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Chronic TNFa and cAMP pre-treatment of human adipocytes alter HSL,
ATGL and perilipin to regulate basal and stimulated lipolysis
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We examined the effects of chronic TNFa and dibutyryl-cAMP (Db-cAMP) pre-treatment on the lipo-
lytic machinery of human hMADS adipocytes. TNFa decreased adipose triglyceride lipase (ATGL) and
hormone-sensitive lipase (HSL) protein content and triglycerides (TG)-hydrolase activity but
increased basal lipolysis due to a marked reduction in perilipin (PLIN) protein content. Conversely,
Db-cAMP increased ATGL and HSL protein content but prevented PLIN phosphorylation, the net
result being accentuated basal lipolysis. In forskolin-stimulated conditions, TNFa and Db-cAMP
pre-treatment decreased stimulated TG-hydrolase activity and impaired PLIN phosphorylation.
Together, this resulted in a severely attenuated response to forskolin-stimulated lipolysis.
� 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

The regulation of human adipose tissue lipolysis is a complex
multi-factorial process. Alterations of lipolysis and lipase expres-
sion have been shown in obesity and insulin resistance [1–3].
Lipolysis is governed by adipose triglyceride lipase (ATGL) and hor-
mone-sensitive lipase (HSL). HSL displays in vitro affinity for both
triglyceride (TG) and diglyceride (DG) molecules [4,5] while the re-
cently discovered ATGL exerts affinity for TG only [6]. In fact, a
body of evidence has emerged suggesting that despite their com-
mon capacity to hydrolyze TG, ATGL and HSL act sequentially [7–
9]. To fully exert its action on lipid breakdown, ATGL requires the
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coactivator CGI-58, which in itself is devoid of TG-hydrolase activ-
ity [10]. Lipases access to stored lipids is dependent upon perilipin
(PLIN), a member of the Perilipin, Adipophilin, TIP-47 (PAT) protein
family which decorates lipid droplets (LD) of the adipocyte [11].

Acute regulation of the lipolytic machinery in fat cells occurs at
the post-translational level. In human adipocytes, catecholamines
and natriuretic peptides induce the activation of protein kinase A
(PKA) and G, respectively [12]. The protein kinases phosphorylate
HSL and PLIN [13,14] leading to CGI-58 release [15], HSL transloca-
tion [16,17] and LD fragmentation [18]. The prominent role of
ATGL in PKA-stimulated lipolysis has recently been shown in mur-
ine [9,19] and human adipocytes [7] and specifically attributed to
the phosphorylation of PLIN on serine 517 [20].

Determinants of long term regulation of lipolysis and lipase
action remain largely unknown. Sustained activation of the sympa-
thetic nervous system may lead to desensitization of catecholamine-
stimulated lipolysis [21,22]. Moreover, TNFa has been shown to
modulate human fat cell lipolysis [23,24]. Herein, we used a unique
human white adipocyte cell model, termed hMADS adipocytes [7] to
examine adaptations of the lipolytic machinery to prolonged TNFa
exposure and sustained PKA activation with dibutyryl-cyclic AMP
(Db-cAMP) [25]. The specific HSL inhibitor 4-isopropyl-3-methyl-
2-[1-(3-(S)-methyl-piperidin-1-yl)-methanoyl]-2H-isoxazol-5-one
lsevier B.V. All rights reserved.
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Fig. 1. Gene and protein expression of hMADS lipolytic machinery after chronic
treatment with TNFa. Cells were pre-treated for 72 h with TNFa (100 ng/mL) from
Day 12 to Day 15. On Day 15, TNFa was removed and cells were acutely treated for
3 h with or without FK (1 lM) and harvested for gene expression and Western blot
analysis. (A) Gene expression of NPRA, PDE3B, PPARc, HSL, ATGL and CGI-58
assessed by real-time RT-PCR and normalized with 18S rRNA levels. (B) Western
blots of HSL, HSL Ser563, ATGL, CGI-58 and PLIN, normalized to vimentin. The data
are presented as means ± S.E.M. N = 3–6. *Significantly different from control
condition (C).

Fig. 2. TG-hydrolase activity and lipolysis of hMADS cells after chronic treatment with TN
15, TNFa was removed and cells were acutely treated for 3 h with or without FK (1 lM) a
(B) Basal lipolysis. (C) TG-hydrolase activity in response to FK treatment. (D) Lipoly
*Significantly different from control condition (C).

3046 V. Bézaire et al. / FEBS Letters 583 (2009) 3045–3049
(Bay) was used to discriminate between HSL and ATGL specific ac-
tions [2]. Consequences on the lipolytic machinery protein content,
TG-hydrolase activity, and lipolysis were examined in basal and for-
skolin (FK)-stimulated states.

2. Materials and methods

2.1. Cell culture

Human adipose tissue derived-multipotent stem cells (hMADS
cells) were cultured as previously described [7]. Experiments were
held on Days 12–15 of differentiation. Pharmacological treatments
of cells were both chronic and acute. Chronic pre-treatment with
100 ng/mL TNFa (72 h) or 1 mM Db-cAMP (48 h) was administered
and removed prior to acute manipulations. Acute treatment (3 h)
with 1 lM FK and/or 10 lM specific HSL inhibitor Bay [2] was
added prior to harvesting cells or during functional measurements.

2.2. Determination of mRNA levels

Total RNA was extracted using the RNeasy total RNA mini kit
(Qiagen) and processed as previously described [7].

2.3. Immunoblotting

Western blots and revelation were performed as described [7].
Total hMADS cell homogenates were prepared in extraction buffer
(10 mM Tris HCl – pH 7.4, 0.25 M sucrose, 1 mM EDTA, 1 mM DTT)
or Laemmli sample buffer. Primary antibodies used were anti-hHSL
(1:12 000, gift from Dr. Cecilia Holm, Lund, Sweden), anti-hHSL-
Fa. Cells were pre-treated for 72 h with TNFa (100 ng/mL) Day 12 to Day 15. On Day
nd/or Bay (10 lM) for TG-hydrolase activity and lipolysis. (A) TG-hydrolase activity.
tic response to FK treatment. The data are presented as means ± S.E.M. N = 3–6.
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Ser563 (1:1000, Cell Signaling), anti-hATGL (1:1000, Cell Signal-
ing), anti-hCGI58 (1:1000, Tebu-Bio), anti-hPLIN (1:2000, Progen),
and anti-vimentin (1:1000, Euromedex).

2.4. Lipolytic flux measurement

Whole cell lipolysis was investigated using radiolabeled oleic
acid ([3H-9,10]-OA) and acyl-CoA synthase (ACS) inhibitor Triacsin
C (Sigma, France) as previously described [7]. In these conditions,
release of [3H-9,10]-OA over 3 h represents total adipocyte lipoly-
sis in the absence of re-esterification. FK (1 lM) and/or Bay
(10 lM) were added to cells during lipolysis. Following lipolysis,
cells were washed and scraped in extraction buffer for protein nor-
malization (Bio-Rad Assay) of lipolysis.

2.5. Lipase activity

In vitro enzymatic activities were performed as described [7].
To determine HSL-independent TG lipase activity, the selective
HSL inhibitor Bay was added during the activity assay.

2.6. Statistical analysis

Statistical significance was determined using non-parametric
Mann–Whitney tests. Differences were considered significant at
P < 0.05.
Fig. 3. Gene and protein expression of hMADS lipolytic machinery after chronic
treatment with Db-cAMP. Cells were pre-treated for 48 h with Db-cAMP (1 lM)
from Day 13 to Day 15. On Day 15, Db-cAMP was removed and cells were acutely
treated for 3 h with or without FK (1 lM) and harvested for gene expression and
Western blotting. (A) Gene expression of NPRA, PDE3B, PPARc, HSL, ATGL and CGI-
58 assessed by real-time RT-PCR and normalized with 18S rRNA levels. (B) Western
blots of HSL, HSL Ser563, ATGL, CGI-58 and PLIN, normalized to vimentin. The data
are presented as means ± S.E.M. N = 3–6. *Significantly different from control
condition (C).
3. Results and discussion

3.1. Chronic TNFa pre-treatment reduces protein content of HSL, ATGL,
and PLIN

Human hMADS adipocytes were pre-treated for 72 h with TNFa
to assess the modulation of lipolysis at transcriptional and transla-
tional levels. Gene expression of natriuretic peptide receptor A
(NPRA), phosphodiesterase 3B (PDE3B), PPARc, HSL and ATGL was
severely reduced in basal and FK conditions (Fig. 1A). These data
are in line with previously published data on adipose tissue gene
expression [26–29]. The decrease in gene expression was associ-
ated with a concomitant decrease in HSL and ATGL proteins
(Fig. 1B). Western blot analyses revealed that chronic TNFa pre-
treatment decreased HSL (�42%, P < 0.01), ATGL (�58%, P < 0.001),
and PLIN (�38%, P < 0.01) protein content. When cells were chal-
lenged by an acute FK treatment, phosphorylation of HSL and PLIN
was revealed by detection of phosphorylated HSL Ser563 and an up-
ward electrophoretic shift in PLIN (Fig. 1B). Via a yet unknown
mechanism, FK also increased ATGL protein content (+27%,
P < 0.05) in hMADS adipocytes (Fig. 1B). The effect of FK on HSL
and PLIN phosphorylation was maintained in TNFa pre-treated
cells. TNFa did not influence CGI-58 gene and protein expression.

3.2. Downregulation of PLIN and lipase expression induce modulation
of basal and stimulated lipolysis

Use of the specific HSL inhibitor Bay revealed a reduction in HSL
and ATGL specific TG-hydrolase activity following chronic TNFa
pre-treatment (Fig. 2A). However, basal lipolysis attributed specif-
ically to HSL and ATGL increased with TNFa (Fig. 2B). Therefore, in
basal conditions, downregulation of PLIN and PDE3B expression by
TNFa showed a predominant effect over diminished lipase content
and capacity, resulting in enhanced lipolysis. This is probably the
result of partly antagonizing signalling pathways activated by
TNFa: mitogen-activated protein kinase (MAPKs) (p44/42 and
JNK) and NF-jB pathways [24]. Under acute FK condition, TNFa
pre-treatment of hMADS adipocytes abrogated the expected in-
crease in intrinsic HSL TG-hydrolase activity (Fig. 2C). Moreover,
TNFa pre-treatment significantly attenuated whole cell FK-stimu-
lated lipolysis attributed to HSL and ATGL (Fig. 2D). The impair-
ment in whole cell stimulated lipolysis may result from several
mechanisms, i.e., reduced lipase, notably ATGL, expression; dimin-
ished PLIN level, and hence total PLIN phosphorylation; and de-
creased stimulated HSL TG hydrolase activity. We have recently
shown the critical role of ATGL in the initiation of stimulated lipol-
ysis in hMADS adipocytes [7]. Moreover, it is likely that reduced
phosphorylated PLIN proteins on LD minimize CGI-58 release into
the cytosol and hence, ATGL-specific PKA-stimulated lipolysis
[15,30,31]. HSL-specific contribution to PKA-stimulated lipolysis
in human adipocytes is impaired by TNFa due to firstly, attenuated
intrinsic PKA-stimulated TG-hydrolase activity, and secondly, re-
duced HSL docking on LD, a consequence of limited PLIN content
and phosphorylation [32].

3.3. Chronic Db-cAMP pre-treatment increases HSL phosphorylation
and ATGL content but abrogates PLIN phosphorylation

Next, we aimed at determining the mechanism by which sus-
tained activation of the PKA pathway alters lipolysis in human adi-
pocytes. Treatment of cells for 48 h with Db-cAMP significantly
reduced expression of NPRA and PDE3B, both involved in early
lipolysis signalling. Gene expression of hMADS adipocytes lipolytic
machinery was unaltered (Fig. 3A) but total HSL (+30%, P = 0.06)
and ATGL protein content (+64%, P < 0.05) increased in basal condi-
tions (Fig. 3B). Phosphorylation of HSL residue Ser563 was also in-
duced (P < 0.01). As shown in Fig. 1B, acute FK stimulation also
led to HSL Ser563 phosphorylation and accentuated ATGL content
(+51%, P < 0.05). As expected, the effects of Db-cAMP pre-treatment
and acute FK stimulation, both converging on the PKA pathway,
were not additive. The FK-induced upward electrophoretic shift



Fig. 4. TG-hydrolase activity and lipolysis of hMADS cells after chronic treatment with Db-cAMP. Cells were pre-treated for 48 h with Db-cAMP (1 lM) from Day 13 to Day 15.
On Day 15, Db-cAMP was removed and cells were acutely treated for 3 h with or without FK (1 lM) and/or Bay (10 lM) for TG-hydrolase activity and lipolysis. (A) TG-
hydrolase activity. (B) Basal lipolysis. (C) TG-hydrolase activity in response to FK treatment. (D) Lipolytic response to FK treatment. The data are presented as means ± S.E.M.
N = 3–6. *Significantly different from control condition (C).
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in the PLIN band was observed in control condition, but abolished
by chronic Db-cAMP pre-treatment (Fig. 3B). Therefore, chronic
Db-cAMP pre-treatment results in HSL, but not PLIN, phosphoryla-
tion suggesting a specific desensitization mechanism for the PAT
protein.

3.4. Chronic Db-cAMP pre-treatment impairs normal FK response in
TG-hydrolase activity and lipolysis

The increase in HSL and ATGL did not translate into elevated
TG-hydrolase activity (Fig. 4A) suggesting post-translational con-
trol of lipase activity. However, basal lipolysis was nearly doubled
with chronic Db-cAMP pre-treatment (Fig. 4B). This increase could
be the combined consequence of reduced PDE3B gene expression
and increased HSL phosphorylation. Db-cAMP has previously been
shown to down-regulate PDE3B expression and activity [33]. The
expected FK-induced increase in intrinsic HSL activity was abro-
gated, and ATGL intrinsic activity was reduced below basal levels
with chronic Db-cAMP pre-treatment (Fig. 4C). Similarly, specific
HSL and ATGL FK-stimulated lipolysis was drastically reduced
(Fig. 4D). Impaired stimulated lipolysis could be attributed to both
reduced ATGL intrinsic activity, reduced FK-stimulated HSL TG
hydrolase activity and the lack of PLIN phosphorylation. Whether
resistance to PKA-stimulated lipolysis is a defect or a protective
mechanism to prevent excessive hydrolysis is unclear and war-
rants further investigation.

3.5. Concluding remarks

Through different molecular mechanisms, our work shows that
chronic exposure of human fat cells to TNFa or sustained activa-
tion of the PKA pathway result in increased basal lipolysis and a
markedly blunted response to stimulated lipolysis.
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