Communication

A simple proof of the multiplicativity of directed cycles of prime power length

Xuding Zhu

School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada V5A 1S6

Received 4 October 1991
Communicated by P. Hell

Abstract

This paper gives a simple combinatorial proof of the multiplicativity of directed cycles of prime power length.

Let G and H be digraphs. We say G is homomorphic to H, written as $G \rightarrow H$, if there is an edge preserving mapping (homomorphism) $f: V(G) \rightarrow V(H)$. If no such mapping exists, we say that G is not homomorphic to H and write $G \nrightarrow H$. A digraph D is called multiplicative if the class of digraphs which are not homomorphic to D is closed under products. Here the product is the categorial product, i.e., $(a, b)(c, d)$ is an edge of $G \times H$ if and only if ac is an edge of G and bd an edge of H. Similar definitions apply to graphs.

Multiplicativity of graphs and digraphs is motivated by the conjecture, due to Hedetniemi [3], that the product of two graphs of chromatic number n also has chromatic number n. (This is equivalent to asserting that the complete graph of order $n - 1$ is multiplicative.) For graphs the best result known is that all cycles are multiplicative [1,2]. For oriented cycles the situation is not as simple. However they have been investigated thoroughly and there is now a complete classification of multiplicative oriented cycles [2,5,8,9].

0166-218X/92/$05.00 \copyright$ 1992—Elsevier Science Publishers B.V. All rights reserved
For a positive integer \(n \), let \(C_n \) be the directed cycle with vertices \(0, 1, 2, \ldots, n - 1 \) and edges \((i, i + 1)\) for \(0 \leq i \leq n - 2 \) and \((n - 1, 0)\). If \(n \) is not a prime power, let \(n = km \) with \(k \) and \(m \) relatively prime. Then \(C_n \) is isomorphic to \(C_k \times C_m \), while \(C_k \not\cong C_n \) and \(C_m \not\cong C_n \). Therefore \(C_n \) is not multiplicative.

Directed cycles of prime power length were conjectured to be multiplicative by Nešetřil and Pultr [6]. This was first proved by Häggkvist, Hell, Miller and Neumann Lara [2]. However their proof is not combinatorial and uses a deep result from homotopy theory. In [8], Zhou gave a combinatorial, but quite complex proof based on the method of [1], which was later somewhat simplified in [4]. However even that proof was quite long. Here we give a simple combinatorial proof of this result.

Theorem 1 [2]. The directed cycle \(C_n \) is multiplicative if and only if \(n \) is a prime power.

Let \(G \) be a digraph. An oriented walk \(P \) of \(G \) is a sequence of vertices and edges \(\langle u_0, e_1, v_1, e_2, \ldots, u_{n-1}, e_n, u_n \rangle \) such that \(e_i \) is either \((v_{i-1}, v_i)\) (a forward edge) or \((v_i, v_{i-1})\) (a backward edge). We will refer to such an oriented walk just by its sequence of vertices. If all the vertices are distinct, we have an oriented path. If \(u_0 = u_n \), we have a closed oriented walk. If \(u_0 = u_n \) and all other vertices are distinct, we have an oriented cycle. The inverse \(P^T \) of \(P \) has the same vertex set and edge set as \(P \) but is traversed in the opposite direction, i.e., \(P^T \) is the sequence \(\langle u_n, u_{n-1}, \ldots, u_1, u_0 \rangle \). The length \(l(P) \) of \(P \) is the number of forward edges of \(P \) minus the number of backward edges of \(P \). Hence \(l(P) = -l(P^T) \). For \(v \in P \), the level \(\lambda(v) \) of \(v \) in \(P \) is the length of the subpath of \(P \) from \(u_0 \) to \(v \). If \(P_1 = \langle u_0, v_1, \ldots, u_t \rangle \) and \(P_2 = \langle u_0, u_1, \ldots, u_m \rangle \) are two oriented walks of \(G \) and \(v_n = u_0 \), then \(P_1 \circ P_2 \) is the oriented walk of \(G \) obtained by adding \(P_2 \) to the end of \(P_1 \). It is easy to see that \(l(P_1 \circ P_2) = l(P_1) + l(P_2) \).

The following two facts were observed in [2]:

1. A digraph \(G \) is homomorphic to \(C_n \) if and only if every oriented cycle of \(G \) (or equivalently every closed oriented walk of \(G \)) has length 0 (mod \(n \)).

2. Suppose \(P_1 = \langle u_0, v_1, \ldots, u_t \rangle \) and \(P_2 = \langle u_0, u_1, \ldots, u_m \rangle \) are two oriented paths of length \(t \) such that for every \(v \in P_1 \) we have \(0 \leq \lambda(v) \leq t \) and for every \(u \in P_2 \) we have \(0 \leq \lambda(u) \leq t \). Then there is an oriented walk of length \(t \) in \(P_1 \times P_2 \) from \((u_0, u_0)\) to \((v_0, u_m)\).

As noted in [2], the proof of (1) is straightforward and (2) can be proved by double induction on \(t \), the length of \(P_1 \) and \(P_2 \), and \(q \), the total number of vertices of \(P_1 \) and \(P_2 \) of level 0. Now we are ready to prove Theorem 1.

Proof of Theorem 1. We may assume that \(n \) is a prime power, since we have already observed that \(C_n \) is not multiplicative otherwise. Suppose \(G \) and \(H \) are digraphs such that \(G \not\cong C_n \) and \(H \not\cong C_n \). We need to show that \(G \times H \not\cong C_n \). By (1), \(G \) has an oriented cycle \(C = \langle u_0, v_1, \ldots, v_k, u_0 \rangle \) of length \(m_1 \neq 0 \) (mod \(n \)) and \(H \) has an oriented
cycle $C' = \langle u_0, u_1, \ldots, u_m, u_0 \rangle$ of length $m_2 \neq 0 \pmod{n}$. Without loss of generality, assume that $m_1 > 0$ and $m_2 > 0$ and let $m^* = \text{lcm}(m_1, m_2) = k_1 m_1 - k_2 m_2$. Since n is a prime power, we have $m^* \neq 0 \pmod{n}$. To prove $G \times H \cong C_n$, it is enough to show that $C \times C' \subset G \times H$ has a closed walk W of length m^* from (v_0, u_0) to (u_0, u_0).

First we show that there is a point $v_i \in C$ such that each of the walks $\langle v_0, \ldots, v_{i+j} \rangle$ (addition modulo $k + 1$) has nonnegative length. To see this, let $\alpha_i = l((v_0, v_1, \ldots, v_i)) (1 \leq i \leq k)$ and let $\alpha_i = \min\{\alpha_i : 0 \leq i < k\}$. It is easy to see that v_i has the claimed property (observe that the length of C is $m_1 > 0$).

Without loss of generality, we assume that u_0 has this property in C and u_0 has the corresponding property in C'.

Let $P_1 = \langle u_0, u_1, \ldots, u_k, u_0, u_1, \ldots, u_k, u_0, \ldots, u_0 \rangle$ be the closed walk of C which goes around C exactly k_1 times. For convenience let v_i^j be the jth occurrence of u_i in P_1 (i.e., write P_1 as $\langle v_0^1, v_1^1, \ldots, v_0^1, v_1^1, \ldots, v_k^1 \rangle$). Similarly, let $P_2 = \langle u_0^1, u_1^1, \ldots, u_0^2, u_1^2, \ldots, u_k^2, \ldots, u_0^2 \rangle$ be the closed walk of C' which goes around C' exactly k_2 times, where u_i^j denotes the jth occurrence of u_i in P_2.

Let $M_1 = \max\{\lambda_{P_1}(x) : x \in P_1\}$ and let $M_2 = \max\{\lambda_{P_2}(y) : y \in P_2\}$ and let $M = \max\{M_1, M_2\}$.

Let $P_1' = \langle u_0^{k_1}, u_1^{k_1+1}, \ldots, v_i^{k_1+1}, \ldots, u_0^1 \rangle$ be the walk of C' which is the extension of P_1 by continuing around C until the length first reaches $M + 1$. Similarly let $P_2' = \langle u_0^1, \ldots, u_k^{k_2+1}, u_1^{k_2+1}, \ldots, u_0^1 \rangle$ be the walk of C' which is the extension of P_2 by continuing around C' until the length first reaches $M + 1$. Let P_1'' be the subpath of P_1' from $u_i^{k_1}$ to v_i^j and let P_2'' be the subpath of P_2' from $u_i^{k_1+1}$ to u_j^k. It is easy to check that

- P_1' and P_2' are oriented paths of length $M + 1$ such that for every $x \in P_1'$ we have $0 \leq \lambda_{P_1'}(x) \leq M + 1$ and for every $y \in P_2'$ we have $0 \leq \lambda_{P_2'}(y) \leq M + 1$.
- P_1'' and P_2'' are oriented paths of length $M + 1 - m^*$ such that for every $x \in P_1''$ we have $0 \leq \lambda_{P_1''}(x) \leq M + 1 - m^*$ and for every $y \in P_2''$ we have $0 \leq \lambda_{P_2''}(y) \leq M + 1 - m^*$.

By (2), $P_1' \times P_2'$ has a walk W' from (v_0, u_0) to (u_j, u_j) of length $M + 1$ and $P_1'' \times P_2''$ has a walk W'' from (v_0, u_0) to (u_j, u_j) of length $M + 1 - m^*$. Now $W' \circ (W'')^{-1}$ is a closed walk of length m^* in $C \times C'$. This finishes the proof of the theorem.