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Abstract

The study of dynamic equations on time scales, which goes back to its founder Stefan Hilger (1988), is an area of
mathematics that has recently received a lot of attention. It has been created in order to unify the study of di6erential and
di6erence equations. In this paper we give an introduction to the time scales calculus. We also present various properties
of the exponential function on an arbitrary time scale, and use it to solve linear dynamic equations of 9rst order. Several
examples and applications, among them an insect population model, are considered. We then use the exponential function
to de9ne hyperbolic and trigonometric functions and use those to solve linear dynamic equations of second order with
constant coe:cients. Finally, we consider self-adjoint equations and, more generally, so-called symplectic systems, and
present several results on the positivity of quadratic functionals. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Unifying continuous and discrete analysis

In 1988, Stefan Hilger [12] introduced the calculus of measure chains in order to unify continuous
and discrete analysis. Bernd Aulbach, who supervised Stefan Hilger’s Ph.D. thesis [11], points out
the three main purposes of this new calculus:

Uni9cation – Extension – Discretization:

For many purposes in analysis it is su:cient to consider a special case of a measure chain, a
so-called time scale, which simply is a closed subset of the real numbers. We denote a time scale
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by the symbol T. For functions y de9ned on T; we can consider a so-called delta derivative yG;
and this delta derivative is equal to y′ (the usual derivative) if T=R is the set of all real numbers,
and it is equal to Gy (the usual forward di6erence) if T=Z is the set of all integers. Then we can
study dynamic equations

f(t; y; yG; yG2
; : : : ; yGn

) = 0;

which may also involve higher order derivatives as indicated. Along with such dynamic equations
we can consider initial value problems and boundary value problems. We remark that these dynamic
equations are di6erential equations when T=R; and they are di6erence equations when T=Z. Other
kinds of equations are covered by them as well, such as for example q-di8erence equations

T= qZ:={qk | k ∈Z} ∪ {0} for some q¿ 1

or di6erence equations with constant step size

T= hZ:={hk | k ∈Z} for some h¿ 0:

Particularly useful for the discretization aspect are time scales of the form

T= {tk | k ∈Z} where tk ∈R; tk ¡ tk+1 for all k ∈Z:
This survey paper is organized as follows: In Section 2 we introduce the basic concepts of the
time scales calculus. One major object, when studying dynamic equations on time scales, is the
exponential function, which will be discussed in Section 3. Section 4 is devoted to examples and
applications. In Section 5 we consider linear dynamic equations and initial value problems involving
them. Finally, in Section 6, we study a particular case of linear dynamic systems, namely symplectic
systems on time scales. The bibliography at the end of this paper contains, besides references that
are cited in the text, many of the recent articles in this relatively new area of research. The book
[7] is an up-to-date summary on the subject.

2. Delta derivatives

A time scale is a nonempty closed subset of the reals, and we usually denote it by the symbol T.
The two most popular examples are T=R and T=Z. We de9ne the forward and backward jump
operators �; 
 : T→ T by

�(t) = inf{s∈T | s¿ t} and 
(t) = sup{s∈T | s¡ t}
(supplemented by inf ∅= supT and sup ∅= inf T). A point t ∈T is called right-scattered, right-dense,
left-scattered, left-dense, if �(t)¿t; �(t) = t; 
(t)¡t; 
(t) = t holds, respectively. The set T� is de-
9ned to be T if T does not have a left-scattered maximum; otherwise it is T without this left-scattered
maximum. The graininess � : T→ [0;∞) is de9ned by

�(t) = �(t) − t:

Hence the graininess function is constant 0 if T=R while it is constant 1 for T=Z. However, a
time scale T could have nonconstant graininess. Now, let f be a function de9ned on T. We say
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that f is delta di8erentiable (or simply: di8erentiable) at t ∈T� provided there exists an � such
that for all �¿ 0 there is a neighborhood N around t with

|f(�(t)) − f(s) − �(�(t) − s)|6 �|�(t) − s| for all s∈N:

In this case we denote the � by fG(t); and if f is di6erentiable for every t ∈T�; then f is said to
be di8erentiable on T and fG is a new function de9ned on T�. If f is di6erentiable at t ∈T�; then
it is easy to see that

fG(t) =




lims→t; s∈T
f(t) − f(s)

t − s
if �(t) = 0

f(�(t)) − f(t)
�(t)

if �(t)¿ 0:
(2.1)

However, it is exactly the philosophy of the calculus on time scales to avoid the separate discussion
of the two cases �(t) = 0 and �(t)¿ 0, i.e., when t is right-dense and right-scattered, respectively.
Results as in (2.1) do not serve this purpose and therefore should be avoided in proofs. To illustrate
the idea, we now give another formula, which holds whenever f is di6erentiable at t ∈T�:

f(�(t)) =f(t) + �(t)fG(t): (2.2)

When applying formula (2.2), we do not need to distinguish between the two cases �(t) = 0 and
�(t)¿ 0. Formula (2.2) holds in both of these cases. Even though it is trivial in the case of a
right-dense t; we need not worry about di6erent cases. Two further examples of such formulas are
the product rule for the derivative of the product of two di6erentiable functions f and g:

(fg)G(t) =fG(t)g(t) + f(�(t))gG(t) (2.3)

and the quotient rule for the derivative of the quotient of two di6erentiable functions f and g 
= 0:(
f
g

)G

(t) =
fG(t)g(t) − f(t)gG(t)

g(t)g(�(t))
: (2.4)

Clearly, 1G = 0 and tG = 1; so we can use (2.3) to 9nd

(t2)G = (t · t)G = t + �(t);

and we can use (2.4) to 9nd(
1
t

)G

= − 1
t�(t)

:

Other formulas may be obtained likewise. One word of caution: The forward jump operator � is not
necessarily a di6erentiable function. Clearly, at a point which is left-dense and right-scattered at the
same time, � is not continuous. Hence � is not di6erentiable at such a point since we know:
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Theorem 2.1. Every di8erentiable function is continuous.

However, � is an example of a function which we call rd-continuous. A function f de9ned on
T is rd-continuous, if it is continuous at every right-dense point and if the left-sided limit exists
in every left-dense point. The importance of rd-continuous functions is revealed by the following
existence result by Hilger [12]:

Theorem 2.2. Every rd-continuous function possesses an antiderivative.

Here, F is called an antiderivative of a function f de9ned on T if FG =f holds on T�. In this
case we de9ne an integral by∫ t

s
f(�)G�=F(t) − F(s) where s; t ∈T:

An antiderivative of 0 is 1, an antiderivative of 1 is t; but it is not possible to 9nd a polynomial
(or any “nice” formula of a function) which is an antiderivative of t (where T is an arbitrary time
scale). The role of t2 is therefore played in the time scales calculus by∫ t

0
�(�)G� and

∫ t

0
�G�:

Note that both integrals exist by Theorem 2.2 as the functions � and identity are both rd-continuous.
In general, the functions

g0(t; s) ≡ 1 and gk+1(t; s) =
∫ t

s
gk(�(�); s)G�; k¿ 0

and

h0(t; s) ≡ 1 and hk+1(t; s) =
∫ t

s
hk(�; s)G�; k¿ 0

may be considered as the “polynomials” on T. The relationship between gk and hk is given in [2]
as

gk(t; s) = (−1)khk(t; s) for all k ∈N: (2.5)

To verify (2.5) e.g., for the case k = 2 we can calculate

g2(t; s) =
∫ t

s
g1(�(�); s)G�=

∫ t

s
(�(�) − s)G�

=
∫ t

s
(�(�) + �)G�−

∫ t

s
�G�−

∫ t

s
sG�

=
∫ t

s
(�2)GG�+

∫ s

t
�G�− s(t − s)

=
∫ s

t
�G�+ t2 − s2 − s(t − s)

=
∫ s

t
(�− t)G�=

∫ s

t
h1(�; t)G�= h2(s; t):
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One of the two versions of Taylor’s formula (the other obtained by using (2.5)) reads as follows,
see [2]:

Theorem 2.3. Let �∈T�n−1
. If f is n times di8erentiable; then

f(t) =
n−1∑
k=0

hk(t; �)fGk
(�) +

∫ 
n−1(t)

�
hn−1(t; �(�))fGn

(�)G�:

3. Special functions

A function p : T→ R is called regressive if

1 + �(t)p(t) 
= 0 for all t ∈T:
Concerning initial value problems

yG =p(t)y; y(t0) = 1 (3.1)

(where t0 ∈T; as is assumed throughout this paper), Hilger [12] proved the following existence and
uniqueness theorem:

Theorem 3.1. If p is rd-continuous and regressive; then (3:1) has a unique solution.

We call the unique solution of (3.1) the exponential function and denote it by ep(·; t0). In fact,
there is an explicit formula for ep(t; s); using the so-called cylinder transformation

�h(z) =




Log(1 + hz)
z

if h 
= 0

z if h= 0:

The formula, see [13], reads

ep(t; s) = exp
{∫ t

s
��(�)(p(�))G�

}
: (3.2)

It can be seen immediately from (3.2) that the exponential function never vanishes; however, in
contrast to the case T=R, the exponential function could possibly attain negative values. As an
example, just consider the problem yG = − 2y; y(0) = 1 for T=Z. Now we will mention some
properties of the exponential function. First, we have by (2.2)

ep(�(t); s) = ep(t; s) + �(t)eG
p (t; s)

= ep(t; s) + �(t)p(t)ep(t; s)

= [1 + �(t)p(t)]ep(t; s);
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where we denote by eG
p (t; s) the derivative of ep with respect to the 9rst variable. Using this equation

and letting y= ep(·; t0)eq(·; t0) for rd-continuous and regressive p and q, we 9nd by (2.3) that

yG(t) = eG
p (t; t0)eq(t; t0) + ep(�(t); t0)eG

q (t; t0)

=p(t)ep(t; t0)eq(t; t0) + [1 + �(t)p(t)]ep(t; t0)q(t)eq(t; t0)

= [p(t) + q(t) + �(t)p(t)q(t)]y(t):

Hence, introducing an addition ⊕ by

p⊕ q=p + q + �pq;

we 9nd that y solves the initial value problem

yG = (p⊕ q)(t)y; y(t0) = 1;

and therefore y= ep⊕q(·; t0) by Theorem 3.1. Thus

ep⊕q = ep · eq:

Note also that p⊕ q is regressive i6 both p and q are:

1 + �(p⊕ q) = 1 + �(p + q + �pq) = 1 + �p + �q + �2pq= (1 + �p)(1 + �q):

To see how the corresponding subtraction � should be de9ned, we denote y= ep(·; t0)=eq(·; t0) and
use (2.4) to calculate

yG(t) =
eG
p (t; t0)eq(t; t0) − ep(t; t0)eG

q (t; t0)

eq(t; t0)eq(�(t); t0)

=
p(t)ep(t; t0)eq(t; t0) − ep(t; t0)q(t)eq(t; t0)

eq(t; t0)[1 + �(t)q(t)]eq(t; t0)

=
p(t) − q(t)
1 + �(t)q(t)

y(t)

so that y solves the initial value problem

yG = (p� q)(t)y; y(t0) = 1

provided we introduce the subtraction � by

p� q=
p− q
1 + �q

:

Therefore, again by Theorem 3.1,

ep�q =
ep
eq
:
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Note again that p� q is regressive if both p and q are:

1 + �(p� q) = 1 + �
p− q
1 + �q

=
1 + �q + �(p− q)

1 + �q
=

1 + �p
1 + �q

:

We put

�q= 0 � q= − q
1 + �q

;

and then we can derive many useful formulas such as e.g., �(�q) = q. We have

Theorem 3.2. The set of regressive functions together with addition ⊕ is an Abelian group.

Further properties of the exponential function may be obtained as in [8,13]. Next we want to
emphasize, that, along with the equation yG =p(t)y, there is another “natural” form of a linear
equation of 9rst order, namely xG =−p(t)x�, where we denote x� = x ◦�. Of course for T=R both
these equations are (up to a minus sign) the same. However, in the general time scales setting, the
two equations are di6erent. Let us now solve the initial value problem

xG = − p(t)x�; x(t0) = 1; (3.3)

subject to the usual assumptions on p. Assuming that x solves (3.3), we 9nd by using (2.2)

xG(t) = − p(t)x(�(t)) = − p(t)[x(t) + �(t)xG(t)]

and hence

[1 + �(t)p(t)]xG(t) = − p(t)x(t)

so that (note that p is assumed to be regressive)

xG(t) = − p(t)
1 + �(t)p(t)

x(t) = (�p)(t)x(t):

Therefore x is a solution of

yG = (�p)(t)y; y(t0) = 1:

Theorem 3.3. If p is rd-continuous and regressive; then ep(·; t0) and e�p(·; t0) are the unique solu-
tions of (3:1) and (3:3); respectively.

Using the exponential function, we now may 9nd solutions of many dynamic equations in a similar
way as we would do it with ordinary di6erential equations. As an example, we consider the equation

yG3 − 2yG2 − yG + 2y= 0:
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Trying y(t) = e�(t; t0) with constant � leads us to

0 = (�3 − 2�2 − � + 2)e�(t; t0) = (� + 1)(�− 1)(�− 2)e�(t; t0);

i.e., �∈{−1; 1; 2} so that e−1(·; t0); e1(·; t0); and e2(·; t0) are solutions. All solutions of this dynamic
equation may be constructed by taking linear combinations of the above three solutions. As another
example, we consider the initial value problem

yG2
= a2y; y(t0) = 1; yG(t0) = 0; (3.4)

where a is a regressive constant. By using the technique described above, we 9nd that both ea(·; t0)
and e−a(t; t0) solve the dynamic equation. Therefore we try a linear combination of the form
�ea(·; t0) + �e−a(·; t0). We 9nd � + �= 1 and � − �= 0 so that �= �= 1=2. Hence it is useful
to introduce

coshp =
ep + e−p

2
and sinhp =

ep − e−p
2

;

where sinh is the derivative of cosh. Both de9nitions require p and −p to be regressive (and
rd-continuous), and because of

(1 + �p)(1 − �p) = 1 − �2p2;

this is equivalent to −�p2 being regressive. The following result is easy to verify:

Theorem 3.4. If p is rd-continuous and −�p2 is regressive; then

sinhG
p = coshp; coshG

p = sinhp; and cosh2
p − sinh2

p = e−�p2 :

Now we also introduce trigonometric functions in a similar fashion:

cosp =
eip + e−ip

2
and sinp =

eip − e−ip
2i

;

provided �p2 is regressive, and this is clearly satis9ed if p(t)∈R for all t ∈T. We 9nd the following
result:

Theorem 3.5. If p is rd-continuous and real; then

sinG
p = cosp; cosG

p = − sinp; and sin2
p + cos2

p = e�p2 :

In particular, if a∈R is constant, then cosa(·; t0) solves the initial value problem

yG2
= − ay; y(t0) = 1; yG(t0) = 0:

Finally, we mention the analogue of Theorem 3.1 in the matrix case. This result can also be used to
study higher order equations by rewriting them 9rst in matrix form. Let P be an n×n-matrix-valued,
rd-continuous (i.e., each entry is rd-continuous) function of T. We say that P is regressive provided

I + �(t)P(t) is invertible for all t ∈T;
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Table 1
The two most important examples

Time scale T R Z

Backward jump operator 
(t) t t − 1
Forward jump operator �(t) t t + 1
Graininess �(t) 0 1
Derivative fG(t) f′(t) Gf(t)

Integral
∫ b
a f(t)Gt

∫ b
a f(t) dt

∑b−1
t=a f(t) (if a¡b)

Rd-continuous f continuous f any f
�-operator I� I I\{maxI}

where I denotes the n× n-identity matrix. Concerning initial value problems of the form

YG =P(t)Y; Y (t0) = I (3.5)

we have the following result of Hilger [12]:

Theorem 3.6. If P is rd-continuous and regressive; then (3:5) has a unique solution.

We refer to this solution as the matrix exponential and denote it by eP(·; t0). In the case of a
constant matrix A it is possible to calculate eA(·; t0) using a generalization of Putzer’s algorithm as
is explained in [3].

4. Examples and applications

Example 4.1. Of course the two most popular examples of time scales are R and Z. In Table 1 we
collect some information about these time scales.

Now let us solve (3.1) for these two cases and hence 9nd the corresponding exponential functions:
Clearly, if T=R, then

ep(t; s) = exp
{∫ t

s
p(�) d�

}
and ea(t; s) = ea(t−s)

if p is continuous and a is constant. Hence e.g.,

ea(t; 0) = eat and e1(t; 0) = et:

Similarly,

sinhp(t; s) = sinh
{∫ t

s
p(�) d�

}
; sinha(t; s) = sinh (a(t − s));

and hence e.g.,

sinha(t; 0) = sinh (at) and sinh1(t; 0) = sinh t;
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and corresponding formulas can be written down for cosh, sin, and cos. The functions hk and gk are
given by

hk(t; s) = gk(t; s) =
(t − s)k

k!
; e:g:; hk(t; 0) = gk(t; 0) =

tk

k!
:

Next, if T=Z, then (3.1) reads

Gy(t) :=y(t + 1) − y(t) =p(t)y(t + 1); y(t0) = 1:

Hence, if p(t) 
= − 1 for all t ∈Z, then

ep(t; s) =




∏t−1

�=s
[1 + p(�)] if t ¿ s

1 if t= s

1∏s−1
�=t [1 + p(�)]

if t ¡ s

and therefore with constant a 
= − 1

ea(t; s) = (1 + a)t−s; ea(t; 0) = (1 + a)t ; e1(t; 0) = 2t :

Moreover, e.g.,

cosha(t; 0) =
(1 + a)t + (1 − a)t

2
=

∞∑
k=0

(
t

2k + 1

)
a2k+1

and

sinha(t; 0) =
(1 + a)t − (1 − a)t

2
=

∞∑
k=0

(
t

2k

)
a2k

and similarly for the trigonometric functions. The functions hk and gk are given by

hk(t; s) =
(
t − s
k

)
and gk(t; s) =

(
t − s + k − 1

k

)
if t ¿ s:

Example 4.2. Another important time scale is

hZ= {hk | k ∈Z} for some h¿ 0:

Dynamic equations on hZ correspond to di6erence equations with step size h rather than 1. Hence
(3.1) reads

y(t + h) − y(t)
h

=p(t)y(t); y(t0) = 1:

E.g., if h= 1=n for some natural number n∈N; then

ea(t; 0) =
(

1 +
a
n

)nt → eat as n → ∞:
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Many properties on this time scale “become” the corresponding “continuous” properties as h → 0.
As one more example we use Theorem 3.5 to 9nd

sin2
a(t; 0) + cos2

a(t; 0) = ea2=n(t; 0) =
(

1 +
a2

n2

)nt
→ 1 as n → ∞:

The use of hZ lies in the “discretization” aspect of the time scales calculus. Time scales which serve
this purpose even better are of the form

T= {tk(h) | k ∈Z} with 06 tk+1(h) − tk(h) = o(h) as h → 0:

They allow discretization with variable step size.

Example 4.3. Let N (t) be the amount of plants of one particular kind at time t in a certain area. By
experiments we know that N grows exponentially according to N ′ =N during the months of April
until September. At the beginning of October, all plants suddenly die, but the seeds remain in the
ground and start growing again at the beginning of April with N now being doubled. We model
this situation using the time scale

T=
∞⋃
k=0

[2k; 2k + 1];

where t= 0 is April 1 of the current year, t= 1 is October 1 of the current year, t= 2 is April 1 of
the next year, t= 3 is October 1 of the next year, and so on. We have

�(t) =

{
0 if 2k6 t ¡ 2k + 1

1 if t= 2k + 1:

On [2k; 2k+1); we have N ′ =N; i.e., NG =N . However, we also know that N (2k+2) = 2N (2k+1);
i.e., GN (2k + 1) =N (2k + 1); i.e., NG =N at 2k + 1. As a result, N is a solution of the dynamic
equation

NG =N:

Thus, if N (0) = 1 is given, N is exactly e1(·; 0) on the time scale T. Further examples that can
be modeled with similar time scales include insect population models, which are discrete in season
(and may follow a di6erence scheme with variable step size or are often modeled by continuous
dynamic systems), die out in say winter, while their eggs are incubating or dormant, and then in
season again, hatching gives rise to a nonoverlapping population. Some speci9c examples [9] are
the cicada Magicicada septendecim which lives as a larva for 17 years and as an adult for perhaps
a week, and the common mayQy Stenonema canadense which lives as a larva for a year and as an
adult for less than a day.

Example 4.4 (S. Keller [15]). Consider a simple electric circuit with resistance R; inductance L;
and capacitance C. Suppose we decharge the capacitor periodically every time unit and assume that
the decharging takes -¿ 0 (but small) time units. Then this stimulation can be modeled using the
time scale T=

⋃
k∈N0

[k; k + 1− -]. If Q(t) is the total charge on the capacitor at time t and I(t) is
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the current as a function of time t; then the corresponding dynamic system that is satis9ed by Q
and I (on T) reads as follows:

QG =



bQ on

⋃
k∈N

{k − -}

I otherwise;
and IG =




0 on
⋃
k∈N

{k − -}

− 1
LCQ − R

L I otherwise:

Example 4.5. So-called q-di8erence equations, q¿ 1 have been studied extensively in the literature,
see e.g., [4,16,17]. An example of such an equation is

y(qt) − y(t) = (q− 1)t:

The time scale, which has such q-di6erence equations as its dynamic equations, is given by

qN0 = {qk | k ∈N0} for some q¿ 1;

where N0 =N ∪ {0}. We have �(t) = qt for all t ∈ qN0 . If t0 = 1; then (3.1) reads

y(qt) − y(t)
(q− 1)t

=p(t)y(t); y(1) = 1:

This yields

ep(qk ; 1) =
k−1∏
/=0

[1 + (q− 1)q/p(q/)] for all k ∈N:

In particular, if p(s) = (1 − s)=(q− 1)s2; then for t= qk

e1(t; 1) = e1(qk ; 1) =
k−1∏
/=0

[
1 +

1 − q/

q/

]
=

k−1∏
/=0

1
q/

=
1

qk(k−1)=2

= q−k
2=2qk=2 =

√
qk exp

{
−k

2 log q
2

}
=
√
qk exp

{
−(k log q)2

2 log q

}

=
√
t exp

{
− log2 t

2 log q

}
:

Moreover, in [2] we 9nd

hk(t; s) =
k−1∏
/=0

t − q/s∑/
�=0 q

� if t ¿ s:

E.g., if q= 2; we have

h2(t; 1) =
(t − 1)(t − 2)

3
; h3(t; 1) =

(t − 1)(t − 2)(t − 4)
21

;

and

h4(t; 1) =
(t − 1)(t − 2)(t − 4)(t − 8)

315
:
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Example 4.6. More generally, let {�k}k∈N be a sequence of positive numbers and let t0 ∈R. Let

tk = t0 +
k∑
/=1

�/ for k ∈N:

Put

T=

{ {tk | k ∈N0} if limk→∞ tk =∞
{tk | k ∈N0} ∪ {t∗} if limk→∞ tk = t∗:

Then

�(tk) = tk+1 and �(tk) = �k+1 for all k ∈N0:

Problem (3.1) now reads

y(tk+1) − y(tk)
�k+1

=p(tk)y(tk); y(t0) = 1;

and hence has the solution

ep(tk ; t0) =
k∏
/=1

[1 + �/p(t/−1)] for all k ∈N0: (4.1)

Now we consider some more speci9c examples:
(i) Let t0 = 1 and �k = (1 − 1=q)qk for k ∈N. Then

tk = t0 +
k∑
/=1

�/ = 1 +
(

1 − 1
q

) k∑
/=1

q/ = 1 +
q− 1
q

k−1∑
/=0

q/+1

= 1 + (q− 1)
k−1∑
/=0

q/ = 1 + (q− 1)
qk − 1
q− 1

= qk ;

so T= qN0 . By (4.1), the solution of (3.1) is given by

ep(qk ; 1) =
k∏
/=1

[
1 +
(

1 − 1
q

)
q/p(q/−1)

]
=

k−1∏
/=0

[1 + (q− 1)q/p(q/)];

compare with Example 4.5.
(ii) Let t0 = 0 and �k = 1=k for k ∈N. Then

T=

{
k∑
/=1

1
/

∣∣∣∣∣ k ∈N
}

∪ 0:

Suppose p(t) ≡ N ∈N is constant. By (4.1), the solution of (3.1) is given by

eN (tk ; 0) =
k∏
/=1

(
1 +

N
/

)
=

k∏
/=1

N + /
/

=
(N + k)!
N !k!

=
(
N + k
k

)
:
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(iii) Let t0 = 1 and �k = 2k + 1 for k ∈N. Then

tk = t0 +
k∑
/=1

�/ = 1 +
k∑
/=1

(2/+ 1) = 1 + 2
k(k + 1)

2
+ k = (k + 1)2

and

T=N2: = {k2 | k ∈N}:
Suppose p(t) ≡ 1. By (4.1), the solution of (3.1) is given by

e1((k + 1)2; 1) = e1(tk ; 1) =
k∏
/=1

(1 + �/) =
k∏
/=1

(2 + 2/) = 2k
k∏
/=1

(1 + /) = 2k(k + 1)!

so that

e1(t; 1) = 2
√
t−1(

√
t)! for all t ∈T:

(iv) Let t0 = 0 and �k = 1=(4k2 − 1) for k ∈N. In this case

tk =
k∑
/=1

�/ =
k∑
/=1

1
4/2 − 1

converges, say to t∗. Suppose p(t) ≡ 1. By (4.1),

e1(tk ; 0) =
k∏
/=1

(1 + �/) =
k∏
/=1

(
1 +

1
4/2 − 1

)
=

k∏
/=1

4/2

4/2 − 1

solves (3:1) and

lim
t→t∗

e1(t; 0) = lim
k→∞

{
k∏
/=1

4/2

4/2 − 1

}
=
0
2

by a well-known identity on this so-called Wallis product.

5. Linear dynamic equations

Clearly, using Theorem 3.3, the unique solution of

xG = − p(t)x�; x(t0) = x0

is x0e�p(·; t0); provided p is regressive and rd-continuous. If x solves

xG = − p(t)x� + f(t); x(t0) = x0 (5.1)
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where, in addition, f is rd-continuous, then we multiply the dynamic equation in (5.1) by the
integrating factor ep(t; t0) to obtain

[xep(·; t0)]G = xGep(·; t0) + pep(·; t0)x� = ep(·; t0)[xG + px�] = ep(·; t0)f:
We integrate both sides between t0 and t to arrive at a formula for x. Using (2.2), we also can solve
the problem

yG =p(t)y + f(t); y(t0) =y0: (5.2)

Hence we obtain the following result from [8]:

Theorem 5.1. If p and f are rd-continuous and p is regressive, then

x0e�p(t; t0) +
∫ t

t0

e�p(t; �)f(�)G� and y0ep(t; t0) +
∫ t

t0

ep(t; �(�))f(�)G�

solve (5:1) and (5:2); respectively.

Now we consider second order equations with constant coe:cients

yGG + �yG + �y= 0: (5.3)

Trying y= e�(·; t0) with some regressive constant �; we 9nd that y solves (5.3) provided � satis9es
the characteristic equation

�2 + �� + �= 0;

which has solutions

�1 =
−�−

√
�2 − 4�

2
and �2 =

−� +
√
�2 − 4�

2
:

The Wronskian of y1 = e�1(·; t0) and y2 = e�2(·; t0) is de9ned as

W (y1; y2) = det

(
y1 y2

yG
1 yG

2

)

and calculates to

W (y1; y2) = e�1(·; t0)�2 e�2(·; t0) − �1 e�1(·; t0) e�2(·; t0)
= (�2 − �1) e�1⊕�2(·; t0):

Hence W is never zero if �1 
= �2; i.e., if �2 
= 4�. In this case we say that y1 and y2 form a
fundamental system of (5.3), and the solution of any initial value problem

yGG + �yG + �y= 0; y(t0) =y0; yG(t0) =yG
0 (5.4)



16 R. Agarwal et al. / Journal of Computational and Applied Mathematics 141 (2002) 1–26

can be given as a linear combination of y1 and y2. Now we can state the main result on equations
of the form (5.3), see [8].

Theorem 5.2. (i) If �2−4�¿ 0; put p=−�=2 and q=
√
�2 − 4�=2. If p and ��−� are regressive;

then a fundamental system of (5.3) is given by coshq=(1+�p)(·; t0) ep(·; t0); sinhq=(1+�p)(·; t0)ep(·; t0);
with Wronskian qe��−�(·; t0); and the solution of (5.4) is[

y0 coshq=(1+�p)(·; t0) +
yG

0 − py0

q
sinhq=(1+�p)(·; t0)

]
ep(·; t0):

(ii) If �2 − 4�¡ 0; put p= − �=2 and q=
√

4� − �2=2. If p; q∈R and p is regressive; then
a fundamental system of (5.3) is given by cosq=(1+�p)(·; t0) ep(·; t0); sinq=(1+�p)(·; t0)ep(·; t0); with
Wronskian qe��−�(·; t0); and the solution of (5.4) is[

y0 cosq=(1+�p)(·; t0) +
yG

0 − py0

q
sinq=(1+�p)(·; t0)

]
ep(·; t0):

(iii) If �2 −4�= 0; put p=−�=2. If p is regressive; then a fundamental system of (5.3) is given
by ep(t; t0) and ep(t; t0)

∫ t
t0

G�
1+p�(�) ; with Wronskian e�p2(·; t0); and the solution of (5.4) is

[
y0 + (yG

0 − py0)
∫ t

t0

G�
1 + p�(�)

]
ep(t; t0):

Another result concerns the Euler–Cauchy equation

t�(t)yGG + �tyG + �y= 0; t ¿ 0; (5.5)

where � and � are constant, and where we assume that the regressivity condition

1 − ��(t)
�(t)

+
��2(t)
t�(t)


= 0 (5.6)

holds. The associated characteristic equation is

�2 + (�− 1)� + �= 0: (5.7)

Theorem 5.3. Suppose (5.6). If (5.7) has two distinct roots �1 and �2; then

e�1=t(t; t0) and e�2=t(t; t0)

is a fundamental system of (5.5). If (�− 1)2 = 4b2; then we put p= (�− 1)=2; and

ep=t(t; t0) and ep=t(t; t0)
∫ t

t0

G�
�+ p�(�)

is a fundamental system of (5.5).
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For the more general problem

yGG + p(t)yG + q(t)y=f(t); y(t0) =y0; yG(t0) =yG
0 (5.8)

we have the following variation of constants result:

Theorem 5.4. If f is rd-continuous and if y1 and y2 form a fundamental system for the equation
yGG + p(t)yG + q(t)y= 0; then the solution of (5.8) is given by

c1y1(t) + c2y2(t) +
∫ t

t0

y2(t)y1(�(�)) − y1(t)y2(�(�))
W (y1; y2)(�(�))

f(�)G�;

where

c1 =
yG

2 (t0)y0 − y2(t0)yG
0

W (y1; y2)(t0)
and c2 =

y1(t0)yG
0 − yG

1 (t0)y0

W (y1; y2)(t0)
:

Let us now consider the Wronskian of any two solutions x1 and x2 of

xGG + p(t)xG�
+ q(t)x� = 0: (5.9)

We have

W (x1; x2)G = det

(
x1 x2

xG
1 xG

2

)G

= (x1xG
2 − xG

1 x2)G

= x�1x
GG
2 + xG

1 x
G
2 − xGG

1 x�2 − xG
1 x

G
2

= x�1x
GG
2 − x�2x

GG
1 = det

(
x�1 x�2

xGG
1 xGG

2

)

= det

(
x�1 x�2

−pxG�

1 −qx�1 −pxG�

2 −qx�2

)

= det

(
x�1 x�2

−pxG�

1 −pxG�

2

)
= − p det

(
x�1 x�2

xG�

1 xG�

2

)

=−p det

(
x1 x2

xGG
1 xGG

2

)
= − pW (x1; x2)�:

Hence, by Theorem 5.1, we obtain the following Abel’s formula:

Theorem 5.5. If p is regressive and rd-continuous and if x1 and x2 solve (5.9), then

W (x1; x2)(t) =W (x1; x2)(t0)e�p(t; t0):

A similar result holds for higher order equations of the form

xGn
+

n∑
k=1

qk(t)
(
xGn−k

)�
= 0: (5.10)
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It can be shown that initial value problems involving equation (5.10) have unique solutions provided
the qk are rd-continuous for 16 k6 n and q1 is regressive, see [6]. Wronskians of n functions
x1; : : : ; xn; all of them n− 1 times di6erentiable, are de9ned in the natural way

W (x1; : : : ; xn) = det




x1 · · · xn

xG
1 · · · xG

n

...
...

xGn−1

1 · · · xGn−1

n



: (5.11)

Theorem 5.6. If q1 is regressive and rd-continuous and if x1; : : : ; xn solve (5.10), then

W (x1; : : : ; xn)(t) =W (x1; : : : ; xn)(t0)e�q1(t; t0):

The variations of constant result for higher order equations is stated in terms of

yGn
+

n∑
k=1

pk(t)yGn−k
=f(t) (5.12)

and reads as follows:

Theorem 5.7. If f;p1; : : : ; pn are rd-continuous and −∑n
k=1(−�)k−1pk is regressive; and if y1; : : : ; yn

is a fundamental system for yGn
+
∑n

k=1 pk(t)y
Gn−k

= 0; then all solutions of (5.12) are given by
n∑

k=1

ckyk(t) +
∫ t

t0

W (�(�); t)
W (�(�))

f(�)G�;

where c1; : : : ; cn are constants; W =W (y1; : : : ; yn); and W (�; t) is the determinant of the matrix in
(5.11) where the last row is replaced by (y1(t) · · ·yn(t)).

For the remainder of this section we now consider self-adjoint equations of second order

(p(t)xG)G + q(t)x� = 0 with p(t) 
= 0 for all t ∈T: (5.13)

Clearly, by Theorem 5.5, if p(t) ≡ 1; then the Wronskian of any two solutions of (5.13) is constant.
In case of (5.13), this is true for the generalized Wronskian

W (x1; x2) = det

(
x1 x2

pxG
1 pxG

2

)

since

W (x1; x2)G = (x1pxG
2 − x2pxG

1 )G = x�1 (pxG
2 )G − x�2 (pxG

1 )G = − x�1qx
�
2 + x�2qx

�
1 = 0:

Theorem 5.8. The Wronskian of any two solutions of (5.13) is constant.



R. Agarwal et al. / Journal of Computational and Applied Mathematics 141 (2002) 1–26 19

Now assume that x solves (5.13) such that x(t) 
= 0 for all t ∈T. We make the Riccati substitution

r=
pxG

x

and 9nd that

rG + q +
r2

p + �r
=

(pxG)Gx − xGpxG

xx�
+ q +

p2(xG)2

x2

/(
p +

p�xG

x

)

=
−qx�x − p(xG)2

xx�
+ q +

p2(xG)2

x2

x
px�

= 0:

Hence r solves the Riccati equation

rG + q(t) +
r2

p(t) + �(t)r
= 0: (5.14)

The following Riccati equivalence is shown in [1]:

Theorem 5.9. There exists a solution x of (5.13) with x(t) 
= 0 for all t ∈T i8 (5.14) has a solution
r (related by r=pxG=x).

Now suppose again that x solves (5.13) and is never zero. Let 3 be any di6erentiable function on
T. With r=pxG=x we have

(32r)G + (p3G − r3)2 x
px�

=
(
32

x

)�
(pxG)G +

(
32

x

)G

pxG + p
(
3G − xG3

x

)2 x
x�

= −
(
32

x

)�
qx� +

[
3G 3

x
+ 3�

(3
x

)G]
pxG + p

[(3
x

)G]2

xx�

= − (3�)2q +
33GpxG

x
+ p

(3
x

)G [
3�xG +

(3
x

)G
xx�
]

= − (3�)2q +
33GpxG

x
+ p

(3
x

)G
[3�xG + 3Gx − 3xG]

= − (3�)2q +
33GpxG

x
+ p

(3
x

)G
3Gx�

=p(3G)2 − q(3�)2:

This so-called Picone identity can be used to prove the following Jacobi condition which is a result
on positive de@niteness of the quadratic functional

F(3) =
∫ b

a
{p(3G)2 − q(3�)2}(t)Gt where a; b∈T:
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Here, F is called positive de9nite if F(3)¿ 0 for all nontrivial di6erentiable functions 3 with
3(a) = 3(b) = 0. We also call (5.13) disconjugate (on [a; b]) if the solution x of

(p(t)xG)G + q(t)x� = 0; x(a) = 0; xG(a) =
1

p(a)

satis9es

px�x¿ 0 on (a; b]�:

Theorem 5.10. F is positive de@nite i8 (5.13) is disconjugate.

Finally, we present a Sturm separation theorem and a Sturm comparison theorem. Sturmian theory
can be developed as follows: We say that a solution x̃ of (5.13) has no focal points in (a; b] if

px̃�x̃¿ 0 on (a; b]� and p(a)x̃(a)x̃�(a)¿ 0:

Theorem 5.11. If there exists a solution of (5.13) without focal points; then (5:13) is disconjugate.

Consider another self-adjoint equation of the form (5.13),

(p̃(t)xG)G + q̃(t)x� = 0: (5.15)

Theorem 5.12. Suppose p̃(t)6p(t) and q̃(t)¿ q(t) for all t ∈T. If (5.14) is disconjugate; then
so is (5:15).

6. Symplectic systems

Let us now rewrite (5.13) as a system by introducing u=pxG. We 9nd

xG =
1
p
u and uG = − qx� = − qx − �q

p
u;

so with z= ( xu) we have

zG = S(t)z where S =

(
0 1

p

−q −�q
p

)
:

The matrix I + �S has determinant

det


 1 �

p

−�q 1 − �2q
p


= 1 − �2q

p
+
�2q
p

= 1

and hence S is regressive. Subject to the assumptions that p and q are rd-continuous, Theorem
3.6 yields the unique solvability of initial value problems involving zG = S(t)z. The above
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2 × 2-matrix-valued function S has, besides being rd-continuous and regressive, another remarkable

property, namely, we have with T=

(
0 1

−1 0

)

STT + TS + �STTS =

(
q 0
�q
p

1
p

)
+

(−q −�q
p

0 − 1
p

)
+ �

(
q 0
�q
p

1
p

)(
0 1

p

−q −�q
p

)

=

(
0 −�q

p

�q
p 0

)
+ �

(
0 q

p

− q
p 0

)
=

(
0 0

0 0

)
;

i.e.,

STT + TS + �STTS = 0: (6.1)

In general, we call a 2n× 2n-matrix-valued function S symplectic (with respect to T) if (6.1) holds
with

T=

(
0 I

−I 0

)
:

The corresponding system

zG = S(t)z where S satis9es (6:1) and is rd-continuous (6.2)

is called a symplectic system. If S is symplectic (w.r.t. T), then it is regressive:

(I + �S)TT(I + �S) =T + �(STT + TS + �STTS) =T: (6.3)

Hence, by Theorem 3.6, initial value problems involving symplectic systems (6.2) have unique
solutions. Now let z1 and z2 be any two solutions of (6.2). Then their (generalized) Wronskian is
de9ned as

W (z1; z2) = zT1 Tz2:

Because of

W (z1; z2)G = (zG
1 )TTz�2 + zT1 TzG

2

= (zG
1 )TT(z2 + �zG

2 ) + zT1 TzG
2

= zT1 S
TT(z2 + �Sz2) + zT1 TSz2

= zT1 [STT + TS + �STTS]z2

= 0;

we have, see [10]:

Theorem 6.1. The Wronskian of any two solutions of (6:2) is constant.

A conjoined solution of (6.2) is a 2n× n-matrix-valued solution Z of (6.2) with ZTTZ ≡ 0. The
conjoined solution of (6.2) satisfying Z(a) = (0

I ) is called the principal solution of (6.2) (at a).



22 R. Agarwal et al. / Journal of Computational and Applied Mathematics 141 (2002) 1–26

Example 6.1. First, S is symplectic with respect of R i6

STT + TS = 0;

i.e., i6 TS is symmetric. Then, necessarily, S must be of the form

S =

(
A B

C −AT

)
with symmetric B; C

and is called Hamiltonian. Next, S is symplectic with respect to Z i6, see (6.3),

(I + S)TT(I + S) =T;

i.e., i6 I + S is symplectic. Here, as usual, a matrix 2n × 2n-matrix M is called symplectic, if
MTTM =T. Note also that (6.3) shows that I + �S is symplectic whenever S is symplectic with
respect to T. We also remark that symplectic systems and Hamiltonian systems are the same for
T=R but that there are more discrete symplectic systems than Hamiltonian di6erence systems,
see [5].

Now, let us assume that (6.2) has a conjoined solution Z = ( XU ) such that X is invertible. We
consider the Riccati substitution

R=UX−1:

The calculation

RG =UG(X �)−1 − UX−1XG(X �)−1

= (UG − RXG)(X �)−1

= (I R)TZG(X �)−1

= (I R)TSZ(X �)−1

= (I R)TS(I + �S)−1Z�(X �)−1

=−(I R)STT
(
I
R�

)

shows that R is a (symmetric) solution of the matrix Riccati equation

RG + (I R)STT
(
I
R�

)
= 0:

The precise statement of the Riccati equivalence (compare Theorem 5.9) may be found in [47,
Theorem 3]. In [14], the generalization of Theorem 5.10 is derived:

Theorem 6.2. Subject to a normality condition, F is positive de@nite i8 (6.2) is disconjugate.
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In Theorem 6.2, the quadratic functional

F(z) =
∫ b

a
{zT (STMS −M)z}(t)Gt with M=

(
0 0

I 0

)

is called positive de9nite, if F(z)¿ 0 for all z with MzG =MSz; Mz 
≡ 0, and Mz(a) =Mz(b) = 0.
System (6.2) is called disconjugate if the principal solution of (6.2) (at a) has no focal points in
(a; b], and this is de9ned as{

X (t) is invertible if t ∈ (a; b] is left-dense or right-dense
Ker X (�(t)) ⊂ Ker X (t); X (t)X †(�(t))B(t)¿ 0 for all t ∈ (a; b]�:

Here, Ker stands for the kernel and the dagger denotes the Moore–Penrose inverse of the matrix
indicated, “¿ 0” means positive semide9nite, and B is the n × n-matrix in the right upper corner
of S.
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