ on G andλ(X) the infinitesimal generator
of the left dressing transformation of G on G∗.

Replacing now in(3.7) the values ofη1 andY1, using Lemma 3.2 and the fact that the tangent
at the identity of the dressing transformations equals to the coadjoint representation, we find

−(J∗r Yr )
]

d = (TgRu B TeLg)
(
AdD(G)(u)(i∗Y ⊕ 0)

)
= TeLd(i∗Y ⊕ 0),

which proves thatJr is indeed an equivariant (because it is a Poisson morphism) momentum
map for the right actionr . ¤

Using analogous techniques, one can prove the following:

Proposition 3.3. The left action l: (G, πG)× (D(G), π+)→ (D(G), π+) given by

lk(d) = λu(kλu−1(g)) · u = λρg−1(u)(k)g · u ∀k ∈ G, d = gu ∈ D(G) (3.8)

is Hamiltonian with equivariant momentum map Jl : D(G)→ G∗ such that

Jl (d) = ρg−1(u) ∀d = gu ∈ D(G). (3.9)

In the trivial case where the Poisson structureπG is zero, one hasG∗ = g∗ and the dressing
transformations ofG∗ on G are trivial. Furthermore, the dressing transformations ofG on G∗

reduce to the coadjoint action ofG on g∗ and the group law onD(G) = G × g∗ is simply
the semi-direct product structure onT∗G = G n g∗. Then, the Hamiltonian actions and their
equivariant momentum mappings described in Propositions 3.1 and 3.3 reduce to the actions and
momentum mappings given by the relations(3.1), (3.3) and(3.2), (3.4) respectively, because
λu = id ∀u ∈ G∗.
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4. Induction of Hamiltonian Poisson actions

We recall first [3] for the reader’s convenience some properties of the Hamiltonian actions
of Poisson–Lie groups, very useful in what follows.

Proposition 4.1. (1) Let σ : P × G → P be a right Poisson action of the connected, simply
connected and complete Poisson–Lie group(G, πG) on the Poisson manifold(P, πP), admiting
an equivariant momentum mapping J: P→ G∗. Then, the mapσ̃ : G× P→ P defined as

σ̃ (g, p) = σ (p, [λJ(p)(g)]
−1
) ∀g ∈ G, p ∈ P (4.1)

is a left Poisson action. Furthermore, J is an equivariant momentum map forσ̃ .
(2) Let σi : G × Pi → Pi , i = 1,2 be left Poisson actions admiting equivariant momentum

mappings Ji : Pi → G∗, where G is as previously. Then the mapσ : G× P→ P, P = P1× P2

defined by

σ(g, p) = (σ1(λJ2(p2)(g), p1), σ2(g, p2)
)
, p = (p1, p2) ∈ P (4.2)

is a left Poisson action with respect to the Poisson structureπP = π1⊕ π2 on P. Furthermore,
J = m̃B (J1× J2): P→ G∗ is an equivariant momentum mapping forσ , wherem̃: G∗×G∗ →
G∗ is the group multiplication in G∗.

Consider a Poisson–Lie group(G, πG) and leti : (H, πH ) ↪→ (G, πG) be a closed Poisson–
Lie subgroup. In order to simplify the discussion, we assume that(G, πG) is complete, connected
and simply connected, so the double groupD(G) of G will be isomorphic toG× G∗ with the
group law given by(3.6).

Letσ : (H, πH )×(P, πP)→ (P, πP) be a left Hamiltonian action of(H, πH ) on the Poisson
manifold (P, πP) with equivariant momentum mappingJ: P → H∗. By Proposition 4.1, we
have a left Poisson actioñr : (H, πH )× (D(G), π+)→ (D(G), π+) canonically associated to
the right Poisson action of Proposition 3.1, and if

(P̌, πP̌) = (P, πP)× (D(G), π+), (4.3)

we also have a left Poisson actionσ̌ : (H, πH ) × (P̌, πP̌) → (P̌, πP̌) admiting an equivariant
momentum mappinǧJ: P̌→ H ∗ given by

J̌(p,d) = J(p) Jr (d) ∀(p,d) ∈ P̌. (4.4)

Explicitly, the actionσ̌ is given by

σ̌h(p,d) =
(
σ(λJr (d)(h), p), r̃h(d)

) ∀(p,d) ∈ P̌, h ∈ H (4.5)

wherer̃ is the left action with

r̃h(d) = dλJr (d)(h)
−1 ∀d ∈ D(G), h ∈ H. (4.6)

We now observe that the momentum mappingJ̌: P̌→ H∗ is a submersion, so each element of
the dual groupH ∗ is a regular value fořJ. In particular, ife∗ is the unit ofH∗, then J̌−1(e∗) is
a submanifold ofP̌. Using the fact thatπ+ is symplectic, we find that the symplectic leaves of

312 P. Baguis



(P̌, πP̌) are of the formS× D(G), whereS is a symplectic leaf ofP. This means thate∗ is a
regular value for all the restrictions ofJ̌ to the symplectic leaves of̌P.

Next, we consider the intersections of the submanifoldJ̌−1(e∗) with the symplectic leaves
of P̌. Using the expression(4.4) of J̌ and Proposition 3.1 we find

J̌−1(e∗) = {(p, gu) ∈ P̌ = P × D(G)
∣∣ J(p) = i ∗(u)

}
. (4.7)

On the other hand, the symplectic leafS(m) throughm = (p,d) ∈ P̌ is equal toS(m) =
S(p)× D(G), and

J̌−1(e∗) ∩ S(m) = {(p, gu) ∈ S(p)× D(G)
∣∣ J(p) = i ∗(u)

}
. (4.8)

We see now thatTn J̌−1(e∗) ∩ TnS(m) = Tn
(
J̌−1(e∗) ∩ S(m)

)
for each pointn ∈ J̌−1(e∗) ∩

S(m) which confirms thaťJ−1(e∗) has a clean inersection with the symplectic leaves ofP̌.
Furthermore, the isotropy subgroup ofe∗ with respect to the left dressing transformations ofH
on H∗ is the groupH itself, and if we assume that the action ofH on P is proper, then all the
conditions of Theorem 2.1 are fulfilled. The quotient manifold

Pind = J̌−1(e∗)
H

(4.9)

which by construction is a Poisson manifold, is called induced Poisson manifold. We will denote
its Poisson structure asπind.

In order to construct a Poisson action of(G, πG) on(Pind, πind), we first study some properties
of the Poisson actions and their momentum mappings of Propositions 3.1 and 3.3.

Proposition 4.2. Let ľ : G× P̌→ P̌ be the action defined by

ľk(p,d) = (p, lk(d)) ∀k ∈ G, (p,d) ∈ P̌ (4.10)

where the action l: G × D(G) → D(G) is given by(3.8). Then, ľ is a Poisson action with
equivariant momentum map̌L: P̌→ G∗ given by

Ľ(p,d) = Jl (d). (4.11)

Furthermore, the following identities are valid:
(1) Jr B lk = Jr ∀k ∈ G,
(2) Jl B rh = Jl ∀h ∈ H ,
(3) rh B lk = lk B rh ∀k ∈ G, h ∈ H ,
(4) ľ k B σ̌h = σ̌h B ľ k ∀k ∈ G, h ∈ H.

Proof. The fact thaťl is a Poisson action is evident. In order to prove thatĽ defined in(4.11)
is a momentum map fořl , it is sufficient to apply Proposition 4.1(2) choosingσ1 as the trivial
action ofG on P andσ2 = l . In that case, the constant mapP → G∗ which to each point
associates the identity ofG∗, is an equivariant momentum map forσ1.

Let nowk ∈ G, h ∈ H andd = gu= u1g1 ∈ D(G). Then

(Jr B lk)(d) = Jr
(
λρg−1(u)(k)g · u

) = s(i ∗(u)) = Jr (d).
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We check now relation (2):

(Jl B rh)(d) = Jl (dh) = Jl (u1g1h) = u1 = Jl (d),

becauseJl coincides with the projectionpt
2: D(G)→ G∗ defined bypt

2(u1g1) = u1 (see [13]).
We omit the proof of (3) which is based on similar techniques. We finally check the validity
of (4) making use of the commutativity betweenrh andlk. ¤

We now observe that the momentum mapJ̌ given by (4.4) is invariant under the action
ľ : ( J̌ B ľ k)(p,d) = J(p)Jr (lk(d)) = J̌(p,d) ∀k ∈ G, (p,d) ∈ P̌, thanks to relation (1) of
Proposition 4.2. Thus, we obtain an actionľ : G × J̌−1(e∗) → J̌−1(e∗) which commutes with
the actionσ̌ of H on the submanifolďJ−1(e∗) (we recall thatJ̌ is equivariant, so we have an
actionσ̌ : H × J̌−1(e∗)→ J̌−1(e∗)). Consequently, we have a left actionl ind: G× Pind→ Pind

of G on the induced manifoldPind. We will show that this action is Poisson. To this end, it
is more convenient to reformulate the Poisson property of an action in terms of differentiable
functions. Thus, using the Lie bracket on the 1-forms on a Poisson manifold(P, πP) and
the infinitesimal expression of the Poisson property of an action, one finds that the action
σ : (G, πG)× (P, πP)→ (P, πP) is Poisson if and only if

σ(X){F, H} = {σ(X)F, H} + {F, σ (X)H} + (σ ∧ σ) δ(X)(d F ⊗ d H) (4.12)

for eachX ∈ g, F, H ∈ C∞(P), whereδ: g→ 32g is the linearization ofπG at the identity
of G. In our case, ifs: J̌−1(e∗) → Pind is the projection, andi e: J̌−1(e∗) ↪→ P̌ the canonical
inclusion, then the following equation is valid

s∗{F, H} = i ∗e{F̃, H̃} (4.13)

for eachF, H ∈ C∞(Pind), whereF̃, H̃ are arbitrary local extensions ofs∗F, s∗H respectively,
such thatdF̃,dH̃ vanish on the subcharacteristic distributionC J̌−1(e∗) (see [17,22]). Taking
into account the fact that the infinitesimal generatorl ind(X) is obtained by projection of̌l (X)
∀X ∈ g, one can write

s∗(l ind(X){F, H}) = ľ (X)(s∗{F, H})
= ľ (X)(i ∗e{F̃, H̃})
= i ∗e

({ľ (X)F̃, H̃} + {F̃, ľ (X)H̃} + (ľ ∧ ľ ) δ(X)(dF̃ ⊗ dH̃)
)

= s∗
({l ind(X)F, H} + {F, l ind(X)H}
+ (l ind ∧ l ind) δ(X)(dF̃ ⊗ dH̃)

)
,

which confirms our assertion. Note that we used the fact that the functionľ (X)F̃ is an extension
of ľ (X) s∗F = s∗(l ind(X)F) whose differential vanishes on vector fields taking their values in
C J̌−1(e∗): d(ľ (X)F̃)(σ̌ (Y)) = σ̌ (Y) ľ (X)F̃ = ľ (X) σ̌ (Y)F̃ = 0, thanks to the commutativity
between the actionšl et σ̌ (Proposition 4.2(4)) and to the fact thatdF̃ vanishes onC J̌−1(e∗).

Consider now the momentum mappingĽ: P̌→ G∗ given by(4.11). By the invariance of the
momentum mappingJl under the actionr , we easily find thaťL is invariant under the actioňσ .
Thus, Ľ projects to a well-defined differentiable mapJind: Pind → G∗. Then, the defining
equationľ (X) = π

]

P̌
(Ľ∗Xl ) of Ľ, shows clearly that we also havel ind(X) = π

]

ind(J
∗
indXl )

∀X ∈ g, which means thatJind is an equivariant momentum map forl ind. We have proved:
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Theorem 4.3. Let (G, πG) be a Poisson–Lie group, (H, πH ) a closed Poisson–Lie subgroup
of (G, πG) andσ : (H, πH ) × (P, πP)→ (P, πP) a proper left Poisson action on the Poisson
manifold(P, πP),admiting the equivariant momentum map J: P→ H∗. If (G, πG) is complete,
connected and simply connected, then there exists a Poisson manifold(Pind, πind), obtained in
(4.9) by reduction through the momentum mapping given by(4.4), and a left Poisson action
l ind: (G, πG)×(Pind, πind)→ (Pind, πind), induced by the action(4.10), admiting an equivariant
momentum map given by(4.11). The manifold(Pind, πind) is called induced Poisson manifold.

Examples

Poisson induction from a point.We consider the case where the Poisson manifold(P, πP) is
a point with the zero Poisson structure:P = {point} and the Poisson action of(H, πH ) is trivial
with the momentum mappingJ: P→ H ∗ given by a fixed elementu0 ∈ H∗: J(p) = u0. The
equivariance condition for such a momentum mapping is equivalent to the invariance ofu0 under
the left dressing transformations ofH onH ∗. Choosing now a Lie group morphisms∗: H∗ → G∗

which commutes with left dressing transformations, we obtain a mapj = s∗ B J: P→ G∗ and
let j (p) = w0. This defines, according to [3], a diffeomorphismI : J̌−1(e∗) → P × G × H0

given byI (p, gu) = (p, guw−1
0 ), whereH ◦ ⊂ G∗ is the fibre over the identity of the canonical

projectionG∗ → H∗. Under this identification, the induced Poisson manifold is diffeomorphic
to the associated bundleG×H H ◦, which carries a natural symplectic structure obtained either by
Poisson reduction of the symplectic manifoldD(G) [3] or by the construction of the symplectic
groupoid of the reduced Poisson spaceG/H [23]. The Poisson induction procedure modifies
this natural structure in the following manner. IfQ: D(G)→ D(G) is the diffeomorphism given
by right multiplication with the elementw−1

0 , then a direct calculation shows thatQ(π+(d)) =
π+(Q(d)) + Ldπ−(w−1

0 ), which means that the Poisson induction from a point, leads to a
modification of the canonical symplectic structure of the symplectic groupoid ofG/H (or,
using the terminology of [3], Poisson cotangent bundle ofG/H ) identified with the associated
bundleG ×H H ◦. Clearly, the modification term vanishes whenu0 = e∗, becauseπ− is a
Poisson–Lie structure onD(G). This is the exact Poisson analog of the modified cotangent
bundle of a homogeneous spaceG/H [8].

Poisson induced orbits.We are placed now in the case whereP = H ·v, the orbit of the element
v ∈ H ∗ under the right dressing transformations ofH on H∗. This action is Hamiltonian with
momentum mapping given by the inclusion ofP in H∗. Letw ∈ G∗ be an element of the dual
group ofG such thati ∗w = v. We make the assumption that the fibre ofi ∗: G∗ → H∗ overv
is contained in the orbit ofw under the dressing action of the subgroupH

wH ◦ ⊂ H · w. (4.14)

The constraint submanifolďJ−1(e∗) consists in pairs(p, gu) ∈ P × D(G) for which p = i ∗u
and the action ofH on J̌−1(e∗) is given by

σ̌h(p, gu) = (ρh−1(p), gh−1ρh−1(u)
)
,

and therefore the equivalence class [p, gu] must be written as [p, gu] = ρg−1(u). But if we
write p = ρk−1(v), k ∈ H , thenu = ρk−1(wu◦), u◦ ∈ H ◦, becauseH ◦ is invariant under the
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dressing action ofH . Taking into account the condition(4.14), we find

Pind = G · w
that is the orbit ofw ∈ G∗ under the right dressing transformations ofG, is obtained by Poisson
induction on the orbit ofv = i ∗w ∈ H∗ under the dressing transformations ofH .

Remark. The previous example is a Poisson generalization of one of the main results of [4]
concerning the geometry of the coadjoint orbits of a semi-direct product. Indeed, it is shown
in [4] that each coadjoint orbit of a semi-direct product can be obtained by symplectic induction
on a coadjoint orbit of a conveniently choosen subgroup. The symplectic construction, concern-
ing semi-direct products, is obtained from the Poisson one discussed here, if one takes (in the
notation of [4])G = K ×ρ V and H = Kp ×ρ V , both with the zero Poisson structure. Let
us note that for a semi-direct product, the condition(4.14) is satisfied for all the elementsw.
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