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PERSPECTIVES IN BASIC SCIENCE

Plasminogen activator inhibitor type 1 is a potential target in
renal fibrogenesis
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Plasminogen activator inhibitor type 1 is a potential target in tion of extracellular matrix (ECM) in basement mem-
renal fibrogenesis. The progression of renal lesions to fibrosis branes and interstitial tissues and is combined, at the
involves several mechanisms, among which the inhibition of same time, with the elimination of normal parenchymal
extracellular matrix (ECM) degradation appears to play an im- cells by necrosis, lack of regeneration, and/or apoptosisportant role. Two interrelated proteolytic systems are involved

[1]. The abnormal ECM in fibrosis is made of an excess ofin matrix degradation: the plasminogen activation system and
normal components of ECM such as fibronectin, laminin,the matrix metalloproteinase system. The plasminogen activa-

tor inhibitor type 1 (PAI-1), as the main inhibitor of plasmino- proteoglycans, and collagen type IV, but also of an accu-
gen activation, regulates fibrinolysis and the plasmin-mediated mulation of proteins that is not found in the normal ECM
matrix metalloproteinase activation. PAI-1 is also a component such as collagen type I and type III in the glomerular
of the ECM, where it binds to vitronectin. PAI-1 is not ex- mesangium [2]. These latter proteins characterize thepressed in the normal human kidney but is strongly induced

scarring process and are usually irreversibly depositedin various forms of kidney diseases, leading to renal fibrosis
in the fibrotic tissues. The renal parenchymal cells them-and terminal renal failure. Thrombin, angiotensin II, and trans-

forming growth factor-b are potent in vitro and in vivo agonists selves may undergo a fibroblastic transdifferentiation
in increasing PAI-1 synthesis. Several experimental and clinical and overproduce the ECM components. Fibroblasts and
studies support a role for PAI-1 in the renal fibrogenic process myofibroblasts proliferating within the kidney are also
occurring in chronic glomerulonephritis, diabetic nephropathy,

involved in the fibrogenic process. On the other hand, thefocal segmental glomerulosclerosis, and other fibrotic renal dis-
ECM can be degraded, and it is likely that the fibrogeniceases. Experimental models of renal diseases in PAI-1–deficient
process may also result from a deficit in ECM degrada-animals are in progress, and preliminary results indicate a role

for PAI-1 in renal fibrogenesis. Inhibition of PAI-1 activity or tion. However, the relationship between ECM degrada-
of PAI-1 synthesis by specific antibodies, peptidic antagonists, tion and fibrogenesis is more complex than initially sus-
antisense oligonucleotides, or decoy oligonucleotides has been pected, since abnormal ECM accumulation is oftenobtained in vitro, but needs to be evaluated in vivo for the

preceded or combined with an increased expression ofprevention or the treatment of renal fibrosis.
ECM-degrading enzymes [3]. This increased proteolytic
activity is presumably required for degradation of the
normal ECM by infiltrating inflammatory and fibroblas-The hallmark of terminal renal failure is the irrevers-
tic cells and its replacement by abnormal ECM. Twoible destruction of the normal renal parenchyma, more
main degrading systems are known to play a role: theor less rapidly invaded and replaced by fibrosis. To date,
matrix metalloproteinases (MMPs) and the plasminogenalthough numerous studies have been reported on the
activation system (PAS) [4]. The relationship betweenvarious factors that may promote, or conversely delay, the
these systems is numerous and has been reviewed else-progression of chronic renal failure, we are still looking for
where recently [5–7]. The aim of the present review isan integrated and unifying understanding of the molecular
to analyze the available experimental and clinical dataand cellular mechanisms implicated in the renal fibro-
supporting a role for the main inhibitor of plasminogengenic process. Fibrosis is due to the abnormal accumula- activation, the plasminogen activator inhibitor type 1
(PAI-1), as a key player in renal fibrogenesis.
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Fig. 1. Schematic diagram of plasminogen ac-
tivation and matrix metalloproteinase activation.
Abbreviations are: PAI, plasminogen activator
inhibitor; MMP, matrix metalloproteinase;
MT-MMP, membrane type matrix metallo-
proteinase; t-PA, tissue-type plasminogen ac-
tivator; u-PA, urokinase-type plasminogen ac-
tivator.

the only, efficient fibrinolytic system in vivo (Fig. 1). of the active site zink atom to an unpaired cystein of the
propeptide domain. Disruption of the cystein-zink boundThe limiting rate of plasmin generation is the amount

of tissue-type (t-PA) or urokinase-type (u-PA) plasmin- by conformational change or by limited proteolysis, as
produced by plasmin, leads to the opening of the switch.ogen activators (PAs) in their active forms [4]. This

amount is tightly regulated through the control of the Then the autocatalytic cleavage of the propeptide yields
the active enzyme [7]. The activation of MMPs may alsosynthesis and release of the proenzyme forms of PA, the

extracellular activation of these proenzymes, and their occur through the cleavage by membrane-bound MMPs,
which are called MT-MMPs. The activation of MMP2inhibition by specific inhibitors such as PAI-1, PAI-2,

and PAI-3 [5]. These inhibitors belong to the SERPIN at the cell surface is due to MT1-MMP, which binds
TIMP-2 and forms a ternary complex with MMP2. Activefamily, after the SERine Protease INhibitor. PAI-1, a

50 kD glycoprotein, is the main PAI secreted in vivo MMP2 is then released into the extracellular space, but
may also remain at the cell surface, where it has beenand is a potent fast-acting and irreversible inhibitor of

t-PA and u-PA but not of plasmin. It forms stochiometric shown to bind to the integrin avb3 [9]. Interestingly, in
our laboratory, u-PA was shown to promote MMP2 acti-complexes with active PAs, which are subsequently endo-

cytozed and degraded. Membrane receptors for u-PA vation when purified u-PA was added to the culture
medium conditioned by human mesangial cells, but notand t-PA have been identified that facilitate the activa-

tion of plasminogen at the cell surface and the activation when added to purified pro-MMP2. We were able to
demonstrate that mesangial cells release a soluble formof the PA proenzymes by trace amounts of plasmin [8].

In addition, u-PA receptor (u-PAR) plays a role in bind- of MT1-MMP that was activated by u-PA and then was
responsible for MMP2 activation [10]. PAI-1, as a potenting and internalization of u-PA/PAI complexes and in

cell adhesion and migration through an interaction with inhibitor of u-PA, inhibits u-PA-induced, MT1-MMP–
mediated MMP2 activation [11]. Thus, PAI-1 regulatesvitronectin and integrins [8].

The other main extracellular proteolytic system, the plasmin formation and fibrinolysis and, through several
different mechanisms, plays a role in the control of MMPMMPs and their inhibitors (TIMP-1, TIMP-2, and

TIMP-3), exist in a number of different metalloprotein- activation. Its role in matrix remodeling derives from
these effects. Moreover, PAI-1 is also a component ofases that contain several conserved motifs and a zinc

binding site, which is required for full enzymatic activity. the ECM, where it seems to bind tightly to the soma-
tomedin B domain of vitronectin [12]. This interactionTo date, at least 20 MMPs have been identified that

belong to four different groups according to their speci- stabilizes PAI-1 in an active conformation, still able to
inhibit extracellular PA activity, and thus plasmin forma-ficity: (1) the collagenases, which cleave preferentially

interstitial collagens type I and III; (2) the gelatinases, tion and MMP activation. In addition, PAI-1 binding to
vitronectin has been shown to disrupt the interactionwhich degrade the collagens type IV and V; (3) the

stromelysins, which degrade gelatin, fibronectin, laminin, between uPAR and vitronectin, preventing adhesion of
the cell to the ECM. uPAR may bind u-PA and promoteand elastin; and (4) the membrane-type MMPs (MT-

MMPs) [7]. The MMPs are secreted in the extracellular ECM degradation either directly by u-PA through the
proteolytic cleavage of fibronectin, laminin, and otherspace in catalytically latent forms because of the binding
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Fig. 2. Schematic representation of the human PAI-1 gene promoter. The following sequences are represented: (m) Sp1-like binding sites (between
nucleotides 285 and 242; from Chen et al [15]), (r) AP1-like binding sites (between nucleotides 2674 and 2650 and nucleotides 287 266; from
Keeton et al [16]), (✩) NF-kB–like binding site (position 2674; from Dawson et al [17]; and (d) SMAD binding sites (position 2280, 2580,
and 2730; Dennler et al [18]). In addition, the promoter regions 2800, 2549 and 2100 1 75 have been shown to be required for the PAI-1
gene response to glucocorticoids (van Zonneveld et al [19]).

Table 1. Experimental and human kidney diseases in whichcomponents or indirectly through plasmin generation
plasminogen inhibitor type 1 (PAI-1) accumulation

and MMP activation [8]. As a result, PAI-1 has been has been demonstrated
shown to promote cell migration at least in vitro [13, 14].

Type of disease Host Reference

I. Fibrin-associated nephropathies
Crescentic glomerulonephritis man Rondeau [25]PAI-1 IS STRONGLY UP-REGULATED IN THE

rat Feng [26]KIDNEY DURING EXPERIMENTAL AND
rabbit Malliaros [27]

HUMAN RENAL DISEASES Thrombotic microangiopathy man Rondeau [25]
man Xu [28]Regulation of PAI-1 gene expression

Lupus nephritis mouse Moll [29]
Mixed cryoglobulinemia mouse Moll [29]The PAI-1 gene has been cloned and sequenced and
Endotoxinemia mouse Moll [29]contains at its 59 regulatory end several known consensus

mouse Yamamoto [30]
cis regulatory elements, which bind transactivating fac- Radiation nephropathy rat Oikawa [31]

Acute renal graft rejection man Wang [32]tors such as Sp1, activated protein-1 (AP-1), nuclear
factor-kB (NF-kB), Smad3 and Smad4, and others (Fig. II. Fibrin-free nephropathies

Cobra venom nephritis rat Barnes [33]2) [15–19]. The PAI-1 gene transcription is activated in
Anti-Thy1.1 nephritis rat Tomooka [34]many different renal cell types by inflammatory cyto- Hypertensive nephropathy rat Tamaki [35]

kines, especially interleukin-1b (IL-1b) [20] and tumor Diabetic nephropathy man Yamamoto [36]
Focal segmental glomerulosclerosis man Yamamoto [37]necrosis factor-a (TNF-a) [21, 22], and by transforming
Cyclosporine toxicity rat Shihab [38]growth factor-b (TGF-b) [20, 23], glucocorticoids, and rat Duymelink [39]

nonspecific protein kinase C (PKC) activators such as
phorbol myristate acetate (PMA) [24]. Many cell types
have been shown to produce PAI-1, such as endothelial
cells, smooth muscle cells, hepatocytes, fibroblasts, or sis of PAI-1 by the 4G allele as compared with the 5G

allele are related to the binding of NF-kB to the cis regula-inflammatory cells [4, 5]. Renal cells themselves also
produce PAI-1 in culture conditions [21–23] and in vivo tory region 2680 to 2670, which is partially inhibited by

a regulatory protein, binding to the 5G sequence but not,in pathological conditions (Table 1). In physiological
conditions, the main source of circulating PAI-1 is the or to a lesser extent, to the 4G sequence. Under IL-1

stimulation of the cells, the PAI-1 gene transcription rateplatelets, where it is stored and released upon activation.
Three different forms of circulating PAI-1 can be de- is higher with the 4G allele than with the 5G allele [41].
tected: an active free form representing up to 80% of

Renal expression of PAI-1total PAI-1, a latent inactive form, and a form complexed
to t-PA. The plasma level of circulating PAI-1 has been Plasminogen activator inhibitor type 1 expression is

almost undetectable in the normal mouse, rat, and hu-shown to be genetically controlled, and a polymorphism
in the 59 gene promoter has been described. Two alleles, man kidney by immunohistochemistry and in situ hybrid-

ization [28, 29, 42]. Conversely, it has been shown that4G and 5G, at position 2674 in the promoter region,
are encountered, and the plasma level of PAI-1 has been t-PA is expressed by endothelial cells in the kidney and

by epithelial cells of the inner medulla collecting duct,shown to be higher in patients with the 4G/4G genotype
than in those with the 5G/5G genotype, while the hetero- while u-PA synthesis has been localized in epithelial cells

of the proximal tubule, especially in the S3 segment, andzygotes 4G/5G have intermediate values [40]. The geno-
type determines not only the plasma level of PAI-1, but in the large ascending limb of the Henle’s loop. More

recently, the binding of u-PA at the apical membrane ofit has been shown also to be associated with an increased
risk of myocardial infarction in adult male patients. The epithelial cells of the collecting duct has been observed.

Interestingly, MMP9 binding was also demonstrated atmolecular mechanisms involved in the increased synthe-
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a actin, whereas they do produce it in large amounts
when they are seeded in two-dimensional culture on
plastic. We have shown that PAI-1 produced by mesan-
gial cells in culture is released in the culture medium or
incorporated in the ECM, as demonstrated by immuno-
cytochemistry and in situ hybridization (Fig. 4) [45, 46].
Similarly, cultured mesangial cells express smooth mus-
cle cell a actin, and both PAI-1 and a actin have been
recognized as in vivo and in vitro markers of mesangial
cell activation [47]. In contrast, when mesangial cells
are embedded in three-dimensional matrix or when they
formed hillocks, they ceased proliferating to express
smooth muscle specific a actin and to synthesize PAI-1.
This suggests that in the normal kidney, a tonic inhibition

Fig. 3. Immunohistolocalization of PAI-1 in the kidney during throm- of PAI-1 gene transcription prevents PAI-1 synthesis
botic microangiopathy. While no PAI-1 can be detected in the normal

and deposition in the ECM by mesangial cells, and thathuman kidney, PAI-1 antigen is demonstrated in endothelial cells of
glomerular capillaries and intrarenal arterioles (arrows). Some mesan- this inhibition involves cell–matrix interactions. Heparan
gial cells are also stained [28]. sulfate proteoglycans may be responsible for such an

inhibition since we demonstrated that heparin and non-
anticoagulant heparan sulfate derivatives were able to
inhibit PAI-1 accumulation in the matrix of culturedthe same place, suggesting a role and perhaps an interac-
human mesangial cells [48]. In diseased conditions intion of luminal proteinases in the collecting duct func-
vivo, human mesangial cells express PAI-1, and this up-tions [43]. Such a role for luminal proteinases has been
regulation may be related to the stimulation by variousrecently described for the regulation of the epithelial
cytokines or growth factors, such as TNF-a or IL-1bsodium channel activity [44].
[21], TGF-b, and thrombin [49]. On the other hand, theSeveral studies have shown that PAI-1 synthesis and
up-regulation of PAI-1 synthesis in vivo may result fromdeposition are promoted in the kidney during experi-
the abolition of the tonic inhibition of PAI-1 gene tran-mental and human nephropathies (Table 1). PAI-1 depo-
scription by the surrounding normal mesangial matrix.sition may occur along with an inflammatory reaction
Actually, integrin-mediated ECM interactions with vari-associated with an activation of coagulation and fibrin
ous cell types have been shown to regulate gene expres-deposition in the intravascular or the extravascular spaces
sion. The signaling pathways involve intracellular integ-[42, 30]. In thrombotic microangiopathy [25, 28], which
rin-associated proteins such paxillin, b catenin, vinculin,characterized the pathological pattern of hemolytic ure-
and talin, which then recruit cytoskeleton proteins andmic syndrome, and in inflammatory glomerulonephritis
mitogen-activated protein kinases. In vitro, these path-with extracapillary crescent formation [25–27, 29], we
ways have been shown to stimulate PAI-1 gene transcrip-and others were able to demonstrate the presence of
tion strongly [50]. However, in vivo, less is known about

PAI-1 antigen by immunohistochemistry, usually colo-
the role of ECM on PAI-1 gene regulation. One can

calizing with fibrin deposits and suggesting that fibrin-
speculate that alterations in either the amount or the

trapped PAI-1 may inhibit local plasminogen activation
composition of ECM may alter the PAI-1 synthesis and

and thus prevent fibrinolysis (Fig. 3). Glomerular cells,
accumulation in the surrounding matrix. This may apply

mainly endothelial and mesangial cells, and vascular to mesangial cells but also to any other renal parenchy-
cells, were shown to express PAI-1 by in situ hybridiza- mal cells.
tion (Fig. 3) [28]. Similarly, in fibrin-independent kidney
injuries such as diabetes and focal segmental sclerosis

EXPERIMENTAL AND CLINICAL EVIDENCE[36], and cyclosporine A nephropathy [38, 39] and in the
FOR A ROLE OF PAI-1 IN THEaging kidney, PAI-1 synthesis by endothelial, mesangial,
FIBROGENIC PROCESSand even tubular epithelial cells has been shown to be

up-regulated. PAI-1 deposition is associated with ECM In two different studies, it has been shown that PAI-1
expansion and fibrosis, showing that PAI-1 may be a is a key player in the occurrence of postinflammatory
component of the ECM and suggesting that it could play pulmonary fibrosis. After a fibrinous alveolitis has been
a role in the turnover of the ECM. induced in mice either by intratracheal administration

The in vivo regulation of PAI-1 synthesis is not yet of bleomycin [51] or by hyperoxic atmosphere [52], a
well understood. In the normal human kidney, mesangial progressive pulmonary fibrosis appeared. Disruption of

the PAI-1 gene was shown to decrease the accumulationcells do not produce PAI-1 nor express smooth muscle
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Fig. 4. Synthesis and matrix deposition of PAI-1 by human glomerular
cells in culture. (A) Human mesangial cells in culture (white arrow) are
surrounded by large amounts of PAI-1 (black arrows). (B) A glomerular
epithelial cell (white arrow) seems to migrate leaving PAI-1 behind
(black arrow). (C) PAI-1 mRNA is demonstrated by in situ hybridiza-
tion on human mesangial cells, showing that PAI-1 is actually produced
by cultured mesangial cells [46].

of fibrin in the lungs of experimental animals and to pre- this study the late fibrotic phase of the disease was not
studied. It has also been shown that in the anti-Thy 1.1vent most of the pulmonary fibrosis. Conversely, over-

expression of PAI-1 in transgenic mice increased both glomerulonephritis in the rat, glomerular matrix accumu-
lation is linked to inhibition of the plasminogen systemfibrin accumulation and the severity of the subsequent

fibrosis. In our opinion, the best scenario that can be by PAI-1 [54]. A recent study indicates that PAI-1 may
be involved in the pathogenesis of glomerular and vascu-proposed is that PAI-1 accumulation at sites of fibrin

formation inhibits fibrinolysis and MMP activation. The lar sclerosis after irradiation [31]. In this model, a strong
activation of the renin-angiotensin system has been dem-fibrin matrix has been shown to be progressively invaded

by fibroblasts, which produce large amounts of collagens, onstrated as well as a strong induction of PAI-1 synthesis
in the kidney. The inhibition of angiotensin I-convertingand make the fibrin matrix more resistant to digestion.

Local inhibition of MMP activation may also explain enzyme (ACE) by enalapril or of angiotensin II (Ang II)
receptors by losartan prevented PAI-1 up-regulation andthe progressive accumulation of ECM proteins and the

development of fibrosis (Fig. 5). the late development of renal fibrosis and renal failure.
These results also suggest that Ang II stimulates PAI-1To date, similar proofs for PAI-1 involvement in renal

fibrosis are lacking. Indirect evidence for a role of PAI-1 synthesis in vivo, which in turn inhibits ECM degradation
and promotes renal fibrosis. In vitro experiments havewas provided when Kitching et al demonstrated that plas-

minogen and plasminogen activators protect against renal shown that Ang II increases PAI-1 synthesis by mesan-
gial cells [54]. However, in some cell types such as endo-injury in crescentic glomerulonephritis [53]. However, in
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Fig. 5. Schematic diagram of PAI-1 actions as
a fibrogenic molecule. Potent agonists such as
TGF-b, angiotensin II, thrombin, and TNF-a
may promote fibrosis through an increase in
PAI-1 synthesis. Active PAI-1 inhibits plas-
min formation and MMP activation and thus
inhibits fibrinolysis and ECM degradation, re-
sulting in tissue fibrosis.

thelial cells [55] and proximal tubule epithelial cells [56], inhibits further plasmin generation and thus TGF-b acti-
vation. The plasmin–TGF-b interaction could thereforeangiotensin IV but not Ang II activates PAI-1 synthesis.

This effect seems mediated by specific angiotensin IV appear as an autolimited process that will allow transient
and timely regulated degradation and synthesis of ECMreceptors different from angiotensin II type 1 or 2 (AT1

or AT2) receptors. In addition, the short-term effects of proteins. Interestingly, in this potential scenario, PAI-1
would be required to prevent prolonged TGF-b activa-Ang II on matrix protein synthesis and on PAI-1 are

prolonged by a long-term effect of TGF-b, in which the tion and further development of fibrosis. However, TGF-b
is considered to be a major fibrogenic molecule, at leastsynthesis is also induced by Ang II [57, 58]. More recently,

a reduced angiotensinogen expression has been shown in many experimental [61, 62] and human kidney diseases,
such as chronic glomerulonephritis [37], diabetic ne-to attenuate renal interstitial fibrosis in obstructive ne-

phropathy in mice [59]. In this study, the Ang II-medi- phropathy [36], focal segmental glomerulosclerosis [37],
HIV-associated nephropathy, and chronic allograft ne-ated TGF-b expression seemed involved in the renal

fibrogenic process independently of the systemic blood phropathy and the associated interstitial fibrosis [63].
The effects of TGF-b on ECM protein synthesis and onpressure.

Transforming growth factor-b is a potent inducer of inhibitors of ECM degradation in the kidney may over-
come the stimulating effect on MMP synthesis. AmongPAI-1 synthesis through the activation of Smad3 and

Smad4, two transcription factors that have been shown the inhibitors, PAI-1 plays a central role as a component
of the ECM and as an inhibitor of plasminogen activationrecently to mediate almost all, if not all, of the effects

of TGF-b on PAI-1 gene transcription [23]. TGF-b is [64]. It has recently been shown that the interstitial fi-
brosis associated with protein-overload proteinuria wasalso a potent cytokine stimulating collagen IV, fibronec-

tin, and laminin production in the kidney [60]. In addi- less pronounced in PAI-1–deficient mice than in their
wild-type controls, further supporting a role for PAI-1 intion, it increases the synthesis of MMP2 and MMP9 and

of TIMP-1 and TIMP-2, at least in vitro. The resulting renal fibrogenesis (abstract; Oda et al, J Am Soc Nephrol
10:578A, 1999).effect on ECM turnover and accumulation is hardly pre-

dictable from the analysis of such elementary effects. In Transforming growth factor-b has been shown to be
involved in the pathogenesis of diabetic glomerulosclero-addition, it has been demonstrated in vitro that the latent

form of TGF-b is secreted and binds to the ECM. Plas- sis [36]. Both TGF-b and PAI-1 have been demonstrated
by immunohistochemistry on renal biopsy of diabeticmin, and to a lesser extent u-PA, is able to cleave and

promote the release of active TGF-b from this latent patients. In vitro, high-glucose medium increases the syn-
thesis of TGF-b through the glucosamine 6-phosphateform. In turn, TGF-b stimulates ECM proteins synthesis

and, at the same time, increases PAI-1 production, which pathway and the production of ECM proteins and of
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PAI-1 by cultured mesangial cells [65]. Furthermore, tered in these cases, which seem to favor thrombosis and
extension of myocardial ischemia. Obviously, this is awhen cultured on nonenzymatically glycated collagen I,

endothelial cells have been shown to up-regulate their short-term treatment that is associated with a risk of
immunization against heterologous antibodies and a pro-synthesis of PAI-1.

The PAI-1 4G/5G polymorphism, which correlates gressive lost of efficacy. In addition, it requires intrave-
nous injection and would not be easy to administer. Re-with the PAI-1 plasma level, has been investigated in

diabetic patients. Controversial results were reported nal diseases that may need such PAI-1 inhibition have
a prolonged course and would require a long-term block-since in Japanese patients with type II diabetes, the

4G/4G genotype was associated with more frequent vas- ade of PAI-1 action.
A synthetic inhibitor of PAI-1 has been produced,cular complications than the 5G/4G or the 5G/5G geno-

types, but the incidence of diabetic nephropathy was the derived from the reactive center loop of PAI-1 and which
induces the inactive conformation of PAI-1 [68]. This 14same in the three groups [66]. Similarly, in Caucasian

patients with type I diabetes, the 4G/4G genotype was amino acid residue inhibitor has been shown to rapidly
inhibit PAI-1 function and the formation of t-PA/PAI-1significantly associated with diabetic retinopathy but not

with diabetic nephropathy (abstract; Pucci et al, J Am complexes in vitro. This peptide has a poor inhibitory
effect of vitronectin-bound PAI-1, but is able to enhanceSoc Nephrol 10:132, 1999). In contrast, in Chinese pa-

tients with type II diabetes, the 4G/4G genotype was sig- in vitro lysis of platelet-rich clots and platelet-poor clots
containing recombinant PAI-1. Clearly, this approachnificantly associated with diabetic nephropathy, and this

effect was even more pronounced in patients with the DD may be used to increase the intravascular fibrinolytic
activity in vivo, while the tissue vitronectin-bound PAI-1genotype for ACE [67]. Further large scale studies are

required to determine the role of PAI-1 in human diabetic remains fully active. Experimental studies of thrombotic
microangiopathy, as recently described after endotoxinnephropathy. To our knowledge, no study has reported

on experimental diabetic nephropathy in PAI-1–deficient and ricin administration in the rat [69], are required to
evaluate the effect of such a circulating PAI-1 inhibitor,or PAI-1–overexpressing mice, but this experimental ap-
given either before disease induction or later, when mi-proach is worth testing.
crothrombosis is already present. In the future, the de-
sign of other PAI-1 inhibitors would be useful if these

MODULATION OF PAI-1 SYNTHESIS OR compounds can be administered per os on a long-term
OF PAI-1 ACTIVITY AS FUTURE basis.
THERAPEUTIC INTERVENTIONS The blockade of PAI-1 synthesis in vivo has not been

From animal studies using genetically modified mice reported but is theoretically a potential way of treatment.
overexpressing or deficient in u-PA, t-PA, plasminogen, Specific inhibition of PAI-1 gene expression may be
or PAI-1, it has been possible to evaluate the physiologi- achieved using the antisense oligonucleotide strategy
cal role of each of these molecules [6]. The isolated deficit [70, 71]. This strategy has been shown to block PAI-1
in t-PA, u-PA, or PAI-1 is not associated with an obvious synthesis efficiently in cultured cells in vitro. However,
abnormal phenotype, but there is a tendency to thrombo- no report is available concerning the in vivo efficacy of
sis for t-PA and u-PA and to bleeding for PAI-1 deficit. these oligonucleotides. Transfection of renal cells in vivo
In contrast, mice deficient in plasminogen or in both t-PA has been reported but remains difficult and requires ap-
and u-PA exhibit a reduced growth rate, a tendency to propriate vectors. Similarly, PAI-1 synthesis could be
thrombosis, and a delay in wound healing. PAI-1–deficient inhibited by decoy oligonucleotides directed to the one
mice are protected from thrombosis and fibrosis after or two main transcription factors, which are activated in
fibrinous alveolitis [51]. Transgenic mice overexpressing diseased conditions and which increase PAI-1 gene tran-
PAI-1 have been reported to be prone to thrombosis scription. These transcription factors may very likely vary
and tissue fibrin deposition and to late development of according to the underlying renal diseases. For example,
fibrosis. It has been suggested that PAI-1 inhibition transcription factors activated by thrombin such as AP-1,
would thus be beneficial for the prevention of thrombosis NF-kB, and thrombin-induced nuclear factor (TINF)
and of fibrin-derived fibrosis. may be adequate targets of decoy oligonucleotides when

Different methods of inhibition are available: neu- coagulation and fibrin formation play an important role
tralizing anti-PAI-1 antibodies, synthetic antagonists of in the pathogenesis of the renal diseases, that is throm-
PAI-1, and inhibitors of PAI-1 synthesis. These ap- botic microangiopathy and extracapillary glomerulone-
proaches are still experimental, but could be useful in phritis. On the other hand, Smad3 and Smad4 would be
evaluating the therapeutic effect of PAI-1 inhibition in the potential targets of decoy oligonucleotides to prevent
vivo. Anti–PAI-1 antibodies have been proposed to pre- TGF-b–mediated renal PAI-1 synthesis and fibrosis in
vent rethrombosis shortly after myocardial infarction, hypertensive, diabetic, or autoimmune nephropathies

[23]. This strategy would block most of the effects ofsince high plasma levels of PAI-1 are frequently encoun-
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the TGF-b pathway and may be efficient to lessen the diseases, especially in vascular remodeling after intimal
severity of renal diseases, since inhibition of TGF-b1 injury or in chronic transplant arteriopathy. Transgenic
expression by antisense oligonucleotides has been shown mice deficient in PAI-1 or overexpressing it are potent
to suppress ECM accumulation in experimental glomer- tools to dissect the respective contribution of PAI-1 in
ulonephritis induced by anti-Thy 1.1 antibody [72]. the different models of renal fibrogenesis. Several ways

Although the inhibition of PAI-1 synthesis or activity of PAI-1 inhibition are proposed but need to be evalu-
may prove useful in fibrogenic renal injuries, it has to ated in the various forms of renal diseases.
be emphasized that PAI-1 may also have a protective
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