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Abstract Cardiac surgery using cardiopulmonary bypass (CPB) provokes a systemic
inflammatory response. This is mainly triggered by contact activation of blood by
artificial surfaces of the extracorporeal circuit. Although often remaining sub-
clinical and resolving promptly at the end of CPB, in its most extreme form this
inflammatory response may be associated with the development of the systemic
inflammatory response syndrome (SIRS) that can often lead to major organ
dysfunction (MODs) and death. Here, we review the pathophysiology behind the
development of this ‘‘whole body’’ inflammatory response and some of the
methods currently used to minimise it.
ª 2005 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
Introduction

When tissues are injured they attempt to eliminate
the cause of injury by mounting an inflammatory
response. When the injury is particularly severe, or
when the injury is more generalised, a systemic
inflammatory response can take place. This sys-
temic inflammation manifests itself clinically as
the systemic inflammatory response syndrome
(SIRS).1 Multiple factors associated with the use
of cardiopulmonary bypass (CPB) contribute to-
ward the generation of perioperative SIRS. These
include the generation of shear forces from roller
pumps driving blood through the bypass circuit,
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hypothermia as blood is passed through the extra-
corporeal circuit, and contact activation of plasma
protein systems as circulating blood is exposed to
artificial surfaces in the bypass circuit. This is then
followed by the generation and release of endog-
enous inflammatory mediators leading to the de-
velopment of SIRS. Here, we will review the
pathophysiology of the plasma protein systems
that become activated during CPB leading to SIRS
and also some of the therapeutic strategies em-
ployed to counterbalance the deleterious effects
of their activation.

Cardiopulmonary bypass activates the
coagulation system

Although new concepts have been proposed,2 the
coagulation cascade which results in thrombus
blished by Elsevier Ltd. All rights reserved.
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formation is classically thought to be the result of
two pathways, intrinsic and extrinsic, which con-
sist of a series of enzyme cascades utilising blood
coagulation factors, the most important being
thrombin.3

The intrinsic pathway begins after contact
activation of blood from exposure to collagen
in a damaged vascular wall, or exposure of the
blood to an artificial surface such as an extra-
corporeal circuit. In response to these stimuli,
two events occur. Firstly, Factor XII (Hageman
Factor) is converted from its inactive form
(zymogen) to an active form Factor XIIa. Sec-
ondly, platelets are activated. This activation of
Factor XII to XIIa is further amplified by plasma
kallikrein via a positive feedback loop. Factor
XIIa then enzymatically activates Factor XI to
Factor XIa which then converts Factor IX to
Factor IXa and Factor IXa then converts Factor X
to Factor Xa. This activation of Factor X is
greatly accelerated by the presence of Factor
VIIIa e deficiency of which results in haemo-
philia. Activated Factor X functions as a protease
to convert the inactive molecule prothrombin to
the active form thrombin. Thrombin then cleaves
fibrinogen to fibrin, which then polymerises to
form fibrin strands.

In the extrinsic pathway, the initial stimulus is
trauma to the vascular wall, resulting in exposure
of blood to non-vascular tissue cells that express
an integral membrane protein called ‘tissue fac-
tor’. Factor VII is a circulating plasma protein that
then binds to tissue factor, creating a complex. In
doing so, Factor VII is activated to Factor VIIa. This
complex, in the presence of CaCC and phospholi-
pids, activates Factor X to Factor Xa. Once Factor
Xa is generated, the remainder of the cascade is
similar to the intrinsic pathway (Fig. 1).

Surgery using CPB results in extensive activation
of both intrinsic and extrinsic pathways of the
coagulation system.4 This necessitates the use of
systemic heparinisation to prevent clot formation
in the extracorporeal circuit, which brings with it
risks of platelet activation (heparin induced
thrombocytopenia)5 and aldosterone inhibition
leading to hyperkalaemia.6 However, despite hep-
arinisation inhibiting clot formation, activation of
the coagulation system still occurs as heparin
inhibits the coagulation system only at the end of
the cascade (by promoting the activity of anti-
thrombin III).7,8 Molecular markers of thrombin
generation such as thrombineantithrombin III
complex (TAT) and prothrombin fragment
(PF1C 2) remain elevated perioperatively in pa-
tients undergoing CPB demonstrating that throm-
bin generation is still occurring.4
Cardiopulmonary bypass activates
the fibrinolytic system

To prevent excessive activation occurring, regula-
tory mechanisms exist that serve two main func-
tions e firstly to limit the amount of fibrin clot
formed to avoid ischaemia of tissues and secondly
to localise clot formation to the site of tissue or
vessel injury, thereby preventing widespread
thrombosis. The continuous generation of cross-
linked fibrin would create a clot capable of
obstructing normal blood flow. Therefore, the
fibrinolytic system exists as a counterbalance to
the coagulation system. Plasminogen is an inactive
protein synthesised mainly by the endothelium,9

and can be converted to its active form plasmin by
tissue plasminogen activator (t-PA). Plasmin then
has the ability to degrade fibrin strands, prevent-
ing the build-up of excess clot.

The use of cardiopulmonary bypass results in
increased fibrinolytic activity as shown by in-
creases in D-dimer levels, and t-PA activity.4 This
activation of fibrinolysis is caused by elevated
levels of Factor XIIa and kallikrein as well as by
an increase in t-PA. Elevated D-dimer levels have
been correlated with increased blood loss and
postoperative bleeding time. Additionally, activa-
tion of fibrinolysis may also affect other aspects of
haemostasis such as reduced platelet adhesion and
aggregation capabilities due to redistribution of
glycoprotein Ib and IIb/IIIa receptors.10

Cardiopulmonary bypass activates
the complement system

The complement system provides an innate de-
fence against microbial infection and is a ‘‘com-
plement’’ to antibody mediated immunity. The
complement system consists of 35 interacting
plasma and membrane associated proteins which
contribute to host defence by initiating and am-
plifying the inflammatory response. Also, con-
tained within this system are several soluble
factors that prevent spontaneous complement
activation from occurring, as well as several
regulatory proteins that protect host cells from
accidental complement mediated attack.11,12

Activation of the complement system is
achieved through three major pathways: the clas-
sical pathway, which is activated by certain anti-
bodies bound to antigens (immune complexes); the
alternative pathway, which is activated on micro-
bial cell surfaces in the absence of antibody; and the
lectin pathway, which is activated by a plasma lectin
that binds to mannose residues on microbes.11e13
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Figure 1 Schematic representation of the coagulation and fibrinolytic systems.
Following the activation of complement pathways,
several peptides are generated that help to in-
crease the number of circulating leukocytes, promote
leukocyte adhesion to vascular endothelium, and
attract phagocytes to the sites of inflammation.14

During CPB complement activation occurs after
blood contacts non-endothelial cell surfaces,15

after protamine administration with formation
of protamineeheparin complexes16 and after re-
perfusion of the ischaemic myocardium.17 Com-
plement activation during surgery requiring CPB
may play a particularly important role in the
development of perioperative tissue injury due to
the pro-inflammatory effects of the terminal com-
plement products of C5 cleavage, C5a, and C5b-9.
C5a is an extremely potent anaphylatoxin, whereas
C5b-9, otherwise known as the membrane attack
complex, can directly lyse cells, including cardiac
myocytes.14 Both C5a and C5b-9 mediate cellular
damage, alteration of vascular permeability and
tone, leukocyte chemotaxis, initiation of cardiac
myocyte apoptosis, initiation of thrombosis and
promotion of both cellular activation and adhesion.14

Cardiopulmonary bypass activates
leukocytes

The use of CPB during cardiac surgery causes
leukocyte (monocyte and neutrophil) activation,
characterised by elevated levels of neutrophil
elastase,18 pro-inflammatory cytokines, and the
formation of plateleteleukocyte conjugates.19

Leukocyte activation occurs as a result of elevated
levels of thrombin, kallikrein and C5a. C5a is
generated soon after the onset of CPB and is
a particularly potent protein that induces neutro-
phil chemotaxis, degranulation, and superoxide
generation. Other important mediators of leukocyte
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activation during CPB include interleukin (IL)-1b,
TNF-a, IL-8, C5b-9, Factor XIIa, heparin, and
histamine.

Activated neutrophils can degranulate releasing
cytotoxic enzymes (neutrophil elastase, lyso-
zymes, and myeloperoxidase), oxygen free radi-
cals, and hydrogen peroxide. Activated neutrophils
also directly activate endothelial cells thereby
increasing perivascular oedema and leukocyte
transmigration into extracellular matrix.20 Fur-
thermore, monocyte activation during CPB plays
a major role in thrombin generation via expression
of tissue factor21 and release of inflammatory
mediators such as TNF-a, IL-1b, IL-6, and IL-8.22

Monocytes also express the receptor CD16323

which mediates the endocytosis of haemoglobin:
haptoglobin (Hb:Hp) complexes24 thereby counter-
ing Hb-induced oxidative tissue damage due to
haemolysis after CPB.25,26 Elevated CD163 levels
are detectable on circulating monocytes after
surgery using CPB and binding of Hb:Hp to CD163
on monocytes elicits a potent anti-inflammatory
interleukin-10 response, and this, in turn, induces
haeme oxygenase-1 stress protein synthesis. These
anti-inflammatory and cytoprotective pathways,
may have relevance to athero-protection, wound
healing, and patient recovery postoperatively.27

Cardiopulmonary bypass activates
endothelial cells

Endothelial cells are activated during CPB by
a variety of agonists. The principal agonists for
endothelial cell activation during CPB are throm-
bin, C5a, and the cytokines IL-1b and TNF-a.

IL-1b and TNF-a induce the early expression of
P-selectin and the later synthesis and expression
of E-selectin, which are involved in the initial
stages of neutrophil and monocyte adhesion.
These two cytokines also induce expression of
ICAM-1 and VCAM-1, which firmly bind neutrophils
and monocytes to the endothelium and initiate
leukocyte trafficking to the extravascular space.28

Regional vasoconstriction reduces blood flow rates
within local vascular beds allowing neutrophils to
play an important role in the multi-step model of
leukocyte interaction with the endothelium, con-
sisting of ‘‘attachment’’, ‘‘rolling’’, ‘‘activation’’,
‘‘firm adhesion’’ and ‘‘extravasation’’.29 E-selec-
tin (CD62E) and P-selectin (CD62P) are expressed
on activated endothelium and mediate ‘‘rolling’’
of leukocytes under hydrodynamic shear flow by
binding PSGL-1, a glycoprotein ligand expressed
on leukocytes, through a high affinity interaction.28

L-selectin (CD62L) is expressed on leukocytes and
is primarily involved in leukocyte recirculation
through lymphoid tissues, binding to counter-re-
ceptors GlyCAM-1, CD34 and endoglycan on high
endothelial venules. It also plays a role in mediat-
ing ‘‘secondary rolling’’20 at sites of inflammation
via adhesion to PSGL-1 expressed on leukocytes
previously attached to endothelium. A predomi-
nant role for P- and L-selectin in leukocyte re-
cruitment in inflammation has been demonstrated
in studies comparing E-, P- and L-selectin deficient
mice.31e33 During CPB the release of these vaso-
active and cytotoxic substances into the circula-
tion and the transmigration of leukocytes across
activated endothelium mediate many of the man-
ifestations of SIRS associated with CPB (Fig. 2).

Cardiopulmonary bypass activates platelets

Platelets are the smallest of the blood cells and
are known to be activated during cardiopulmonary
bypass. Both quantitative and qualitative platelet
defects have been demonstrated, with resulting
complications including haemorrhage.35,36 As the
interactions of activated platelets with the endo-
thelium and other blood cells are unravelled, the
important contributions they make toward the
development of SIRS after CPB are becoming in-
creasingly evident.

Numerous factors associated with CPB contrib-
ute toward the changes that occur in platelets.
These include physical factors37 (such as hypother-
mia and shear forces), exposure to artificial surfa-
ces,38,39 the use of exogenous drugs, and the
release of endogenous chemicals.6,34,40

Thrombocytopenia is well documented in associ-
ationwith CPB. Early haemodilution occurs from the
use of crystalloid fluids for priming the extracorpo-
real circuit. The decrease in platelet count during
CPB however is in excess of that accounted for by
haemodilution alone.41 Mechanical disruption as
well as adhesion to the extracorporeal circuit along
with sequestration in organs may also contribute to
this true drop in circulating platelet counts.

Platelets express a range of surface molecules
that mediate their haemostatic and inflammatory
functions. For instance Glycoprotein Ib levels have
been shown to be decreased by CPB with expres-
sion returning to normal level 3 h post-CPB.42 CD31
(also known as platelet endothelial cell adhesion
molecule-1/PECAM-1 because of its occurrence on
both platelets and endothelium) is also down-
regulated on platelets during CPB.43 P-selectin
(CD62) expression, secreted by activated platelets
from alpha granules, is known to increase within
5 min of commencing CPB.42
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Figure 2 Simplified hypothetical diagram of the multi-step model of leukocyte interaction with inflamed vascular
endothelium. Inflamed endothelium expresses P-selectin and E-selectin that binds PSGL-1 expressed on leukocytes,
thus mediating e A: ‘‘attachment’’ and B: ‘‘rolling’’. L-selectin participates in leukocyte recruitment at sites
of inflammation by mediating ‘‘secondary rolling’’ (leukocyte on leukocyte) through its interaction with PSGL-1.
C: ‘‘Activation’’ of integrins due to chemokines such as IL-8 results in D: ‘‘firm adhesion’’ of leukocytes to endothelium
via binding of LFA-1 and Mac-1 to ICAM-1. Finally E: ‘‘extravasation’’ occurs. Adherent leukocytes move towards
endothelial cell junctions and transmigrate into the extracellular matrix with interaction involving PECAM-1 and ICAM-2.
Reprinted with permission from Elsevier.34
Platelets activated during CPB form conjugates
both between themselves and with leukocytes.
P-selectin is expressed by activated platelets, which
contributes to leukocyte conjugate formation by
binding P-selectin glycoprotein (PSGL)-1.44 Acti-
vated platelets use this P-selectin/PSGL-1 adhe-
sion pathway to stimulate conjoined monocytes,
thus leading to secretion of the pro-inflammatory
cytokines IL-1b, IL-8 and monocyte chemo attrac-
tant protein (MCP)-1.45,46 P-selectin also induces
tissue factor expression and fibrin deposition by
monocytes, thus contributing to the evolution of
thrombus.47,48

Evidence is accumulating that activated plate-
lets attach to vascular endothelium and play an
important role in neutrophil adhesion and trans-
migration. Endothelial cells express the adhesion
molecule CD40 and activated platelets express on
their surface a complementary binding molecule
(ligand), CD40L. This transmembrane ligand pro-
tein is structurally related to tumour necrosis
factor-a (TNF-a) and induces endothelium to se-
crete chemokines and express further adhesion
molecules. Substantial secretion of IL-8 (chemo-
tactic for neutrophils), and MCP-1 (chemotactic
for monocytes) was noted on platelets binding to
endothelium. Thus, activated platelets bound to
endothelium are able to initiate recruitment of
neutrophils and monocytes.49

Inhibiting the inflammatory response

The modern era of cardiac surgery began with the
safe introduction of cardiopulmonary bypass (CPB)
in the early 1950s. Although it is clear that CPB is
indispensable for most open heart operations, we
are left with the problem that the undesirable SIRS
still occurs. The factors particular to CPB that
predispose our patients to this problem still re-
main; including the exposure of blood to artificial
surfaces, surgical trauma, ischaemia-reperfusion
injury, changes in body temperature, and endo-
toxin release. Our attempts at inhibiting this un-
wanted exacerbation of the inflammatory
response must therefore be based around: (1)
avoiding CPB altogether (off pump surgery); (2)
modifying the bio-incompatible CPB circuit (hepa-
rin bonded circuits); (3) removing activated neu-
trophils (leukodepletion filters); and (4) by using
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pharmaceutical drugs (glucocorticoids, comple-
ment inhibitors and aprotinin).

Off pump surgery

Coronary artery bypass grafting (CABG) is now
possible without the use of CPB e off pump
coronary artery bypass (OPCAB). OPCAB has been
shown to reduce postoperative morbidity,50 in-
cluding reduced myocardial injury,51 renal dys-
function,52 neurocognitive deficit,53 and SIRS.54

However, as ‘‘off-pump’’ cardiac surgery still
results in tissue trauma, cardiac manipulation,
pericardial suction, and administration of exoge-
nous drugs such as heparin, protamine, and many
anaesthetic agents, a physiological stress response
with resulting increases in pro-inflammatory
markers still occurs. The magnitude of the re-
sponse, however, is significantly less than that
observed when using CPB.54 OPCAB surgery is
now widely practised in many cardiac surgical
units worldwide.

Heparin bonded circuits

The use of heparin bonded circuits in CPB has
enabled reductions in the dosage of heparin
administered prior to initiation of bypass. This
has theoretical advantages as the large doses of
heparin given during CPB are associated with
deranged platelet function, as demonstrated by
activation of GP IIb/IIIa receptors, expression of
P-selectin, and enhanced platelet aggregation.55

Heparin coating improves the biocompatibility of
extracorporeal circuits as demonstrated by im-
proved clinical outcomes,56 and reduced neuro-
cognitive dysfunction,57 complement activation,58

transfusion requirements,59 and ischaemic myo-
cardial damage.60,61

Alternative surface coatings are undergoing in-
vestigation in clinical trials. Recently, a surface-
modification technique called surface-modifying
additive (SMA) has been introduced. The SMA
technology is based on a family of polysiloxane-
containing co-polymers that can be either blended
with base polymer resins before processing or
coated to blood-contacting surfaces. Initial inves-
tigations have demonstrated that SMA-treated bio-
material surfaces reduce platelet activation62 but
not blood loss or transfusion requirements during
CPB.63 Poly-2-methoxyethylacrylate (PMEA), is an-
other coating material for artificial membranes,
designed to reduce surface adsorption of plasma
proteins, and appears to show improved biocom-
patibility. Studies of PMEA-coated circuits have
demonstrated some advantages including reduced
platelet activation,64 pro-inflammatory cytokine
production,65 and thrombin, fibrinogen and brady-
kinin generation.66

Leukocyte filters

Activated monocytes and neutrophils play a signif-
icant role in the development of SIRS after CPB and
this has led to the introduction of leukocyte-
depleting filters into the CPB circuit. Reported
benefits include reduced circulating activated
leucocytes,67 transfusion requirements,68 renal
dysfunction69 and pulmonary inflammation leading
to expedited extubation and improved clinical
outcomes.67,70

Glucocorticoids

The physiological effects of corticosteroids are
numerous and widespread. They influence carbo-
hydrate metabolism, protein metabolism, lipid
metabolism, electrolyte and water balance, the
cardiovascular system, skeletal muscle, the CNS,
the formed elements of blood, and they possess
anti-inflammatory properties and affect other
organs and tissues in a wide variety of ways. In
essence, glucocorticoids promote the ability of
organisms to resist noxious stimuli and environ-
mental change. When given in the context of
cardiac surgery using CPB, glucocorticoids have
been shown to reduce levels of pro-inflammatory
cytokines (TNF-a, IL-6, IL-8)71,72 and to enhance
release of anti-inflammatory cytokines (IL-10).73

Additionally, glucocorticoids attenuate comple-
ment activation,74 increase bronchial epithelial
nitric oxide concentration,75 and decrease neutro-
phil integrin CD11b/CD18 (Mac-1) up-regula-
tion,76,77 all of which are beneficial in minimising
SIRS (Fig. 4). Other clinical benefits include an
increased cardiac index (CI),78 a decreased pulmo-
nary capillary wedge pressure,78 and a decreased
incidence of postoperative hyperthermia.79 Due to
the complex interactions of the inflammatory
pathways, inhibition of a common upstream target
might appear initially attractive. However, un-
desirable effects such as postoperative hypergly-
caemia,80 and delayed endotracheal extubation
have also been reported.81

Complement inhibitors

Complement inhibitors are currently attracting
much interest as an area of potential therapeutic



SIRS and CPB 135
benefit in reducing morbidity post-CPB. For in-
stance, Pexelizumab is a recombinant antibody
fragment that binds to the C5 complement com-
ponent thereby blocking the generation of C5a and
C5b-9. The generation of C3b however, the critical
mediator of bacterial opsonization, remains un-
inhibited. In the PRIMO CABG trial where Pexeli-
zumab was compared with placebo, there was
a statistically significant reduction in risk of MI or
death 30 days after surgery.82

Serine protease inhibitors (aprotinin)

Aprotinin (Trasylol�) was first used clinically in the
1960s, to treat acute pancreatitis.83 Only later in
the 1980s, at the Hammersmith Hospital, was the
ability of aprotinin to reduce blood loss after
surgery using CPB noted.84,85 This discovery was
a serendipitous finding as the researchers’ original
hypothesis was not related to haemostasis but to
inflammation, specifically the potential for apro-
tinin, in a high kallikrein-inhibitory dose, to atten-
uate the inflammatory response to CPB.

Aprotinin is a serine protease inhibitor isolated
from bovine lung tissue, now used widely in
cardiac surgery. It inhibits trypsin, chymotrypsin,
plasmin, tissue plasminogen activator, kallikrein,
elastase, urokinase and thrombin. Multiple studies
support aprotinin’s efficacy to decrease blood loss and
transfusion requirements in cardiac surgery86e89

and in other types of major surgery (e.g., liver trans-
plantation and major orthopaedic surgery).90,91

The haemostatic action of aprotinin is related to
its effects on limiting fibrinolysis via inhibition of
plasmin and kallikrein.92 In addition to haemostasis
it is also reported to preserve platelet function,93e95

reduce the incidence of SIRS76,97,98 and even
perioperative stroke.99

The mechanism by which aprotinin is known to
preserve platelet function lies in its ability to
inhibit platelet activation by preventing proteoly-
sis of the thrombin receptor protease-activated
receptor 1 (PAR1),100,101 the major thrombin re-
ceptor on platelets.102 This counters the concern
that aprotinin by having such potent haemostatic
effects might also be prothrombotic and suggests
otherwise, that aprotinin may in fact have antith-
rombotic effects. It is likely that the reported
reduction in the incidence of stroke99 post-CPB when
aprotinin is used is also due to PAR1 protection in
the central nervous system (Fig. 3).100,103,104

Aprotinin has been shown to reduce substan-
tially multiple markers of inflammation and com-
plement activation following CPB. The drug is
associated with reduction of leukocyte accumula-
tion in the lungs of patients exposed to CPB e
possibly through inhibition of leukocyte extravasation
and transmigration across endothelial surfaces.105

Potentially beneficial effects of aprotinin include
decreases in IL-6 and IL-8, an increase in IL-10, and
a reduction in Mac-1, the leukocyte integrin adhesion
molecule CD11b/CD18 (Fig. 4).106e110 Aprotinin
may therefore reduce the cell-mediated inflam-
matory response of platelets indirectly through
effects on plasma proteases and directly through
protease-activated receptors on platelets and endo-
thelial cells. Therefore, in addition to its haemo-
static properties the anti-inflammatory effects of
aprotinin are being increasingly recognized.
Figure 3 PAR1 is activated due to elevated thrombin levels in cardiopulmonary bypass and also in ischaemic stroke
patients. Aprotinin protects platelets from thrombin induced dysfunction post-cardiopulmonary bypass by protecting
the PAR1 receptor. Aprotinin also reduces the risk of perioperative stroke.99 It is therefore possible that aprotinin
mediated PAR1 protection is the underlying mechanism behind this pharmacotherapeutic effect.100,103,104
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Figure 4 Schematic representation of some of the functions mediated via the b-2 integrin receptor Mac-1. Binding
of Factor X to Mac-1 plays an important part of a cell bound alternative pathway of initiation of the coagulation
system, resulting in the acceleration of the conversion to Factor Xa and the release of proteases that activate
coagulation factors.111 Furthermore, binding of soluble fibrinogen to Mac-1 constitutes a bridging function to platelet
integrin GpIIb/IIla, as well as to the endothelial adhesion molecule ICAM-1.112 Neutrophileplatelet and neutrophile
endothelial cell interactions are involved in producing intravascular coagulation and endothelial permeability that
characterise the inflammatory response during CPB.19 Mac-1, identical to complement receptor type 3 (CR3), is
expressed on phagocytes and is responsible for the recognition of iC3b opsonised bacteria and yeast, and the initiation
of phagocytosis, degranulation, and respiratory bursts.114 Reprinted with permission from Elsevier.34
Conclusions

The use of CPB in clinical cardiac surgery provokes
an acute inflammatory response that is often
unpredictable and carries significant risk of mor-
bidity and mortality. This is due to contact activa-
tion of blood by surgical wounds, and synthetic
perfusion circuits, to which is often added blood
aspirated from the pericardial and pleural cavities.
Due to the diversity and intricacy of the multiple
pathways involved in manifesting an acute inflam-
matory response, it appears unlikely that a single
drug will ever be completely effective. However,
because cardiac surgical patients are vulnerable to
postoperative respiratory and wound infections
and because the inflammatory response is an
important step in wound healing, a thorough un-
derstanding and fine control of our therapeutic
interventions is necessary so as to optimise patient
recovery and ameliorate the development of SIRS.
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