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Abstract

Csuhaj-Varju, E. and A. Kelemenova, Descriptional complexity of context-free grammar forms,
Theoretical Computer Science 112 (1993) 277-289.

Descriptional complexity aspects of grammar forms are studied. It is shown that grammatical
complexity measures HEI,, LEV,, VAR, PROD, and DEP, related to any appropriate infinite
class % of grammars are unbounded on the infinite class of languages determined by strict/general
interpretations of any infinite grammar form.

1. Introduction

Descriptional {(grammatical) complexity measures were introduced in [1, 4, 5] in
order to classify context-free languages according to the size and/or structural proper-
ties of their grammars. For the size of grammars they are expressed by such complex-
ity measures as the number of nonterminals (VAR) and the number of productions
(PROD). The number of grammatical levels (LEV'), the maximal number of elements
of grammatical levels (DEP) and the height of the digraph of grammatical levels (HEI)
are the complexity measures reflecting the structure of grammars.

One of the aspects of grammatical complexity theory is the study of the functional
behaviour of the complexity measures on language classes. Complexity measures are

Correspondence to: E. Csuhaj-Varja, Computer and Automation Institute, Hungarian Academy of
Sciences, Victor Hugo u. 18-22, H-1132 Budapest, Hungary.

0304-3975/93/806.00 © 1993--Elsevier Science Publishers B.V. All rights reserved


https://core.ac.uk/display/82798092?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

278 E. Csuhaj-Varju, A. Kelemenova

functions defined on context-free languages, with values being natural numbers; thus,
one can ask for the set of all values of complexity of languages or simply for the
boundedness/unboundedness of the complexity measure (on a given class of lan-
guages), the latter leads to the finiteness/infinity of the corresponding language
hierarchy. Obviously, this behaviour depends strictly on the grammar class that is
used to specify languages. For a large variety of complexity measures it was proved
that, related to appropriate grammar classes, for an arbitrary natural number », there
is a context-free language with the complexity equal to n (see e.g. [4, 5, 7]). Following
this line, the study of the problem of boundedness/unboundedness for remarkable
subclasses of the context-free language class is of interest. In this paper we concentrate
on language families defined by grammar forms which present a natural generaliz-
ation of the class of all context-free languages.

Context-free grammar forms define infinite families of structurally related gram-
mars via special finite substitutions (interpretations) of terminals and nonterminals in
the production set. (For details the reader is referred to [11].) The main result of this
paper establishes unboundedness of complexity measures VAR,, PROD,, LEV,,
DEP,, HEI, on the classes of languages defined by grammar forms. This property
holds for a rather large variety of grammar classes % describing these languages. The
statements are presented with full technical details. They complete the earlier results
given in [3, 8, 9].

The paper is organized as follows.

Section 2 lists some basic definitions from formal language theory.

In Section 3 we construct, for every fixed natural number k, k > 1, some context-free
languages that are of complexity at least &k for an arbitrary subclass of context-free
grammars which enables one to generate these languages. The results are of auxiliary
character and serve in proving the main statement in Section 5.

In Section 4 some special interpretations are presented to obtain the interpretation
grammars generating languages of the previous section. These mappings are isolation,
linear isolation, copy and renaming a single symbol.

In Section 5 we show that grammatical complexity measures VAR,, PROD,,
LEV,, HEI,, and DEP, are not bound on strict and on general grammatical families
of self-embedding (infinite non-self-embedding linear) grammar forms for an arbitrary
class of reduced (e.g. non-self-embedding linear) grammars, that is, for every natural
number k and for each of the above complexity measures, there is a language of
grammatical complexity at least k in the strict/general grammatical family of grammar
forms. From these statements some results from previous papers can be derived as
corollaries.

2. Basic definitions

We assume the reader to be familiar with the basics of formal language theory. For
the details not explained here the reader is referred to [10].
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We denote context-free grammars (shortly, grammars) by G=(N, T, P, S), where N, T, P
are the sets of nonterminals, terminals and productions, respectively, and S is the start
symbol. The context-free language (the language) generated by G is denoted by L(G).

By SF(G) we mean the set of sentential forms derivable in a context-free grammar
G from S.

A context-free grammar G is said to be reduced iff, for all Ae N, there is a derivation
S=* uAv="win G, with u,v,we T*. For a context-free grammar G, we denote by
G™¢ a grammar obtained from G by elimination of all nonterminals A for which no
derivation S =* udv =" w can be found in G, where u, v, we T*.

A nonterminal 4 of G is said to be recursive iff there is a derivation 4 =" uAdv in G,
where uveT ™.

A reduced context-free grammar G is said to be self-embedding if there is a nonter-
minal A in N such that a derivation 4 =* uAv, with u, veT * exists; otherwise, it is
said to be non-self-embedding.

For a language L, we denote by alph(L) the smallest alphabet T such that L = T*,

For we L, we denote by | w/| the length of w and by suf,(w) the suffix of length [ of w.

For a class % of context-free grammars, we denote by £ (%) the class of languages
generated by elements of 4.

In what follows, we review the notions of descriptional complexity measures (size
and structural complexity measures) of context-free grammars (languages) introduced
in [1,4,5].

The size measures for a context-free grammar G are the number of its nonterminals,
denoted by VAR(G), and the number of its productions, denoted by PROD(G).

In order to define structural complexity measures, we have to introduce relation
> on N for G=(N, T, P, S). For two nonterminals 4 and B of G, we write A > B if
there is a production 4 - uBv in G, with u, ve(NuUT)* >7 denotes the transitive
closure of > and [>* the reflexive and transitive closure of [>.

An equivalence relation =, defined as A=B iff A>>* B and B [>* A, determines on
N equivalence classes, called grammatical levels. For two grammatical levels @, and
Q, of G, where Q, #Q,, we write @ >(Q, iff there are nonterminals 4eQ; and Be(Q,,
with A> B.

Structural complexity measures for a context-free grammar G are defined as follows:

LEV(G) denotes the number of grammatical levels of G™¢,

DEP(G)=max{card(Q): Q is a grammatical level of G™¢},

HEI(G)=max {HEI(Q): Q is a grammatical level of G™?},
where HEI(Q)=1iff SeQ and HEI(Q;)=1+max{HEI(Q,): Q,>0;}.

In what follows, we use for complexity measures VAR, LEV, HEI, DEP and PROD
the common denotation K.

The descriptional complexity measure of a language L with respect to a class of
grammars % is defined as follows:

min{K(G): Ge¥, L(G)=L} if L=L(G) for some Ge¥,
undefined otherwise.

K@:(L)={
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Note that, by definition, for an arbitrary class ¥ of grammars, with Le % (%),
HEIL (L)< LEV4(L)<SVAR,(L)<PROD,(L) holds.

In what follows, we review the notions of a grammar form and its strict and general
interpretations. For further details, see [11].

Let G;=(N;, T;, P;, S;), where i=1,2 be context-free grammars. We say G, is
obtained from grammar form G, by a general interpretation (shortly, a g-interpreta-
tion) u, denoted by G,[>,G(u), if u is a finite substitution on (N;uT)* and
conditions (i)—(iv) hold:

(i) u(A)= N, for all AeN, and pu(Aynu(B)=0 for A, BeN,, with 4 #B;

(il) w@) < T# for all aeTy;

(iii) Py € p(Py)y={u—viueu(o), vep(f), » — feP,};

(iv) S,eu(Sy).

G, is said to be obtained from G, by a strict interpretation (shortly, an s-interpreta-
tion) p, denoted by G, >, G (u), if condition (ii) is modified as follows: u(a)= T, for
every aeT; and u(a)nu(b)=0 for all a,beT,, where a+#b.

The collection of grammars obtained by x-interpretations from a grammar G,
where xe{g, s}, is denoted by 4.(G).

The class of languages % (G)={L: L=L(G), Ge¥(G)} is called the x-grammati-
cal family of G.

The grammar G itself 1s often referred to as a grammar form.

A grammar form G is said to be infinite if L(G) is infinite; otherwise, it is said to be
finite.

3. On descriptional complexity of context-free languages

In this section we determine the complexity measures of some special context-free
languages. The results obtained here will be used in Section 5 to prove the main results
of the paper.

Definition 3.1. Let G=(N, T, P, S) be a context-free grammar with a derivation tree
tof w=orf in G, with a, feT*, veT *. We say t, is a minimal subtree of t completely
deriving v if 1, is a derivation tree of xvy, where o =xyx, = yy, and t, has no subtree
t. such that ¢, is a derivation tree of x'vy’, where x=x,x, y=y'y, and x,y,eT*.

We shall use the pumping property of context-free grammars in the form specified
by the following lemma.

Lemma 3.2. Let G=(N, T, P, S) be a context-free grammar. Let w=xvy be in L(G),
where [v]| >d™ for d=max{|x]: 4 > aeP} and m=card(N).

Let t be a derivation tree of w with no subderivation A=>"A for any A in N and let
t, be a minimal subtree of derivation tree t completely deriving v. Then there is an A,eN
which occurs twice on the same branch of t,. Moreover, the subderivation A, =" v, A0,
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is determined in t, by two consecutive occurrences of A, on this branch, where v, and
v, are subwords of w and v v, #e.

Proof. Suppose by contradiction that no nonterminal occurs twice on the same
branch of t,. Then the length of any branch of ¢, is at most m, and |v|{ <d™ This
contradicts the assumption of the lemma.

Let A, occur twice on the same branch of t, and let A, =" v; A,v,, with v,, v, T ¥,
be a subderivation determined in t, by two consecutive occurrences of A, in this
branch. Since 4, =" A, is not a subderivation in ¢, we have immediately v, v, #¢. [

The following theorem is about LEV,, VAR, and PROD, complexity of context-
free languages being finite union of languages over pairwise disjoint alphabets.

Theorem 3.3. Let L= U:‘:l L;, where L;, 1 <i<k, are infinite context-free languages
over pairwise disjoint alphabets. Let % be a class of grammars such that L, L;,c (%)
hold. Then K,(L)=k for Ke{LEV, VAR, PROD}.

Proof. Let G=(N,T,P,S) be in ¥ and L(G)=L. Let, for a given i, 1<i<k,
w;=x;v; ;€ L; have a derivation tree t; and | v;| >d™, where t;, d and m are as in Lemma
3.2. Let t; be a minimal subtree of t; completely deriving »;. Then, by Lemma 3.2, there
is a nonterminal A; and a derivation A;=>" u;A;v; determined by A; in t;, with
u;vi€(alph(L;))*. Since alph(L;)nalph(L;)=0 for i #j, 1 <i, j<k, neither A;>" 4, nor
A; > A; holds for i#j, 1 <i, j<k. This implies the statement for K=LEV and, thus,
also for K=VAR or K=PROD.

Notation 3.4. Let u;, v;, 1 <i<k, be nonempty words and alph(u;v;)alph(u;v;) =9 for
i#].

Let L, o=uy ...u; .

For xel,,, let mi(x) be defined as follows: for x=uf'...uf*elL, ,, let
mi(x)=vy*...v7", where my,...,m>=1. For x=x;x,, where x,x,eL;,, let
mi(x,x;)=mi(x,)mi(xy).

Let u, v, w be arbitrary words with disjoint alphabets, also disjoint with those of
u;, v;, 1 <i<k. (In the case where u, v or w are nonempty.)

Let
M;(l):{uijxeLk,O}’
ML+)={UXW':xeL"+‘O}’
L= (i) e Lo
and

LV = {uxwmi(x)v:xeLio ).
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The structure of any context-free grammar generating any of the above language is
determined in the following sense: all words with sufficiently many (say s) repetitions
of the subword u;(r;) are generated by pumping a subword of uf(v}), with the length
equal to some multiple of the length of u; (v;).

Lemma 3.5. Let L, be any of the languages Ll” and LLH. Let L, = L(G,) for a context-
free grammar Gi. Then, for every i, | <i<k, there exists a nonterminal A; in G, and
a number n;= | such that A; =" a® A,e% holds, where ;= yx for some x, y, with xy=u;,
and t;=tz for some z, t, with zt = v;. Moreover, for L, = L(zu and for Ly withk =3, A; # A;
for i#].

Proof. Let d and m be as in Lemma 3.2. Consider wy=uuj ... uzwovi ... v v, where
s>d™. Obviously, wee L\ = L\"’. Let ¢ be a derivation tree of w, in G, fulfilling the
conditions of Lemma 3.2. According to Lemma 3.2, for every i, 1 <i<k, and for every
minimal subtree t; of t completely deriving uf, it holds that there is a nonterminal
A; and a subderivation A; =" u}A4,z}, determined in t; by A;, where u} is a nonempty
subword of uf and z; is a terminal word. (The case where z; is a nonempty subword of
u} leads to a contradiction with the structure of L,.) Let u;= yui x for some x, y, where
0<|x|<|u;and 0 < |y|< |u;|. We prove that xy =u;, which leads to A; =" a1 4, z},
where u; = yx.
Consider the derivation

S="udo="u(yul'x) Az}t =" u(yul x) wi(z})’o

in G, where u, v, w; are terminal words and w; is derived with a minimal number of
steps in G resulting from A; a terminal word. By the structure of words in L,, we have,
for j=1 and j=2,

[

uyulixw,zit=xutlwol'y and  uyulixyuxw;zizio=xulwoly
i i< ) i 1 i i

r

for maximal numbers [,>[,>1. This gives ul xyu!
I,—1,=r;+1=n; Then suf,(w)z;0=wr'l'y and sufj(w;)ziz;0=woi*y for some I<|w;].
This implies z;=tv}'z for some t, z, where O0<|t|<|v;), 0<|z| <|v;| and zt =v;.

Let A;=A; for some i,j, 1 <i,j<k. Then ulu¥ul, n;21, n;21, is a subword of
some word in L. This implies i=j for L, = LL”, where k=2, and for L, =LL+’, where
k=3

In the case of regular languages M;(“ and Mﬁf’ an analogous theorem holds for the
non-self-embedding linear class of grammars. Using similar methods and arguments
as in the proof of Lemma 3.5, we can prove the following lemma.

=y}, le. xy=u; and

Lemma 3.6. Let L, be any of the languages M\" and M\"'. Let G, be a non-
self-embedding linear grammar generating L. Then, for every i, 1 i<k, there exists
a nonterminal A; in Gy, and n;=1 such that A;="u"A; or A; =" A;u" holds, where
u;=yx for some x,y, with xy=u;. Moreover, A;# A; for i#j, | <i, j<k.
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Theorem 3.7. (i) Let % be a class of context-free grammars such that, for every k=1,
L'Ve #(%). Then HEL,(L\")>k.

(i) Let % be a class of non-self-embedding linear grammars such that, for every k=1,
M'\Ve #(9). Then HEL,(M\")>k.

Proof. Consider an arbitrary grammar G, in % for which L(Gk)=L;(” (L(Gk):Mf‘”)
holds. Let 44, ..., A, be nonterminals of G, determined in Lemma 3.5 (in Lemma 3.6),
which are used in the derivation of wy=uu?$ ... upwvj ... viv (wy=uuj ... ujw), where
s>d™, d and m being the numbers given in Lemma 3.2. Since no v; can preceed u; for
1<i,j<k [since G, is a linear grammar for (ii)], no sentential form xA4;yA;z can
be derived in G,, where x, y, ze{N w T)* This implies that either 4,>* 4,,, or
A; ¥ A; for 1<i<k—1. Since u;,, never preceeds u;, in the case of LL”,
A;+1 >7 A; does not hold and then A4, >4, >*... >" 4,. In the case of M‘", each
A; is either right-linear or left-linear but not both; so, a permutation (p,,...,p.) of
(1,....k) can be determined such that 4, >%A4,, >" .- >* 4, . Hence, HEI(G,)>k.

Theorem 3.8. (i) Let ¥ be a class of context-free grammars such that, for every k=3,
LV e 2 (%). Then DEP,(L\")>k.

(1) Let % be a class of non-self-embedding linear grammars such that, for every k=1,
M, e #(%). Then DEP,(M\")>k.

Proof. Let G, be an arbitrary element of 4 for which L(Gk)zLL“ (L(Gk)=M§‘+))
holds. Let AY,...,AY, for 1<t<m+1, be nonterminals of G,, determined in
Lemma 3.5 (in Lemma 3.6), which are used in the derivation of the word
We=uW" " Lwmi(w™t Yo (Wy=uw™* 'w), where w=uj...uj for some s>d™ where
d and m are defined in Lemma 3.2 (i.e. Af,” is a nonterminal producing u;’s in the rth
position of u! in Ww,.) Note that Aﬁs";éA;”) for i#j and for arbitrary s,,s,,
1<s;,s<m+1. As no v; can preceed u; for 0<i,j<k in Lff’, AE”D*A?L for
I<i<k—1and AV >+ AY" Y for 1<s<m.

Since t=1,2,...,m+1, there exist two different positions s; and s, such that
A=A for a fixed i. For i=1 let us choose s,, s,, where s,>s,, and s, —s, is
minimal. Then AV > A5V >* .. > A8 >+ 404D x 409 469 (1 the case
of ML“, permutations (p;;,...,px) of (1,...,k) for 1<t<m+1 exist such that, for
BY equal to AY By [>* By >*...>" Bp >T BS D >% B = By holds.) Thus,
DEP(G,)=k.

4. Basic interpretations — auxiliary results

In this section we specify some strict interpretations used in the sequel. The basic
idea behind them is a suitable renaming of nonterminals and arising rules that are not
of interest.

By isolation we mean an interpretation which, roughly speaking, isolates a given
derivation of a sentential form.
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Lemma 4.1. Let G=(N, T, P,S) be a context-free grammar and let, for A in N,
D:A=ug=u, =u,=---=u,, nzl, be a derivation in G, where u;e(NuT)*,
1< j<n. Then thereis a strict interpretation up, called an isolation of D, and a grammar
Gp=(Np, Tp, Pp, A) such that G, >, G(up) and
(i) SF(Gp)n(NLT)*=SF(G,, ), where G, =(N, T, {A > u,}, A),

(i) A=vg=>vi= - =0v,_; = U, =U,, where vicup(u;) for i=1,2,...,n—1, is the
only derivation in Gp, of length n starting with A, and

(ii)) Py consists exactly of productions used in v; = v;, for i=0,1,...,n—1.

Proof. Let us define pp as follows:
for aeT,

Hpla) = {a},
for BeN,

up(B)={B"1: for every [i,j] such that B occurs as the jth letter in u;,
I1<i<n—1}up(B),

where

{B} for B=A or for B being a letter of u,,
p(B)= .
0 otherwise.

Let, for j, I<j<n—1, u;=X; ... X;,, where X; ,e(NUT), 1<k<l;. We associate
a word v; with u;, where v;= X ;... X, . where

, X, X, el
Xix=) xUn i x. en
Jok ok .

Let us consider the derivation D':A=0v, =tv,=--=v,_;=u, and let P, be
the set of productions used in this derivation. Then, obviously, P, < uy(P) and,
for the grammar G, given implicitly by Pp, we have Gpl>,G(up) and
SF(Gp)N(NUTY=SF(G,,).

Remark. SF(G,,) is infinite if 4 is a letter of u,, where u,#A; otherwise,
SF(G,))={A,u,}

Linear isolations (constructed in the next lemma) cause fixed derivations to be
isolated, and terminals derived left and right from a fixed branch of the derivation tree
to be distinguished.

Lemma 4.2. Let G=(N,T,P,S) be a context-free grammar and let, for A in
N,D:A=uo=u, =uy=>---=uAv, n= 1, be a derivation in G, where u, veT *. Let T’
be a primed version of T. Then there is a strict interpretation uy,, called a linear isolation
of D, and a grammar Gp=(Np, TUT’, P}, A} such that G, >, G(up) and

(1) SF(Gp)n(NUTUTY*=SF(G,, ), where G, =(N, ToT", {A —>uAv'},S),
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(i) A=vy =0 = =0, = v,=uAv, where vieup(u;) fori=1,2,...,n—1,is the
only derivation in G of length n starting with A, and
(i) P, consists exactly of productions used in v;=vi,, for i=0,1,...,.n—1.

Proof. Let u;=a;X;f;, 1 <i<n—1, where o;, f;e(NuT)* and X; are nonterminals
lying on the branch of the derivation tree of D beginning and ending with 4. We define
up as follows:

upl@)={a,a'} for aeT and up(B)=up(B) for BeN,

where pp is the isolation defined in Lemma 4.1. Let, for j, 1<j<n,
uj:Xj,l "‘Xj.nj"'Xij’ Where XJAE(NU T), 1 Skﬁlj, nJSIJ and Xj,nJ-:Xj'
We associate with u; a word v, where v;=X; ;... X;, , where

Xjx  for X eT k<n;,
Xj.k: Xjk fOFX,-_kET,k>nJ~,
XK for X; eN.

Let us consider the derivation D: A = v, = v, =---=v],_; = uAv’ and let P, be the
set of productions used in this derivation. Then, obviously, P}, < up(P) and, for
the grammar G} given implicitly by P}, we have G, G(up) as well as
SF(GR)Nn(NUTUT'y*=SF(G,,)

Next we fix the notions of jth copy and renaming a single symbol by special
isomorphic interpretations and define the corresponding grammars isomorphic to the
core grammar.

Definition 4.3. Let G=(N, T, P,S) be a grammar and j be a natural number.
By u; we denote an interpretation, called a jth copy, defined by u;(X)=X",
for Xe(NuT).
The jth copy G of G is the grammar GY’ <, G(y,;), with PV =y (P).
Interpretations can change some fixed occurrences of some symbol in the set of
productions.

Definition 4.4. Let G=(N, T, P, S) be a grammar and let XeN, Y¢(NUT). By ux_y,
called renaming X (by Y) we denote an interpretation with uy.y(X)={X, Y} and
Ux-y(Z)={Z} for Z#X,ZeNUT. By Gyx.y we denote the grammar Gy_y=
(NU{Y}, T,Px_y,S), where Py.y={S—>oy:S>aeP}u{Y—a:X >acP}u
{A—>oy:A—>aeP, A# X}, where o, denotes the word obtained from a by replacing
all occurrences of X by Y.

Informally, Gy_y is such an interpretation of G in which XeN is replaced by
Y¢(N uT)in any position of X except where X is the start symbol of G and all other
letters remain unchanged.
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5. Complexity of grammar forms

In this section we show that grammatical complexity measures VAR,, PROD,,
LEV,, HEI,; and DEP, are unbounded on strict and on general grammatical families
of self-embedding (infinite non-self-embedding linear) grammar forms.

Theorem 5.1. Let G be a self-embedding context-free grammar form. Let 4 be a class of
context-free grammars such that & (%)< L (9). where xe{g,s}. Let Ke{VAR,
PROD, LEV, HEI, DEP}. Then K, is unbounded on ¥ (G).

Proof. Let x=g. If G is a self-embedding grammar, then . (G) contains all linear
languages (see [ 11, p. 43]). By [5] and Theorem 3.7, for each K and for every natural
number k, there is a linear language L, such that Kcg(L,) > k. This results in K, being
unbounded on ¥ ,(G).

Let x=s. First we prove the result for K=HEI. This gives the proof for VAR,
PROD, LEV, too. Since G is self-embedding, there is a nonterminal A in G with
derivations

Do:S=""xAv
PDgid

= ALY,

Di: A="udy,
Dr:A=%w,

with x, y, we T* and u, ve T'*. Denote by Pg, Py, Py the sets of productions of P used
in derivations Ds, D), D¢, respectively. According to Theorem 3.7, it is sufficient to
give, for any k>1, a grammar G, such that G,<\,G and L(G,)=L{"=
xuli o ouwe o o yom 21, 1<i<k). Let Pg, P, P be the sets of productions
obtained from Pg, P, Py by isolations yp_, ttp,, ftp,, defined in Lemmas 4.1 and 4.2,
respectively. We use abbreviation o for p,- 4, and p; for py;. 4, where 1 <j<k.

Let Pe=p10(Ps)0 Uiy PO U (e PD)YU ei 1 (Pr) and let Gy be the
grammar given implicitly by the productions of P,. We shall prove that L(Gk):Lf‘”.
Let w=xuT'...uf™wyvp*...vT'y. Then w can be derived in G, by using the following
partial derivations:

S=7" xA,y, which uses the productions of t,o(Ps).

A; =" u; A;r;, which uses the productions of u.(P) for 1 <i<k,

Aj="u;A;, v;, which uses the productions of u,;(u;(Pi)) for 1 <j<k,

Ax+1 =" w1, which uses productions of ug . (PF).

Thus, L} < L(Gy).

We show that the opposite inclusion holds. Let D:S=>w; =>w, = - =>w,=weT*
be a derivation in G,. Following P, and Lemmas 4.1 and 4.2 any sentential form of
G, contains at most one recursive letter. The recursive nonterminal A;, 2<i<k, does
not appear before A4;_, is rewritten. Moreover, every terminating derivation contains
each A;, 1 <i<k, at least once. Without loss of generality, we may assume that all
nonrecursive nonterminals in D are rewritten before a recursive symbol is rewritten.
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Then indices 2<i; i < - <iy4 1 <r—1 can be found such that A4, occurs in the
sentential form w; and it does not occur in any w; for k<i,. This gives

‘/vh:XAlys

wi, =xutf' 4,07y for some m; > 1,

wi L =XUT U A 0Ty

i+ 1

for some m,,...,m=1 and nonrecursive nonterminal A,,;. Thus,
wo=xul Ut wes ool y and L(Gy) < L:(”.

Let K =DEP. We show that there is a grammar G,, where G, <,G, such that
L(G_k)zLL“. Let P, have the same meaning as above. Let Py=Py U s pex(P1))s
where pi, abbreviates iy, . 4,. Let G, be the grammar given implicitly by the elements
of P,. It can be shown that L(G,)=L\"={xzw,, mi(z)y:zeL{o}. According to
Theorem 3.8, DEP,(L(G,))=k. O

Example. We illustrate the constructions of G, and G, from the previous proof.
Let G contain the productions
S - aA,
A—aA|Aa|a.
We give G, and G, corresponding to the derivations
Dgs:S=aA,
D A=aA=aAa,
Dy A=a.
G, is given by the productions
S—oad,,
A —a; AN,
Agl‘z] — A;a; fori=1,2,... k,
AT g el fori=1,2,..,k
Ags1 = sy

G, contains the same productions as G, and, moreover, the production A}!*?! — 4 a;.

To continue our study, we discuss the case where G is a non-self-embedding infinite
grammar form. In this case £, (G) € L(#E%). Now we have to distinguish between
complexity measures in {HEI, DEP} and in {VAR, PROD, LEV} since, for any
regular language R, HEI-+(R)<2 and DEP¢r(R)=1, while VARcg, PROD¢g, and
LEV e form infinite hierarchies on the class of regular languages.



288 E. Csuhaj-Varji, A. Kelemenova

Theorem 5.2. Let G be a non-self-embedding infinite context-free grammar form and let
% be a class of context-free grammars such that & (G) < ¥ (%), where xe{g, s}. Then
LEV,, VAR, and PROD, are unbounded on ¥ .(G).

Proof. Let us discuss first K=LEV. Let x=g. &, (G)=¥(REYG); by [5], for every
k=1, there is a regular language R, such that LEV¢(R,)=k holds. Let x=s.

Without loss of generality, we may assume that G has a recursive nonterminal
A with derivations

Dg:S=%xAy,
D;:A="ud (or D;: A =" Au, but not both)
De:A="w,

with x, y, weT* and ueT *. Let P, P, Py be the sets of productions used in deriv-
ations Dg, D), Dg, respectively. To prove the theorem, we construct, for any k>1,
a grammar G, such that L(G,)=L satisfies the conditions of Theorem 3.1. Let
Up,> Hp,s Upe be the isolations defined in Lemma 4.1 and denote by P, Pi, Py
sets of productions obtained by them from Pg, P, Py, respectively. Let
Py=Ji- ({8 = peil®): S > 2€ P} U pei( P5 U P1U Pi).

Let G, be the grammar given implicitly by productions of P,. Then P, determines
grammar G, with the following derivations:

S=*x;Aiyi, Ai=" wA; (or Aj=" Auy), Ai="w;, I<i<k,
where alph(x;y;u;w;) are pairwise disjoint for different 1. Since L(G,¢)=U:‘=1 L;,

where L; < alph(x;y,u;w;)*, LEV,L(G,)=k, according to Theorem 3.1. Since
PROD,L(Gy)= VAR, L(G,)= LEV,L(G,), the proof is completed. [

If we restrict 4 to be a class of non-self-embedding linear grammars then for
G a non-self-embedding linear infinite grammar form we obtain infinite hierarchy for
HEI, and DEP, on £ .(G), too.

Theorem 5.3. Let G be a non-self-embedding infinite linear grammar form. Let 4 be
a class of non-self-embedding linear grammars such that ¥ (G) < £ (%), where xe{g, s}.
Let Ke{HEI, DEP}. Then K, is unbounded on & (G).

Proof (sketch). The theorem can be proved by constructing languages M f(” ,
M\" using similar methods and arguments as in Theorem 5.1.
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