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The mismatch negativity (MMN) is a brain response to violations of a rule, established by a sequence of
sensory stimuli (typically in the auditory domain) [Näätänen R. Attention and brain function. Hillsdale,
NJ: Lawrence Erlbaum; 1992]. The MMN reflects the brain’s ability to perform automatic comparisons
between consecutive stimuli and provides an electrophysiological index of sensory learning and percep-
tual accuracy. Although the MMN has been studied extensively, the neurophysiological mechanisms
underlying the MMN are not well understood. Several hypotheses have been put forward to explain
the generation of the MMN; amongst these accounts, the ‘‘adaptation hypothesis” and the ‘‘model adjust-
ment hypothesis” have received the most attention. This paper presents a review of studies that focus on
neuronal mechanisms underlying the MMN generation, discusses the two major explanatory hypotheses,
and proposes predictive coding as a general framework that attempts to unify both.
� 2008 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
1. The MMN: a brief introduction

Small changes in the acoustic environment engage an automatic
auditory-change detection mechanism reflected in the mismatch
negativity (MMN). The presentation of an oddball or deviant event,
embedded in a stream of repeated or familiar events, the standards,
results in an evoked response that can be recorded non-invasively
with electrophysiological techniques such as electro-encephalog-
raphy (EEG) and magneto-encephalography (MEG). The MMN is
the negative component of the waveform obtained by subtracting
the event-related response to the standard event from the response
to the deviant event. This brain response is measured with EEG and
has a magnetic counterpart called MMNm. The MMN is elicited by
sudden changes in stimulation, peaks at about 100–250 ms from
change onset and exhibits the strongest intensity in temporal
and frontal areas of topographic scalp maps (Sams et al., 1985). Gi-
ven its automatic nature, the MMN might be associated with pre-
attentive cognitive operations in audition and, for this reason, it
has been suggested that it reflects ‘primitive intelligence’ in the
auditory cortex (Näätänen et al., 2001). Here we finesse this notion
and suggest that the mechanisms behind the generation of the
MMN can be understood within a predictive coding framework
that appeals to empirical Bayes.

While the MMN has been studied intensively in the auditory
modality (for a recent review see Näätänen et al., 2007), some
studies show evidence for the existence of a visual MMN counter-
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part (Astikainen et al., 2004; Czigler et al., 2004; see Pazo-Alvarez
et al., 2003, for review). Omitted stimuli or deviances, such as
direction of movement, form, orientation, location, contrast, size,
spatial frequency and colour, elicit a negative component in the
N2 latency range (250–450 ms). Nevertheless, there is contro-
versy as to whether these N2-like waves elicited by visual stimu-
lus change reveal the same degree of automaticity as in the
auditory MMN or whether the emergence of this component is
really based on a memory comparison process. A potential ana-
logue to the MMN has also been reported in the somatosensory
system, which seems to be generated in fine discrimination tasks
(Kekoni et al., 1997; Akatsuka et al., 2005). Numerous studies
have focused on event-related potential (ERP) scalp-maps, espe-
cially in clinical applications, when comparing, for instance,
schizophrenic patients (Umbricht et al., 2003a) or dyslexic sub-
jects (Baldeweg et al., 1999) with normal controls. The MMN
has also been proved useful in understanding auditory perception
and formation of sensory memory representations (Atienza et al.,
2002; van Zuijen et al., 2006).

A major area of the MMN research is concerned with its
underlying neuronal mechanisms. Several competing hypotheses
have been put forward, based on experimental results obtained
by ERPs, MEG and functional magnetic resonance imaging (fMRI).
The most common interpretation is that the MMN arises when-
ever there is a break of regularity in a structured auditory se-
quence (Näätänen, 1992), and that a temporo-prefrontal
network, comparing the current sensory input with a memory
trace of previous stimuli, is responsible for generating this re-
sponse at the scalp level (Giard et al., 1990; Rinne et al., 2000;
Opitz et al., 2002; Doeller et al., 2003). From this perspective,
ed by Elsevier Ireland Ltd. All rights reserved.
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the MMN is assumed to reflect an automatic auditory change
detection process that triggers a switch in the focus of attention
(Escera et al., 1998, 2003). However, this notion has been chal-
lenged recently by claims that the MMN rests on a much simpler
mechanism, namely neuronal adaptation in the auditory cortex.
The adaptation hypothesis proposes that the apparent MMN re-
sults from the subtraction of a N1 response to a novel sound,
from the N1 response to a non-novel or repeated sound; where
the N1 to a repeated sound is delayed and suppressed, as novelty
decreases (Jääskeläinen et al., 2004).

In this paper, we review a variety of studies that have contrib-
uted to a mechanistic understanding of how the auditory MMN is
generated, discuss the major hypotheses, and suggest a general and
unifying framework; predictive coding, for understanding the
MMN. Predictive coding is a general theory of perceptual inference.
Under predictive coding the brain is regarded as a hierarchically
organised cortical system, in which each level strives to attain a
compromise between bottom-up information about sensory in-
puts, provided by the level below and top-down predictions (or
priors) provided by the level above (Mumford, 1992; Rao and Bal-
lard, 1999; Friston, 2003). Within this framework the MMN would
result from a failure to predict bottom-up input and consequently
to suppress prediction error (Friston, 2005; Baldeweg, 2006; Garr-
ido et al., 2007). The predictive coding account of the MMN unifies
the competing hypotheses of neuronal adaptation and model adjust-
ment (Garrido et al., 2008).

Critically, predictive coding may rest on NMDA-dependent syn-
aptic plasticity and its regulation by neuromodulatory transmitters
(Friston, 2005). Pharmacological studies with substances that af-
fect synaptic plasticity (using either direct NMDA [ant] agonists
or drugs affecting neuromodulatory transmitter receptors) may
therefore play an important role in investigating the neurobiologi-
cal mechanisms underlying the MMN. Similarly, predictive coding
may link clinical MMN studies to aberrant perceptual learning and
NMDA-dependent synaptic plasticity. Given this, we include a brief
overview of MMN changes in pharmacological and clinical studies.
This serves as a prelude to the focus of this paper; predictive cod-
ing and the MMN.
Fig. 1. Scalp topography and time latency of the MMN. (a) ERP responses to standard
responses to the standard and deviant tones at a fronto-central channel. (c) MMN differe
response averaged over the time window of 100–200 ms interpolated for a 3D scalp top
2. General characteristics of the MMN

2.1. Scalp topography

The MMN is the negative component of a difference wave be-
tween responses to standard and deviant events embedded in an
oddball paradigm. This negative response, of about 5 lV maximum
peak, is distributed over fronto-central scalp locations (see Fig. 1).

The MMN peaks at about 100–250 ms after change onset but
this latency varies slightly according to the specific paradigm or
the type of regularity that is violated: frequency, duration, inten-
sity, or the inter-stimulus interval (Näätänen et al., 2004) (see
Fig. 1c). In more complex paradigms an abstract rule is broken,
such as inter-stimulus relationships (Tervaniemi et al., 1994;
Paavilainen et al., 2001; Vuust et al., 2005) or phoneme regularity
(Näätänen et al., 1997). Barely discriminable tones elicit a later
MMN peaking at about 200–300 ms (Näätänen and Alho, 1995).

2.2. MMN under different paradigms

The MMN is elicited in the presence of any discriminable
change in some repetitive aspect of auditory stimulation. This dis-
criminable change can be of different types: frequency, duration,
intensity, perceived sound-source location, silent gap instead of a
tone, or one phoneme replaced by another. In a recent study,
Näätänen et al. (2004) proposed a new paradigm, in which a stan-
dard alternates with one of five deviant types that differ in dura-
tion, location, intensity, gap and frequency. Because of its
effectiveness, this paradigm is particularly useful in clinical re-
search as it can be used to obtain five different types of MMN re-
sponses in the same time traditional paradigms elicit only one
type of MMN.

It is generally believed that the MMN is evoked by any violation
of an acoustic regularity or pattern. Indeed, the MMN is elicited by
violations of abstract rules established in a structured auditory se-
quence (Näätänen et al., 2001). For example, with complex audi-
tory patterns, it has been found that an MMN is elicited by an
occasional ascending tone or tone repetition in a sequence of reg-
and deviant tones overlaid on a whole scalp map of 128 EEG electrodes. (b) ERP
nce wave obtained by subtracting ERP to standards from ERP to deviants. (d) MMN
ography. (From Garrido et al., 2007.)
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ularly descending tone pairs (Tervaniemi et al., 1994); by changing
the direction of within-pair frequency change (Saarinen et al.,
1992); independently of their absolute frequencies, and by viola-
tions of the rule that the higher the frequency, the louder the
intensity (Paavilainen et al., 2001). The MMN is also detected when
the stimuli are spectrally rich. This type of paradigm facilitates
attentive pitch discrimination in comparison to pure sinusoidal
tones; in other words, the MMN is larger and has shorter latency
(Tervaniemi et al., 2000a). Moreover, MMN responses are elicited
by breaking a regularity in roving paradigms (Baldeweg et al.,
2004; Haenschel et al., 2005; Garrido et al., 2008), or in more
sophisticated paradigms comprising irregularities in rhythms
(Vuust et al., 2005), musical sequences (van Zuijen et al., 2004),
and violations in phoneme regularity (Näätänen et al., 1997).

2.3. An index of memory traces?

It is commonly accepted that the MMN rests on the relation be-
tween the present and the previous stimulus, rather than on the
stimulus alone. Hence, the MMN may depend on a memory trace
formed by preceding stimuli; i.e., during the presentation of the
standard events. If the deviant, or the new event, occurs while this
memory trace is still active, the automatic change-detection is acti-
vated, giving rise to a MMN response (Näätänen, 2000). The dura-
tion of this period, also called echoic memory, has been reported to
last at least 10 s in normal subjects (Böttcher-Gandor and Ullper-
ger, 1992).

2.4. Dependence on attention?

The MMN is the earliest ontological cognitive component that
can be observed in an ERP trace (Alho et al., 1990). An important
characteristic of the MMN in auditory oddball paradigms is the fact
that it can be detected even when the subject is not paying atten-
tion. The MMN can be measured without any task requirements
and is elicited even when the subject performs a task that is not re-
lated to the stimulus. The MMN can be elicited irrespective of
attention, during non-attentive states such as sleep (Sallinen
et al., 1994), or even in coma; where the presence of a MMN has
been proposed as a predictor for recovery of consciousness (Kane
et al., 1993). This demonstrates the brain’s capacity to perform
complex comparisons between consecutive sounds automatically
(Näätänen et al., 2001). Although the MMN is seldom affected by
attention, some studies suggest that the MMN is attenuated when
the subject’s attention is outside the focus of the auditory stimulus
(Arnott and Allan, 2002; Müller et al., 2002). On the other hand, the
degree to which the visual stimulus is attended does not seem to
influence the MMN (Otten et al., 2000). To avoid overlap with other
ERP components, some authors argue that the best condition to ob-
serve an MMN is when subject attention is directed away from the
stimulus (Näätänen, 2000).

It has been reported that the generation of the MMN, in partic-
ularly the source over the frontal lobe, is associated with an invol-
untary attention switching process, an automatic orienting
response to an acoustic change (Escera et al., 1998, 2003). In addi-
tion, it has been suggested that the frontal generator of the MMN is
related to an involuntary amplification or contrast enhancement
mechanism that tunes the auditory change detection system (Opitz
et al., 2002).

3. The relevance of the MMN and its applications

The fact that MMN can be elicited without special task require-
ments, independently of the subject’s motivation and in the ab-
sence of attention, during sleep, or even before coma recovery,
makes it particularly suitable for testing different clinical popula-
tions, infants and newborns (see Kujala et al., 2007, for a recent re-
view). The following two subsections present a brief review of
recent studies that used the MMN to address important questions
in cognitive processing and clinical neuroscience.

3.1. MMN in cognitive studies

The MMN is considered to represent the only objective marker
for auditory sensory accuracy (Näätänen, 2000). MMN studies have
made important contributions to our understanding of the forma-
tion of auditory perception and streaming (see Denham and Win-
kler, 2006, for a review), construction of sensory memory
representations, as well as how these are influenced by attention
(Sussman et al., 1998; Sussman and Steinschneider, 2006). It has
been shown that whereas attention is not always necessary for
auditory stream segregation (Sussman et al., 2007), switches in
attention are important for streaming reset (Cusack et al., 2004).
Woldorff et al. (1993) have shown that focused auditory attention
can modulate sensory processing as early as 20 ms. Others have
used the MMN to characterise the mechanisms of involuntary
attention switching (Escera et al., 1998, 2003).

Several studies have used the MMN to understand mechanisms
of perceptual learning. Tremblay et al. (1998) showed that train-
ing-associated changes in neural activity, indicated by the MMN,
precede behavioural discrimination of speech. The MMN was also
found to correlate with gains in auditory discrimination after sleep
(Atienza et al., 2002, 2005). Implicit, intuitive and explicit knowl-
edge have been characterised in terms of the elicited responses,
the MMN and P3, combined with behavioural measures (van Zui-
jen et al., 2006).

3.2. MMN in clinical neuroscience

The MMN has proved useful in various clinical contexts (see
Näätänen, 2000, 2003 for reviews on clinical research and applica-
tions). The most promising clinical application of MMN is in
schizophrenia research. More than 30 studies have found signifi-
cant reductions of MMN amplitude in patients with schizophrenia,
both for frequency and duration deviants (Umbricht and Krljes,
2005). Moreover, individual MMN amplitudes correlate with dis-
ease severity and cognitive dysfunction (Baldeweg et al., 2004)
and functional status (Light and Braff, 2005), although there are
conflicting reports about its association with genetic risk for
schizophrenia (Michie et al., 2002; Bramon et al., 2004). Two fea-
tures make the MMN a particularly interesting paradigm for
schizophrenia research (see Stephan et al., 2006, for a review).
First, the MMN depends on intact NMDA receptor signalling: phar-
macological blockage of NMDA receptors has been shown to signif-
icantly reduce the MMN, both in invasive recordings studies in
monkeys (Javitt et al., 1996) and human EEG/MEG studies
(Kreitschmann-Andermahr et al., 2001; Umbricht et al., 2000,
2002). This is important because the critical role of the NMDA
receptor in the plasticity of glutamatergic synapses is at the core
of current pathophysiological theories of schizophrenia (Friston
and Frith, 1995; Harrison and Weinberger, 2005; Javitt, 2004; Ste-
phan et al., 2006). Second, clinical investigations of schizophrenic
patients require very simple paradigms that are robust to changes
in attention and performance. As discussed above, the MMN fulfils
these requirements very well.

The MMN has proved useful for investigating several diseases in
addition to schizophrenia. Another important application is in the
field of dyslexia: dyslexic patients show diminished MMN, albeit
only for frequency deviants and not for duration. This suggests that
dyslexia is associated with auditory frequency discrimination
impairment (Baldeweg et al., 1999). A reduced MMN in children
with learning disabilities suggested that the deficit originates in
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the auditory pathway at a processing stage prior to conscious per-
ception (Kraus et al., 1996). This is in accord with Rinne et al.
(1999) who showed that speech processing occurs at early pre-
attentive stages on the left hemisphere (at about 100–150 ms after
sound onset).

3.3. The MMN and neuropharmacology

Pharmacologically induced changes in the MMN have been
investigated in numerous studies, using a variety of drugs affecting
different neurotransmitter systems. The most robust, and perhaps
also the most important neuropharmacological effect, given its
importance for relating the MMN to schizophrenia, is exerted
through NMDA receptors: several studies have found strong reduc-
tions of MMN amplitude under the NMDA antagonist ketamine
(Ehrlichman et al., 2008; Heekeren et al., 2008; Javitt et al., 1996;
Kreitschmann-Andermahr et al., 2001; Umbricht et al., 2000,
2002), with only a single study failing to find a significant effect
of ketamine (Oranje et al., 2002).

In contrast to NMDA receptors, the roles of dopamine, serotonin,
nicotinic, muscarinic and GABA receptors for MMN generation are
more controversial. With regard to dopamine; early studies re-
ported a decrease of MMN amplitude in patients with Parkinson’s
disease (Pekkonen et al., 1995) and in healthy volunteers treated
with the D2-receptor antagonist haloperidol (Kähkönen et al.,
2001). A subsequent combined MEG/EEG study of healthy volun-
teers receiving haloperidol could not replicate this result, but only
found a shorter latency of the MMN that was specific for MEG mea-
surements (Pekkonen et al., 2002). Similarly, a recent study using
both D1- and the D2-receptor agonists found no evidence for
MMN modulation by dopaminergic receptors (Leung et al., 2007).
Data on the relation of serotonin receptors to MMN generation
are similarly inconsistent. Kähkönen et al. (2005) used acute trypto-
phan depletion in healthy volunteers to reduce serotonin synthesis
in the brain; they found significantly reduced MMN amplitude and
a shortened latency. In contrast, an EEG study in healthy volunteers,
using the 5HT2A receptor antagonist psylocibin, found no evidence
of MMN modulation (Umbricht et al., 2003b). Concerning nicotinic
receptors, the literature is less diverse, albeit not fully consistent;
whereas most studies reported an increase in the MMN amplitude
by nicotinic receptor stimulation (Baldeweg et al., 2006; Dunbar
et al., 2007; Engeland et al., 2002), other studies found nictonergic
effects on latency and width of the MMN (Harkrider and Hedrick,
2005; Inami et al., 2005), and one study did not find any effect at
all (Knott et al., 2006). The only two available studies on the role
of muscarinic receptors in the MMN, performed by the same
authors, gave contradictory results (Pekkonen et al., 2001, 2005). Fi-
nally, inconsistent results have also been obtained in studies
manipulating GABAA receptor function, with some studies report-
ing a significant reduction of MMN amplitude by benzodiazepines
(Nakagome et al., 1998; Rosburg et al., 2004), whereas other studies
failed to observe a significant modulation of the MMN (Kasai et al.,
2002; Murakami et al., 2002; Smolnik et al., 1998).

Overall, one might conclude that the roles of dopaminergic,
serotoninergic, muscarinic and GABA receptors in MMN generation
are currently not well established and require further research. The
evidence for an involvement of nicotinic receptors is stronger, al-
beit not fully consistent. In contrast, there is broad agreement
amongst studies that blockage of NMDA receptors leads to signifi-
cant reductions in MMN amplitude.

4. The mechanisms of MMN generation

Despite the vast literature on MMN research, the mechanisms
that underlie its generation remain a matter of debate. Two major
competing hypotheses have emerged, the model adjustment
hypothesis and the adaptation hypothesis. The following subsections
describe these two competing hypotheses and discuss the experi-
mental evidence that favours one or the other. Finally, predictive
coding is suggested as a unifying framework that can accommo-
date both hypotheses. This idea is supported by recent results from
our connectivity modelling approach to the MMN (Garrido et al.,
2008, under review).

4.1. The model adjustment hypothesis

The MMN can be regarded as an index of automatic change-
detection governed by a pre-attentive sensory memory mechanism
(Tiitinen et al., 1994). Several studies have proposed mechanistic
accounts of how the MMN might be generated. The most common
interpretation is that the MMN is a marker for error detection
caused by a break in a learned regularity or familiar auditory con-
text. The MMN would then result from the difference, or mismatch,
between the current and preceding input. Early work by Näätänen
and colleagues suggested that the MMN results from a comparison
between the present auditory input and the memory trace of pre-
vious sounds (Näätänen, 1992). In agreement with this theory, oth-
ers (Winkler et al., 1996; Näätänen and Winkler, 1999; Sussman
and Winkler, 2001) have postulated that the MMN could reflect
on-line modifications of a perceptual model that is updated when
the auditory input does not match its predictions. This is the so-
called model-adjustment hypothesis. In the context of the model
adjustment hypothesis, the MMN is regarded as a marker for error
detection, caused by a deviation from a learned regularity. In other
words, the MMN results from a comparison between the auditory
input and a memory trace of previous sounds, reflecting an on-line
updating of the model for predicting auditory inputs (Winkler
et al., 1996; Näätänen and Winkler, 1999). According to this
hypothesis, the MMN is a response to an unexpected stimulus
change. This hypothesis has been supported by Escera et al.
(2003) who provided evidence for the involvement of the prefron-
tal cortex in providing top-down modulation of the deviance
detection system in the temporal cortices. In the light of Näätä-
nen’s model, it has been claimed that the MMN is caused by two
underlying functional processes, a sensory memory mechanism re-
lated to temporal generators and an automatic attention-switching
process related to the frontal generators (Giard et al., 1990). The
role of prefrontal generators is supported by studies of patients
with prefrontal lesions who showed diminished temporal MMN
amplitudes (Alain et al., 1998). Furthermore, it has been shown
that the temporal and frontal MMN sources have separate tempo-
ral dynamics (Rinne et al., 2000) but interact with each other (Je-
mel et al., 2002). This notion is also compatible with strong and
reciprocal anatomical connectivity between auditory and prefron-
tal areas that has been found in primate tract tracing studies
(Romanski et al., 1999). According to source reconstruction studies,
the generators of the MMN are located bilaterally in the temporal
cortex (Hari et al., 1984; Giard et al., 1990; Alho, 1995). In addition,
there is evidence for generators in the prefrontal cortex, often
stronger and reported more consistently on the right hemisphere
for tone paradigms (Levänen et al., 1996) and on the left hemi-
sphere for language paradigms (Näätänen et al., 1997; Tervaniemi
et al., 2000b; Pulvermüller, 2001). A sensory memory mechanism
has been associated with the temporal generators, whereas a cog-
nitive role, or comparator-based mechanism, has been assigned to
the prefrontal generators (Giard et al., 1990; Gomot et al., 2000;
Maess et al., 2007). Numerous studies have consistently reported
evidence for multiple generators of the MMN in the primary audi-
tory cortex. This has been reproduced across different modalities
such as EEG (Deouell et al., 1998; Jemel et al., 2002; Marco-Pallarés
et al., 2005; Grau et al., 2007), MEG (see for example Tiitinen et al.,
2006; or Hari et al., 1984) and combined EEG with MEG measures



Fig. 2. MMN generators estimated from EEG and MEG data. The centre of gravity changes from temporal to frontal areas over time. Frontal sources were detected with EEG;
due to their radial orientation they might not be detected by MEG. These sources were determined with minimum norm estimates (MNE). (Adapted from Rinne et al., 2000.)

1 Neuronal adaptation, or spike-frequency adaptation, results from activation of
calcium-dependent potassium channels that lead to a slow after hyperpolarizing
currents, decreasing neuronal excitability and firing rate (see Faber and Sah, 2003, for
review). Adaptation is thus a local phenomenon that is independent of pre-synaptic
mechanisms and rests on changes in post-synaptic responsiveness.
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(Rinne et al., 2000). The latter study revealed that prefrontal gener-
ators are activated later than the generators in the auditory cortex;
this supports the hypothesis of a change detection mechanism in
the prefrontal cortex, which is triggered by the temporal cortex.
This study found temporal sources with both M/EEG, whereas pre-
frontal sources were only found with EEG; possibly because the
frontal sources have a radial orientation and the MEG sensors are
blind to the fields generated by radial sources (see Fig. 2).

fMRI (Molholm et al., 2005; Rinne et al., 2005) and combined
fMRI-EEG studies (Opitz et al., 2002; Doeller et al., 2003; Lieben-
thal et al., 2003) have reported findings that are consistent with
the results of the source reconstruction studies described above.
Some of the combined fMRI-EEG studies show a double peak over
frontal scalp locations suggesting the existence of two subcompo-
nents for the MMN. Dipole modelling was performed in two time
windows to explain the scalp ERP distribution (Opitz et al., 2002;
Doeller et al., 2003). The early component is reported to peak in
the time window of 90–120 ms and it can be modelled with di-
poles located bilaterally in the superior temporal gyrus (STG). ERPs
within the late time window, 140–170 ms, can be modelled with
dipoles placed in left and right inferior frontal gyrus (IFG) (see
Fig. 3). The sources in the temporal areas might be involved in pro-
cessing changes of the sound’s physical properties, whereas the
sources on the frontal areas might reflect reorientation of atten-
tion. Recent work has linked the early component (in the range
of about 100–140 ms) to a sensorial, or non-comparator account
of the MMN, originated in the temporal cortex, and the later com-
ponent (in the range of about 140–200 ms) to a comparator-based
mechanism of the MMN, involving the prefrontal cortex (Maess
et al., 2007). Although MMN sources are found consistently over
temporal and pre-frontal regions, a few studies have reported
sources at other locations such as right temporal and parietal lobes
(Levänen et al., 1996).

Thus, these studies provide evidence that the MMN is generated
by a temporo-frontal network, which appeals to the model adjust-
ment hypothesis. This rests on a change-detection mechanism; in
which the MMN reflects greater prediction error or mismatch be-
tween top-down predictions and current inputs. In other words,
the MMN is elicited when there is a change in the input, relative
to the predictions formed on the basis of a memory trace of previ-
ous input. Clearly, the implicit increase in prediction error signifies
something has changed and calls for an adjustment of the brain’s
internal model or memory of the stimulus.

4.2. The adaptation hypothesis

A recent study (Jääskeläinen et al., 2004) has challenged the
common view that the MMN is generated by a temporal–frontal
cortical network. Instead, they suggest that the MMN results from
a much simpler mechanism of local neuronal adaptation at the le-
vel of the auditory cortex, causing attenuation and delay of the N1
response. The N1 response is the negative component peaking at
about 100 ms from stimulus onset and is associated with early
auditory processing at the level of A1. They propose that the N1 re-
sponse to standard (or ‘non-novel’) sounds is delayed and sup-
pressed (or attenuated) as a function of its similarity to the
preceding auditory events, reflecting short-lived adaptation of
auditory cortex neurons.1 As a consequence, the observed response
would be erroneously interpreted as a separate component from
the N1 wave. According to the adaptation hypothesis, the fact that
the neuronal elements within the auditory cortex become less
responsive during continuous stimulation is sufficient to explain
the generation of an apparent MMN. With the generation of a de-
layed and suppressed N1 in the auditory cortex, the MMN would



Fig. 3. MMN underlying sources revealed by EEG and conjoint EEG and fMRI measures. (a) Dipoles indicated by red arrows at bilateral STG and IFG (adapted from Doeller
et al., 2003). (b) Dipole locations at bilateral STG and right IFG and (c) significant fMRI activation for deviants (adapted from Opitz et al., 2002). (d) Most significant
independent component (computed by ICA-LORETA analysis, adapted from Marco-Pallarés et al., 2005). This figure shows consistency for MMN sources across different
modalities.
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emerge as a product of an N1 differential wave when subtracting the
ERP to the standards from the ERP to the deviant.

The adaptation hypothesis rests on previous MEG studies indi-
cating the presence of two subcomponents of the N1 response: a
posterior subcomponent, N1p, peaking at about 85 ms from stimu-
lus onset, and an anterior subcomponent, N1a, peaking at about
150 ms (Loveless et al., 1996). The amplitude of the posterior com-
ponent is strongly suppressed during the presentation of identical
stimuli, whereas this adaptation effect is smaller for the anterior
component. In contrast to previous studies showing that repetitive
standard sounds constitute a prerequisite for the MMN, Jääskeläi-
nen et al. (2004) furnish evidence for robust MMN to infrequent
(or ‘novel’) stimuli when preceded by a single standard stimulus.
Consistent with the adaptation hypothesis, EEG measurements
employing small deviances around a standard tone demonstrate
that the smaller the frequency separation between the standard
and the deviant, the more the amplitude to the deviants is attenu-
ated (May et al., 1999).

Adaptation is a compelling hypothesis for the generation of the
MMN that explains the experimental results mentioned above.
However, there are other empirical observations that are not com-
patible with the adaptation hypothesis (see Näätänen et al. (2005)
for a critical assessment on the adaptation view of Jääskeläinen
et al., 2004). One of the points against adaptation is the fact that
it predicts that the MMN duration and latency should match those
of the N1, which has been shown not to be the case (Winkler et al.,
1997). Secondly, adaptation does not explain why an MMN can be
elicited in the absence of a N1 response, for example, during sleep
(Atienza and Cantero, 2001) or when unexpectedly omitting a
stimulus (Yabe et al., 1997). However, one potential defence in fa-
vour of the adaptation hypothesis rests on the notion that neuronal
dynamics, induced by rhythmic stimulation, continue to oscillate
upon cessation or interruption of stimulation (May et al., 1999).
A third and compelling piece of evidence is that infrequent decre-
ments in tone intensity also evoke an MMN (Näätänen et al., 1989).
A MMN to a reduced stimulus intensity (or indeed omission of a
stimulus) is difficult to explain in terms of adaptation alone. An-
other point of controversy is that, as mentioned above, the viola-
tion of abstract rules or complex inter-stimulus relationships can
also elicit an MMN. For instance, an ascending tone pair in a se-
quence of descending tone pairs elicits an MMN (Saarinen et al.,
1992) even though there is no stimulus repetition that could cause
adaptation of a frequency-specific neuronal population. Given the
tonotopic structure of auditory cortex, MMNs of this sort cannot
be explained by local adaptation but must result from more com-
plex mechanisms involving more than one neuronal population.
Moreover, the scalp distribution of the MMN is different from the
N1 (Giard et al., 1990). While the N1 components are larger in
amplitude over the contralateral hemisphere, the MMN response
to changes in acoustical features is right-hemispheric dominant
(Levänen et al., 1996) and left-hemispheric dominant for phoneme
changes, irrespective of the ear stimulated (Näätänen et al., 1997).
Recently, Horváth et al. (2008) used a refined oddball paradigm
that minimises the N1 confound, to show that frequency devia-
tions have an effect on the N1 component but do not influence
the MMN proper. This supports the notion that adaptation contrib-
utes to the MMN (as measured in conventional paradigms, i.e.,
MMN confounded with the N1 component), but is not sufficient
to explain the MMN per se. Another finding that cannot be ex-
plained by adaptation alone is that equivalent current dipole
(ECD) modelling reveals that the temporal source underlying the
MMN is located more anterior than the source underlying the N1
(Hari et al., 1992; Tiitinen et al., 1993). Besides that, the MMN
has a second main source in the frontal lobe, which expresses tem-
poral dynamics that are distinct from the N1 source (Opitz et al.,
2002; Doeller et al., 2003; Molholm et al., 2005; Grau et al.,
2007). Evidence for a frontal generator was also provided from di-
rect intracranial recordings in human epilepsy patients (Rosburg
et al., 2005). Finally, pharmacologic manipulations show that
NMDA antagonists block the generation of MMN without affecting
activity in the primary auditory cortex (Javitt et al., 1996), which
suggests that the MMN and the N1 employ different neuronal pop-
ulations and are expressions of separate cortical processes. Finally,
if the MMN results from neuronal adaptation, one would predict
changes in MMN following manipulations of serotoninergic and
muscarinic receptors. This is because activation of these receptors
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is known to enhance neuronal adaptation (cf. McCormick and Wil-
liamson, 1989). As described above, however, there is only weak
and contradictory empirical evidence for MMN modulation by
serotoninergic and muscarinic agents.

4.3. The MMN from the perspective of predictive coding

Predictive coding (or, more generally, hierarchical inference in
the brain) states that perception arises from integrating sensory
information from the environment and our predictions based on
a model of what caused that sensory information. Prediction error
is minimised through recurrent interactions amongst levels of a
cortical hierarchy in order to estimate the most likely cause of
the input (Friston, 2003, 2005). The model adjustment hypothesis
explains the MMN as a marker for error detection caused by a devi-
ation from a learned regularity. The MMN would thus result from a
comparison between the auditory input and a memory trace
embodied in top-down predictions. The ensuing prediction error
may then be used for on-line updating of a model for predicting
auditory inputs (Winkler et al., 1996; Näätänen and Winkler,
1999). This is completely consistent with the predictive coding
framework, where current inputs are predicted from past inputs
(see Fig. 4). In the case of a prediction error, i.e. when there is a
mismatch between the predicted and the actual sensory input,
the neural system implementing the model must be adjusted (for
example, by short-term synaptic plasticity). During the repetition
of subsequent events, that adjustment is reflected neurophysio-
logically in the suppression of prediction error and the disappear-
ance of the MMN (Friston, 2005; Baldeweg, 2006). This view is
identical to predictive coding models of vision, which postulate
that perception relies on hierarchically organised neural systems,
in which each level compares predictions from higher-level areas
with information from lower areas (Rao and Ballard, 1999; Yuille
and Kersten, 2006): using backward connections, higher cortical
areas attempt to fit their abstractions, or learned reconstructions
of the world, to the data received from lower cortical areas. The
lower areas, in turn, attempt to reconcile the predictions from
higher areas with the actual input, and return, by means of forward
Fig. 4. The MMN interpreted in terms of predictive coding. (a) Illustrative scheme of the
ERP emerge. (b) The MMN, a concrete example and plausible underlying mechanisms.
connections, a prediction error signal, i.e. information on the fea-
tures not predicted by the higher areas (Mumford, 1992). Hence,
lower and higher areas communicate via reciprocal pathways until
reconciliation; in other words, until the prediction error is sup-
pressed and the encoding of sensory causes at higher cortical areas
is optimised (Friston, 2003).

Recently, predictive coding has been formulated in terms of
empirical Bayesian models of perceptual learning and inference.
The ensuing framework provides a nice way to understand the
MMN (Friston, 2003, 2005; Garrido et al., 2008). In empirical
or hierarchical Bayes, priors pðhÞ about the underlying causes of
sensory input, are optimised in higher hierarchical levels (i.e., cor-
tical areas) and provide top-down constraints on the most likely
representations in lower levels. These ‘most likely’ representations
maximise the posterior or conditional density pðhjyÞ of the causes
of sensory data y. The conditional density is defined by Bayes rule

pðhjyÞ / pðhÞpðyjhÞ

This rule combines the top-down prior and a likelihood, pðyjhÞ,
which corresponds to the generative model used by the brain to
predict its sensory input (see Fig. 4). In practice, this form of Bayes-
ian inference can be implemented by message-passing amongst
hierarchical levels of the cortex; where top-down predictions are
passed to lower levels to explain away bottom-up inputs. The
resulting prediction error is then passed back up the hierarchy, to
optimise high-level representations. When the message-passing
converges, the representations at all levels correspond to the condi-
tional expectation of the causes of sensory input; i.e., a multilevel
representation. This scheme provides a compelling model for
evoked sensory responses, in terms of self-organised reciprocal ex-
changes between cortical areas to produce transients of neuronal
activity. Put simply, neuronal activity tries to suppress prediction
error to represent the states of the world; this is perceptual infer-
ence. However, over repeated presentations of the same stimulus,
connection strengths that encode statistical regularities in the
world also change to reduce prediction error. This corresponds to
perceptual learning and is the mechanism we think underlies the
MMN.
general framework of hierarchical Bayes and predictive coding as an explanation for
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Critically, hierarchical inference (e.g., predictive coding) also
rests on optimising the relative influence of bottom-up prediction
error and prediction error based on top-down prior expectations.
This involves optimising the post-synaptic sensitivity (and lateral
interactions) of prediction error units within an area or source
(Friston, 2003). Put simply, when a standard stimulus can be pre-
dicted more precisely by top-down afferents, less weight is as-
signed to bottom-up influences and the post-synaptic
responsiveness to sensory inputs decreases. This is exactly what
the adaptation hypothesis predicts. In short, hierarchical inference,
using prediction error, provides a principled framework in which
the model adjustment and adaptation heuristics become necessary
for sensory inference.

We have seen that predictive coding formulations entail specific
mechanisms that might underlie the MMN. A promising approach,
to address these mechanisms, is to create biophysically realistic
models that can represent competing hypotheses. These models
can be tested empirically and provide evidence to disambiguate
amongst competing theories. A pioneering study of this sort was
performed by May et al. (1999) who constructed a model of tono-
topically organised auditory cortex consisting of leaky integrate-
and-fire neurons and compared its predictions to experimentally
measured MEG/EEG data. Their question was whether the MMN
could be explained by a local post-synaptic mechanism (i.e., neuro-
nal adaptation) alone, or whether additional non-local synaptic
mechanisms were required. They chose lateral inhibition (i.e., reci-
procal inhibitory connections amongst neighbouring neuronal
populations) as a candidate mechanism of the latter sort. They
found that their experimental data could best be approximated
by a model that combined adaptation and lateral inhibition.

Another class of models are those that use dynamic causal mod-
elling (DCM) to test the likelihood of plausible connectivity graphs
underlying the MMN, and to infer the coupling parameters of the
most likely network. Dynamic causal modelling is a generic ap-
proach to modelling the neuronal mechanisms that underlie mea-
sured neuroimaging (Friston, 2003; Stephan et al., 2007; Marreiros
et al., 2008) and electrophysiological data (David et al., 2006; Kie-
bel et al., 2006, 2007; Garrido et al., 2007). A recent study (Garrido
et al., 2008) compared different accounts of the mechanisms
underlying MMN generation, using DCMs for M/EEG data. DCM
for electrophysiological data combines a neural mass model with
a forward model that translates the neural dynamics into predicted
measurements; estimation techniques based on a variational Bayes
allow one to infer the parameters of the neuronal system from the
observed data. In the study by Garrido et al. (2008), Bayesian
model comparison (Penny et al., 2004) was used to select the best
amongst several DCMs that represented competing mechanistic
hypotheses about MMN generation. The range of models tested in-
cluded (i) the adaptation hypothesis, i.e. that the MMN is best ex-
plained by a deviant-induced suspension of neuronal adaptation
that is confined to lower-order auditory areas (cf. Jääskeläinen
et al., 2004); (ii) the model-adjustment hypothesis (Winkler et al.,
1996; Doeller et al., 2003) which assumes that the MMN results
from deviant-induced changes in temporo-frontal connections;
i.e. short-term synaptic plasticity; and (iii) combinations of these
two hypotheses which accommodate intra-areal adaptation com-
bined with plasticity of inter-areal connections. The latter group
of models are consistent with the predictive coding formulation.
Our results suggest that the mechanisms of MMN generation in-
volve plasticity in inter-areal connections amongst multiple hierar-
chical levels, as well as local adaptation within the primary
auditory cortices. These results indicate that the adaptation
hypothesis is not sufficient to explain MMN generation, nor do
they favour model adjustment alone. In other words, the MMN
cannot be explained by changes in post-synaptic sensitivity or
intrinsic connections, only; nor can it be explained by exclusive
changes in extrinsic connections. This result is important because
it supports a model that combines both the model adjustment
hypothesis (Winkler et al., 1996) and the local adaptation hypothe-
sis (Jääskeläinen et al., 2004) into the unified and more general
framework of predictive coding. Moreover it can accommodate
the findings of a multitude of studies showing that there are tem-
poral and frontal cortical sources underlying the MMN generation
(Rinne et al., 2000; Jemel et al., 2002; Opitz et al., 2002; Doeller
et al., 2003; Liebenthal et al., 2003; Molholm et al., 2005; Restuccia
et al., 2005).

An example of experimental evidence that can be reinterpreted
in terms of predictive coding is that dipole intensity is stronger for
large deviants (100%) compared with medium deviants (30%) at
the temporal sources (Opitz et al., 2002). On the other hand, a re-
versed pattern was observed in the right frontal cortex; i.e., a big-
ger dipole strength in case of low discrimination between a
sensory memory trace and auditory input. The authors discuss
these findings in terms of alternative explanations and suggest that
the prefrontal cortex (IFG) contributes to a top-down process that
modulates the deviance detection system in the temporal cortices
(STG) (see also Doeller et al., 2003). Under Bayesian models of per-
ception (Yuille and Kersten, 2006) this dissociation can be inter-
preted easily as greater prediction error in low level sources for
large deviants. Conversely, in higher levels, ambiguous bottom-
up cues may induce prediction errors that cannot be explained
away by even higher levels. Very similar dissociations between
high and low-level responses to predictable and unpredictable
stimuli have bee reported in the visual cortex (e.g., Murray et al.,
2004; Harrison et al., 2007).

In summary, the predictive coding framework postulates that
evoked responses correspond to prediction error that is explained
away (within trial) during perception and is suppressed (between
trials) by changes in synaptic sensitivity and efficacy during per-
ceptual learning. The predictive coding framework encompasses
the two distinct hypotheses, in the sense that it predicts the adjust-
ment of a generative model of current stimulus trains (cf. the mod-
el-adjustment hypothesis) by using plastic changes in synaptic
connections (cf. the adaptation hypothesis). The repeated presenta-
tion of standards may render suppression of prediction error more
efficient; leading to a reduction in evoked responses under repeti-
tion and the emergence of a mismatch response, when an un-
learned stimulus is presented. In this framework, increases in
intrinsic connectivity may encode progressive increases in the esti-
mated precision of top-down predictions, responsible for suppress-
ing prediction error. These changes could be mediated by
adaptation-like mechanisms in the auditory cortices to repeated
sounds. Changes in forward connections may reflect changes in
sensitivity to prediction error that is conveyed to higher levels.
These higher levels form predictions so that backward connections
can provide contextual guidance to lower levels. In this view, the
MMN represents a failure to predict bottom-up input and conse-
quently a failure to suppress prediction error.

In conclusion, the predictive coding model provides a common
framework for both adaptation and model-adjustment. This frame-
work lends a probabilistic perspective to conventional views of
the MMN. Moreover, predictive coding gracefully subsumes synap-
tic activity, sensitivity and plasticity within the same optimisation
scheme. This is important because optimum inference requires
both optimisation of neuronal representations (as reflected in the
ERP per se) and changes in synaptic responsiveness and efficiency
(as reflected in the MMN or ERP difference). Furthermore, it shows
how change-detection, adaptation and model-adjustment can all
be understood as aspects of the same perceptual optimisation. In
short, predictive coding reconciles apparently distinct models of
the MMN and affords a neurobiological mechanism for its genera-
tion, which embodies both adaptation and model-adjustment.
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