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Perturbation of 2u+u(N+2)�(N&2)=0, the Scalar
Curvature Problem in RN, and Related Topics
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Some nonlinear elliptic equations on RN which arise perturbing the problem with
the critical Sobolev exponent are studied. In particular, some results dealing with
the scalar curvature problem in RN are given. � 1999 Academic Press

1. INTRODUCTION

This paper deals with some classes of elliptic equations which are pertur-
bation of the problems with the critical Sobolev exponent &2u=u(N+2)�(N&2)

on RN, N�3. Precisely, we will study the existence of positive solutions of
problems like

{&2u=u p+=9(x, u),
u>0, u # D1, 2(RN),

(1)

where, throughout the paper, we take

p=
N+2
N&2

, N�3.
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In the first part of the paper we deal with the case that 9=K(x) u p when
(1) becomes

{&2u=[1+=K(x)] u p,
u>0, u # D1, 2(RN).

(2)

This is motivated by the scalar curvature problem in differential geometry,
first posed by Nirenberg [26]. Let (M, g0) be an N-dimensional Riemannian
manifold and let S0 be its scalar curvature. The problem is to find a metric
g conformal to g0 such that the corresponding scalar curvature is S. Letting
g=u4�(N&2)g0 , N>2, one is led to solve the elliptic equation

&
4(N&1)
(N&2)

2g0
u+S0 u=Su p. (3)

Here 2g0
denotes the Laplace�Beltrami operator. If M=RN, g0=� dx2

i is
the standard metric and S=1+=K, then (S0=0 and) the problem
becomes just (2), up to an uninfluent constant.

In general, there are several difficulties in facing this problem by means
of variational methods. In addition to the lack of compactness, there are
more intrinsic obstructions involving also the local behaviour of S and the
nature of its critical points. For example, as a consequence of a Pohozaev-
type identity, if u is any positive solution of (3) (with M=RN and g0 the
standard metric), then �RN (S$(x), x) u p+1=0 provided u � 0, |{u| � 0 as
|x| � �. In particular, there are no positive solutions of (3) with such an
asymptotic behaviour if (S$(x), x) does not change sign.

The prescribing scalar curvature problem has been widely investigated,
see [4, 5, 10�13, 15, 18�21, 24, 28, 29, 31] and [6, 7, 14, 25] for the case
of M=RN.

One group of existence results have been obtained under hypotheses
involving the Laplacian 2S at the critical points ! of S, see [12] for
M=S2, [5] for M=S3, and [20, 21] for M=S N, N�3. For example, in
[5] it is assumed that S is a Morse function and

2S(!){0, \!: S$(!)=0.

Then, if m(!) denotes the Morse index of the critical point !, problem (3)
on the standard sphere S 3 has a solution provided

:
2S(!)<0

(&1)m(!){ &1.
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The result has been extended to any SN, N�3 in [20, 21]. Roughly, it is
assumed that there exists ;, N&2<;<N, such that

S( y)=S(0)+ :
N

j=1

aj | yj |
;+h.o.t., (4)

where aj {0, � aj {0. Let 5=[!: S$(!)=0, �N
j=1 aj<0] and i(!)=>[aj :

S$(!)=0, aj<0]. Then (3) has a solution provided

:
! # 5

(&1) i(!){(&1)N. (5)

See Theorem 0.1 of [20]. The case that ;=N&2 is handled in [21] under
some further condition on the curvature S.

In the present paper we restrict our attention to curvatures close to a
constant, S=1+=K, and improve the preceding results because we require
a condition like (4) allowing any ; # ]1, N[ and assume merely (5).
Actually, this is a particular case of more general results, see Theorems 3.7
and 3.11 in Section 3. Since it has been pointed out in [20, 21] that, in
general, (3) could have no solution if ;<N&2, the fact that we are dealing
with curvatures close to constant is essential. We finally mention that per-
turbed problems like (2) are also discussed in Section 6 of [20] (see also
[13] for a previous results) under some further algebraic condition on the
top order terms in the Taylor expansion of S.

Our approach is completely different from the ones used in the above-
mentioned papers and relies on a suitable use of an abstract perturbation
method in critical point theory discussed in [1, 2] Solutions of (1) are the
critical points on D1, 2(RN) of

f=(u)=
1
2 |

RN
|{u|2&

1
p+1 |

RN
(1+=K) u p+1

+ .

For ==0 the unperturbed functional f0 has a manifold of critical points Z
of points of the form

+2&N�2z0((x&!)�+), +>0, ! # RN,

where

z0(x)=CN } (1+|x|2) (2&N)�2, CN=[N(N&2)](N&2)�4

denote the ``fundamental'' solution of (2) with ==0. Consider the functional

1(+, !)=
1

p+1 |
R N

K(+y+!) z p+1
0 ( y) dy.
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After an appropriate finite dimensional reduction, variational in nature,
one shows that ``stable'' critical points on R+_RN of 1 correspond to
points on Z from which ``bifurcate'' solutions of (1) whit ={0.

Unlike other applications, cfr. [1, 2], here the above abstract setting
cannot be used in a straightforward manner. First of all, it is convenient to
extend 1 to +�0 by continuity and symmetry. This extended 1 has, for
+=0, the same critical points of K. But these critical points of the type
(0, !) do not give rise, in general, to solutions of (2). For example, let
K$(0)=0 and (K$(x), x) <0, \x{0. Then

(1 $(q), q)=
1

p+1 |
RN

(K$(x), x) z p+1
0 \x&!

+ + dx<0, q=(+, !).

Thus, the extended 1 has its unique critical point at +=0, !=0, while (2)
has no positive solutions. It is just to prove that 1 has a critical point with
+>0 that a condition on the critical points of K comes out in a natural
way. To give an idea of the arguments, let us consider the specific case that
K is a Morse function and

2K(!){0, \!: K$(!)=0.

One shows that D2
+, ! 1(0, !)=0 while

D2
+, +1(0, !)=c } 2K(!), c>0.

It follows that the Morse index m(1, !) critical points (0, !) of 1 is the
same as the Morse index m(K, !) of the critical point ! of K if 2K(!)>0,
while m(1, !)=m(K, !)+1 if 2K(!)<0. Then a degree theoretical argu-
ment readily implies that 1 must possess at least a critical point (+, !) with
+>0, giving rise to a solution of (2).

An advantage of our approach is that it gives rise to proofs that are
rather simpler than the ones of, e.g., [20, 21]. It also highlights that, in
general, the critical points we find are not mountain pass nor constrained
minima of f= but they have a large Morse index. This can be useful to
provide the correct insight in facing the nonperturbative case.

In Section 4 we consider the case that K is radial. In such a case our
perturbational approach becomes very simple and yields a quite general
and neat existence and multiplicity results that require only conditions on
the qualitative behaviour of K at r=0 and r=�. For example, we show
that a positive solution of (2) exists provided K is radial, K(0)=0, and
r&:K(r) # L1([1, �), rN&1 dr), for some :<N. See Theorem 4.2. See also
Theorems 4.4. and 4.5 for other existence statements. In addition we can
also handle periodic K, see Theorem 4.9. The radial case has been studied
in [6, 7]. A comparison with those results is made in Remark 4.6.(iii).
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In the second part of the paper, see Sections 5 and 6 below, we take

9=huq+Ku p

and either q=1 and N>4, or K#0 and 1<q<p. The same abstract
setting applies to these cases, too, yielding several existence theorems for
the problem

&2u==h(x) uq+[1+=K(x)] u p, x # RN. (6)

Roughly, the presence of huq, with 1�q<p, permits us to find rather
general results. For example, we show that if q=1 and K#0, then a
positive solution of (6) exists for |=| small provided N>4, h has compact sup-
port and is not identically zero. It is worth pointing out that here we do not
need to require h>0. The results of Sections 5 and 6 are new, to the best
of our knowledge. Indeed, usual variational techniques would, in general,
require more restrictive assumptions on h to overcome the lack of compact-
ness.

Finally, let us remark that, according to the local L� estimate by
Trudinger [30] and a standard bootstrap argument, the solutions we find
are classical C2 solutions. See also [8].

Notation

If x, y # RN, (x, y) and |x| 2 denote, respectively, the euclidean scalar
product and the euclidean norm.

If 0/RN and h # C(0, RN) the topological degree of h with respect to
0 and 0 (when it is well defined) is denotes by deg (h, 0, 0). The local
degree (i.e., the index of) an isolated solution p to h=0 is denoted by
degloc(h, p).

We will work mainly in

D1, 2(RN)={u # L2N�(N&2)(RN) } |RN
|{u|2 dx<�=

that coincides with the completion of C �
0 (RN) with respect to the L2-norm

of the gradient.
If E is a Hilbert space and f # C2(E, R) is a functional, we denote by f $

its gradient.
A critical point of f is a u # E such that f $(u)=0. We set Crit( f )=[u # E:

f $(u)=0] and Crit( f, a)=[u # Crit( f ): f (u)=a].
If u # Crit( f ) we denote by m( f, u) the Morse index of u, namely the

dimension of the subspace where D2f (u) is negatively defined.
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2. THE ABSTRACT PERTURBATION METHOD

In this section we state the abstract results we will use in the rest of the
paper. They are closely related, but not equal to those discussed in [1, 2]
(for other perturbation results see also [3]) and are reported below for the
reader's convenience.

Let E be a Hilbert space and let f0 , G # C2(E, R) be given. Consider the
perturbed functional

f=(u)= f0(u)&=G(u).

Suppose that f0 satisfies

(1) f0 has a finite dimensional manifold of critical points Z; let
b= f0(z), for all z # Z;

(2) for all z # Z, D2f0(z) is a Fredholm operator with index zero;

(3) for all z # Z there results TzZ=Ker D2f0(z).

Hereafter we denote by 1 the functional G |Z .

Theorem 2.1. Let f0 satisfy 1�3 above and suppose that there exists a
critical point z� # Z of 1 such that one of the following conditions hold:

(i) z� is nondegenerated;

(ii) z� is a proper local minimum or maximum;

(iii) z� is isolated and the local topological degree of 1 $ at z� ,
degloc(1 $, 0) is different from zero.

Then for |=| small enough, the functional f= has a critical point u= such that
u= � z� as = � 0.

The proof lies, roughly, in three steps.

Step 1. Using assumptions 1 and 2 and the implicit function theorem,
one finds for |=| small a manifold Z= , locally diffeomorphic to Z, whose
points have the form z+w(=, z), where w=TzZ and verifies &w&=O(=) as
= � 0. Furthermore, the critical points of f= constrained on Z= give rise to
critical point of f= , namely to solutions of f $==0. This fact will be expressed
by saying that Z= is a natural constraint for f= .

Step 2. One shows that, for u # Z= , there results

f=(u)=b&=1(z)+o(=), (= � 0).

Step 3. Step 1 and the preceding formula allow us to show that after
perturbation z� gives rise to critical points of f= which are close to z� . Let us
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point out that case (iii) is not explicitly considered in [1, 2] but can be
readily handled with the arguments therein.

Remark 2.2. If Z0 :=[z # Z: 1(z)=minZ 1] is compact then one can
still prove that f= has a critical point near Z0 . The set Z0 could also consist
of local minima and the same for maxima. Likewise in statement (iii)
we could allow that 1 has an isolated set of critical points C such that
deg(1 $, 0, 0){0, where 0 is an open bounded neighbourhood of C.

Remark 2.3. According to the results of Section 3 of [2] we can
evaluate the Morse index of u= . Precisely, if 1 is nondegenerated, then for
=>0 small one has m( f= , u=)=m( f0 , z� )+m(&1, z� ). Let us recall that the
functional 1 in [2] corresponds to &1 here. Actually, f= had in [2] the
form f==b+=1+o(=).

Let us explicitly point out that in the above arguments we do not need
to assume that Z is complete.

3. THE SCALAR CURVATURE PROBLEM

In this section we deal with problem (2), namely

&2u=[1+=K(x)] u p, u>0.

3.1. The Unperturbed Problem

Let K be bounded, let E=D1, 2(RN), and consider the functional
f= : E � R by setting

f=(u)=
1
2 |

R N
|{u| 2&

1
p+1 |

R N
u p+1

+ &
=

p+1 |
RN

K(x) u p+1
+ , (7)

where u+=max[u, 0]. Plainly, f= # C 2(E, R) and any critical point u # E,
u{0, of f= is a solution of (2). Moreover, according to [8, 30], u is
smooth. It is also easy to check that u>0. Actually, using as a test function
u&=min[u, 0] from ( f $=(u), u&)=0 it follows that u�0. Thus the strong
maximum principle yields u>0.

As pointed out in the Introduction, if ==0 the positive solutions of (2)
are given by

z+, !(x)=+&(N&2)�2z0 \x&!
+ + , (8)

where +>0, ! # RN, and

z0(x)=CN } (1+|x|2) (2&N)�2, CN=[N(N&2)](N&2)�4.
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Letting

Z=[z+, ! | +>0, ! # RN], (9)

Z is a N+1 dimensional manifold of the critical points of f0 . It is worth
pointing out that Z/W1, 2(RN) when N>4.

In order to apply the abstract setting we will check the assumptions on
f0 introduced in the preceding section. The following lemma is essentially
known. In particular, for the nondegeneracy condition (statement 3 below)
we refer to [27]. However, we report a sketch of the proof for the reader's
convenience and to make the paper as self-contained as possible.

Lemma 3.1. f0 satisfies the following properties:

1. dim Z=N+1

2. D2f0(z)=I&C where C is compact.
3. T+, !Z=ker [D2f0(z+, !)]/D1, 2(RN).

Proof (Sketch of Proof of 3). It is always true that T+, !Z/
ker[ f "0(z+, !)]. We will show the converse, i.e., that if u # D1, 2(RN) is a
solution of

&2u= pz p&1
+, ! u (10)

then u # T+, !Z, namely

u=:D+z+, !+({xz+, ! , b) , : # R, b=(;1 , ..., ;N) # RN.

Let us denote by D+ , D! the derivatives with respect to the parameters +
and !, respectively. In particular, in our case D! #{x . Up to a translation,
we can assume that !#0 and, for simplicity of notation, we consider +=1.
We look for solutions u # D1, 2(RN) of (10) of the form

u= :
�

k=0

�k(r) Yk(%), where �k(r)=|
SN&1

u(r%) Yk(%) d%,

and Yk denotes the k th spherical harmonic satisfying (2SN&1 stands for the
Laplace�Beltrami operator)

k(N+k&2) Yk(%)+(2SN&1 Yk(%))=0. (11)

For k�0 one finds

\&�"k&
N&1

r
�$k+ Yk&�k 2S N&1 Yk= pz p&1

+ �kYk ,
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hence by (11),

&�"k&
N&1

r
�$k+

k(N+k&2)
r2 �k= pz p&1

+ �k (12)

and by standard regularity theory, �k(0)=0 if k�1. Notice that if k=0
one has

&�"0&
N&1

r
�$0= pz p&1

+ �0 ,

and then w=D+z+ is a solution of (12) which belongs to D1, 2(RN). If we
look for a second linearly independent solution of the form u(r)=c(r) w(r),
we will check that u is not in D1, 2(RN). A direct computation gives

&(c"w+2c$w$+cw")&
(N&1)

r
(c$w+cw$)= pz p&1cw

and, because w is a solution,

&c"w&c$ \2w$&
(N&1)

r
w+=0.

Setting v=c$ we obtain

&
v$
v

=2
w$
w

+
(N&1)

r
,

namely

v(r)=
1

r(N&1)w2(r)
rC

(r2+1) (N&2)

r(N&1) ,

where C is a constant. This implies c$(r)rrN&3 as well as

u(r)rC
rN&2

(1+r2) (N&2)�2

as r � �. Hence u � L p+1 and a fortiori, u � D1, 2(RN). Next, by derivation
into the equation, we get that z$+(r) (i.e., the radial derivative) is a solution
to (12) for k=1. Moreover, the same argument as in the case k=0 shows
that a second linearly independent solution has the form

u(r)rCrN r
(1+r2)N�2rr as r � �.

Thus, u � L p+1.
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For k�1 we set

Ak�#&�"&
N&1

r
�$+

k(N+k&2)
r2 �& pz p&1

+ �.

Since A1 has a solution z$+ with constant sign in r # (0, �), then it is a
ground state corresponding to the principal eigenvalue *=0. Then A1 is a
nonnegative operator.

Finally, if k�2, we can write

Ak�=A1 �+
$k

r2 �,

where $k=k(N+k&2)&(N&1)>0 if k�2 and therefore Ak is a positive
operator for k�2. In particular, it follows that the problem corresponding
to k�2 has no solution. K

Remark 3.2. For future reference, let us point out that if we look for
radial solutions we will work on Er=[u # D1, 2(RN): u=u( |x| )] and hence
the critical manifold becomes Zr=[+&(N&2)�2z0(x�+): +>0]. In such a
case dim(Z)=1 and Lemma 3.1 still holds. Indeed, the kernel of the second
derivative is the space of solutions of the case k=0.

Applying the abstract method we find the perturbed manifold

Z==[z+, !+w(=, +, !)], &w(=)&=O(=)

which is a natural constraint for f= . Moreover, according to the discussion
carried out in Section 2, there results

f=(z+, !+w(=, z+, !))=b&=1(+, !)+o(=), (= � 0),

where

( p+1) 1(+, !)=|
R N

K(x) z p+1
+, ! (x) dx

=+&N |
R N

K(x) z p+1
0 \x&!

+ + dx

=|
R N

K(+y+!) z p+1
0 ( y) dy.

Hereafter we will write 1(+, !) instead of 1(z+, !). Similarly, we will speak
about critical points q=(+, !) of 1 instead of z+, ! .
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3.2. Study of 1

We begin by proving some general properties of 1. First of all, it is
convenient to extend 1 by continuity to +=0 for all fixed ! # RN by setting,

1(0, !)=
1

p+1 |
R N

K(!) z0( y) p+1 dy#c0K(!),

where c0=(1+ p)&1 �RN z p+1
0 ( y) dy. Moreover, one has

D+ 1(+, !)=
1

p+1 |
R N

(K$(+y+!), y) z p+1
0 ( y) dy.

Since �R N yiz p+1
0 ( y) dy=0 for all i=1, ..., N, then for the extended 1 one

has

D+ 1(0, !)=0. (13)

As a consequence we can further extend 1 by symmetry to RN+1 as a C 1

function. We will use the same symbol 1 for such a function.
Let us also explicitly remark that from (13) it follows

! # Crit(K) � (0, !) # Crit(1 ). (14)

In Theorem 3.7 we will need the following lemma:

Lemma 3.3. Suppose that K # L�(RN) & C 1(RN) satisfies

{
(a)

(b)

_\>0: (K$(x), x)<0 \ |x|�\,

(K$(x), x) # L1(RN), |
RN

(K$(x), x) dx<0.

(15)

Then there exists R>0 such that

(1 $(+, !), (+, !)) <0 for all |+|+|!|�R.

Proof. Letting q=(+, !), one has

( p+1)(1 $(q), q)=|
R N

(K$(+y+!), +y+!) z p+1
0 ( y) dy

=+&N |
R N

(K$(x), x) z p+1
0 \x&!

+ + dx

=+&N[J1, R+J2, R],
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where

J1, R =|
BR

(K$(x), x) z p+1
0 \x&!

+ + dx

J2, R=|
RN&BR

(K$(x), x) z p+1
0 \x&!

+ + dx

and BR denotes the ball of radius R in RN. From (15b), there exists R0

such that if R�R0 then

I(R) :=|
BR

(K$(x), x) dx<0.

Set g(x)=(K$(x), x) , g+(x)=max[g(x), 0], g&(x)=max[& g(x), 0]
and

Max(+, !) :=max
x # BR

z p+1
0 \x&!

+ + ,

Min(+, !) := min
x # BR

z p+1
0 \x&!

+ + .

One has

J1, R =|
BR

g+(x) z p+1
0 \x&!

+ + dx&|
BR

g&(x) z p+1
0 \x&!

+ + dx

�Max(+, !) } |
BR

g+(x) dx&Min(+, !) } |
BR

g&(x) dx.

For |+|+ |!| large there results

Max(+, !)&
CN+2N

(+2+(R&|!| )2)N

and

Min(+, !)&
CN+2N

(+2+(R+|!| )2)N .

Hence

lim
++|!| � �

Max(+, !)
Min(+, !)

=1,
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and I(R)<0 implies that J1, R<0 provided ++|!| is large enough. Moreover,
by (15a) |x|�\ O (K$(x), x)<0. In conclusion, if |q|�R=max[R0 , \], one
has that (1 $(q), q) <0 and the proof is completed. K

We conclude this subsection by showing some lemmas concerning the
behaviour of 1 near the critical points of the type (0, !). Let

c1=
1

N( p+1) |RN
| y|2 z p+1

0 ( y) dy. (16)

Lemma 3.4. Suppose that K # L�(RN) & C 2(RN). There results

D2
+, !i

1(0, !)=0, \i=1, ..., N, (17)

D2
+, +1(0, !)=c12K(!). (18)

Proof. Formula (17) follows immediately from (13). For the latter, one
has by a straight computation

D2
+, +1(+, !)=

1
p+1 |

R N
: D2

ijK(+y+!) yi yjz p+1
0 ( y) dy.

Since

|
RN

y i yjz p+1
0 ( y) dy=0 � i{ j,

the lemma follows. K

More in general, one has

Lemma 3.5. Given ! # RN, suppose there exists ;=;! , 1<;<N, and
Q! : RN � R such that

{(a)
(b)

Q!(*x)=*;Q! ,
K(x)=K(!)+Q!(x&!)+o( |x&!|;),

\*�0,
as x � !

(19)

and let

A!=
1

p+1 |
R N

Q!( y) z p+1
0 ( y) dy.

Then

lim
+ � 0 +

1(+, !)&1(0, !)
+; =A! . (20)
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Proof. Remark that Q!z p+1
0 # L1(RN) provided ;<N. By (19) we

immediately find that the above limit equals

1
p+1 |

RN

Q!(+y)
+; z p+1

0 ( y) dy=
1

p+1 |
R N

Q!( y) z p+1
0 ( y) dy

and the result follows. K

From Lemma 3.5 we infer:

Lemma 3.6. Let ! # Crit(K) be isolated and suppose

(*) there exist ;=;! # ]1, N[ and Qy : RN � R, depending continuously
on y locally near !, such that A! {0 and there results

Qy(*x)=*;Qy(x), \*�0,

K(x)=K( y)+Q!(x& y)+o( |x& y| ;), as x � y.

Then q=(0, !) is an isolated critical point of 1 and there results

A!>0 O degloc(1 $, q)=deg loc(K$, !)

A!<0 O degloc(1 $, q)=&deg loc(K$, !).

Proof. That q # Crit(1 ) has been pointed out in (14). From the assump-
tions it follows that _$>0 such that Ay {0 for all y # B(!, $). From (20)
one infers that 1(+, y)t1(0, y)+Ay+; for y # B(!, $). This and the fact
that ! is isolated implies that q does. Let T$=[&$, $]_B(!, $). For $>0
small the degree deg (1 $, T$ , 0) is well defined and the multiplicative
property yields

deg(1 $, T$ , 0)=degloc(K$, !) } deg loc(D+1, 0),

where D+1 denotes the map + [ D+ 1(+, !). Using again (20) we infer
that degloc(D+ 1, 0)=1, resp. &1, if A!>0, resp. A!<0, and the lemma
follows. K

3.3. Main Existence Results

Let K satisfy the following conditions:

Assumption (K1). (K1.a) K # L�(RN) & C1(RN) satisfies (15);

(K1.b) K has finitely many critical points;

(K1.c) for all ! # Crit(K), (*) holds;

(K1.d) �A!<0 degloc(K$, !){(&1)N.
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Theorem 3.7. Let (K1) hold. Then for = small (2) has a ( positive)
solution u= # D1, 2(RN).

Proof. Let R�\, where \ is defined in (15). We set BN
R=[x # RN :

|x|<R]. Since (K$(x), x) <0 for all |x|=R(R�\), then one immediately
has

deg(K$, BN
R , 0)=(&1)N.

This and the properties of the topological degree yield

:
! # Crit(K)

deg loc(K$, !)=(&1)N.

Since A! {0 for all ! # Crit(K), we can also write

(&1)N= :
A!>0

degloc(K$, !)+ :
A!<0

degloc(K$, !). (21)

Let C+ denote the set of (+, !) # Crit(1) such that +>0. According to
Lemmas 3.3 and 3.5, C+ is a (possibly empty) compact set. Since the
extended 1 is even in +, then also C&=[(&+, !): (+, !) # C+] consists of
critical points of 1. We claim:

Lemma 3.8. There is a bounded open set 0/]0, �)_RN with C+/0
such that

deg (1 $, 0, 0){0.

Proof. Using Lemma 3.3 we infer

deg (1 $, BN+1
R , 0)=(&1)N+1.

By contradiction, take an open bounded set 0 with C+/0/] 0, �)_RN

and such that deg (1 $, 0, 0)=0. Let 0&=[(&+, !): (+, !) # 0] and set
0$=0 _ 0&. Of course one has that deg (1 $, 0&, 0)=0 and hence

(&1)N+1=deg (1 $, BN+1
R "0� $, 0). (22)

According to (14) any q # Crit(1)"C has the form q=(0, !), with ! # Crit(K).
Using Lemma 3.6 we infer that

deg (1 $, BN+1
B "0� , 0)=: degloc(1 $, q)

= :
A!>0

degloc(K$, !)& :
A!<0

degloc(K$, !).
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Then (22) becomes

(&1)N+1= :
A!>0

degloc(K$, !)& :
A!<0

degloc(K$, !). (23)

Putting together (21) and (23) we find

:
A!<0

degloc(K$, !)=(&1)N,

a contradiction with (K1.d). K

Proof of Theorem 3.7 completed. Lemma 3.8 allows us to apply
Theorem 2.1(iii) jointly with Remark 2.2 and this completes the proof. K

The following Corollary shows that Theorem 3.7 covers the cases
discussed in [5, 20, 21].

Corollary 3.9. Problem (2) has a ( positive) solution u= # D1, 2(RN) for
|=| small provided K satisfies (K1.a), (K1.b), and one of the following conditions:

(K2) 2K(!){0 for each ! # Crit(K) and

:
2K(!)<0

deg loc(K$, !){(&1)N.

(K2$) \! # Crit(K) _; # ]1, N[ and aj # C(RN), with A� ! :=� aj (!){0
and such that K(x)=K(')+� aj |x&'|;+o( |x&'|;) as x � ', for all '
locally near !. Moreover there results

:
A� !<0

degloc(K$, !){(&1)N.

Proof. (K2) This is essentially the case handled in [5] (where it is
taken N=3 and it is also assumed that K is Morse). It suffices to take
;=2 and Q!=D2

jk K(!)(x&!)2. As in Lemma 3.4 one finds A!=c12K(!).
Hence A! {0 and Theorem 3.7 applies.

(K2$) This is the case discussed in [20, 21]. However, it is worth
mentioning that in those papers it is also assumed that aj {0 for all j. Here
one finds

A!=: aj (!) } |
R N

| y1 | ;z p+1
0 ( y) dy

and Theorem 3.7 applies. K
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Another example in which Theorem 3.7 applies is when

K(x)=K(!)+: ab |x&'|b+o( |x&'|;) as x � ',

where b=(b1 , ..., bN) is a multi-index and ;=|b| # ]1, N[. In such a case
one finds, as in Lemma 3.4, that

�;

�+; 1(0, !)=
; !

p+1
: ab(!) } |

R N
ybz p+1

0 ( y) dy.

Hence, setting

Cb=
; !

p+1 |
R N

ybz p+1
0 ( y) dy,

and letting B denote the set of b whose components are all even integers,
there results

�;

�+; 1(0, !)= :
b # B

ab(!) Cb .

Then, assuming that A*! :=�b # B ab(!) Cb {0, condition (K1.d) becomes

:
A*!<0

degloc(K$, !){(&1)N.

Remarks 3.10. (i) Obviously there exists a natural counterpart of the
first statement of Corollary 3.9, when we take the reverse inequalities in
(15) and the corresponding condition �2K(!)>0 (&1)m(K, !){1.

(ii) A condition like (15) is somewhat needed. Actually, if K=K(r)
is radial, �r

0 sNK$(s) ds�0 for all r�0 and _R>0 such that �r
0 sNK$(s) ds�

�R
0 sNK$(s) ds>0 for all r>R, then (2) does not have any positive radial

solution on RN, see Theorem 5.13 of [14].

(iii) Suppose that 1 has a nondegenerated critical point z� =(+� , !� )
with +� >0 and let u= be the critical point of f= obtained by using
Theorem 2.1. Then we can use Remark 2.3 to evaluate the Morse index of
u= . Actually, one has that m( f0 , z0)=1 (z0 can be found by means of the
m-p procedure); if, for example, z� is also a mountain pass critical point
then one finds:

=<0 O m( f= , u=)=1+m(1, z� )=2

=>0 O m( f= , u=)=1+m(&1, z� )=1+N.
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(iv) The solutions u= satisfy u=(x)=O( |x|2&N) as |x| � �. This
implies that the corresponding solutions of (3), through the stereographic
projection, are smooth.

We conclude this section by showing how condition (K1.b) can be
dropped. The arguments are quite similar to those discussed so far and
thus we will be sketchy.

Suppose that for all ! # Crit(K) condition (*) holds and set

K+=[! # Crit(K) : A!>0], K&=[! # Crit(K) : A!<0]

Recall that, by (15) and (*), Crit(K)=K+ & K& is compact and let U\

be neighbourhoods of K\ such that deg(K$, U\, 0) is well defined.

Theorem 3.11. Let K satisfy (K1.a) and suppose that for all ! # Crit(K)
condition (*) holds and that

deg(K$, U&, 0){(&1)N.

Then for |=| small problem (25) has a positive solution u= # D1, 2(RN).

Proof. Let C\
0 =[(0, !) # RN : ! # K\]. As in Lemma 3.6 one shows

that there exist neighbourhoods U\ of C\
0 such that

deg(1 $, V+, 0)=deg(K$, U+, 0), deg(1 $, V+, 0)= &deg(K$, U&, 0).

Repeating the arguments used to prove Theorem 3.7 the result follows. K

4. THE SCALAR CURVATURE PROBLEM: THE RADIAL CASE

In this section we deal with the scalar curvature problem in the case in
which K is radial. We will see that in such a case assumption (K1) can be
greatly relaxed. Precisely, we will assume

(K3) K # L�(RN) & C 1(RN), K(x)=K(r), r=|x|, and r&:K(r) #
L1([1, �), rN&1 dr), for some :<N.

In this section, we shall work in the space D1, 2
r of radial functions of

D1, 2(RN) and hence we shall consider the critical manifold associated to
the unperturbed problem

Zr={z+ #+&(N&2)�2z0 \ r
++ } +>0=rR+.

It is easy to check that the arguments discussed in the previous section can
be repeated here to show that the abstract setting applies; see Remark 3.2.
In particular, one has

f=(z++w(=, +))=b&=|N1r(+)+o(=),
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where b= f0(z+), |N is the measure of the unit (N&1)-sphere and

( p+1) 1r(+)=|
�

0
K(r) z p+1

+ (r) rN&1 dr=|
�

0
K(+r) z p+1

0 (r) rN&1 dr.

Next we show:

Lemma 4.1. If (K3) holds then 1r(+) � 0 as + � +�.

Proof. We have (below a1 , a2 , a3 denote positive constants depending
on N and : only)

( p+1) 1r(+)=a1 |
�

0
K(r)

+N

(+2+r2)N rN&1 dr

�a2+&N |
1

0
K(r) rN&1 dr+a3+:&N |

�

1

K(r)
r: rN&1 dr.

Since r&:K(r) # L1([1, �), rN&1dr) and :<N, the result follows. K

Furthermore, as before we have:

(i) 1r can be extended by continuity to +=0 by setting ( p+1) 1r(0)
=K(0) } ��

0 z p+1
0 (r) rN&1 dr;

(ii) 1 $r(0)=0 and hence 1r can be further extended to R by symmetry.

We first deal with the case that K(0)=0, when the following general
result holds true.

Theorem 4.2. Let (K3) hold and suppose that K(0)=0 and that K�0.
Then for |=| small (2) has a positive radial solution u= # D1, 2

r .

Proof. We claim that 1(+) is not identically equal to 0. To prove this
fact we will use Fourier analysis. Let us introduce some notation. If
g # L1([0, �), dr�r), we define

M[ g](s)=|
�

0
r&isg(r)

dr
r

.

M is nothing but the Mellin transform, see [16]. The associated convolu-
tion is defined by

(g_h)(s)=|
�

0
g(r) h \s

r+
dr
r

,

There results M[ g_h]=M[ g] } M[h]. With this notation we can write
our 1 in the form

1(+)=|
�

0
K(r) z p+1

0 \ r
++\

r
++

N dr
r

.
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We set m=N&: and

g(r)=K(r) rm, h(r)=z p+1
0 \1

r+\
1
r+

N&m

.

Remark that g, h # L1([0, �), dr�r). There results 1(+)=+&m(g_h)(+)
and hence if, by contradiction, 1#0 then g_h#0 and one has

M[ g] } M[h]=M[ g_h]#0.

On the other hand, M[h] is real analytic and so has a discrete number of
zeros. By continuity it follows that M[ g]#0. Then g and hence K are
identically equal to 0, a contradiction proving the claim. Since 1(0)=0,
lim+ � � 1(+)=0 and 1�0, it follows that 1 has a maximum or a mini-
mum at some +� {0. By a straight application of Theorem 2.1 jointly with
Remark 2.2 the result follows. K

We now consider the case that K(0){0. First, letting K # C 2 we find as
in the previous section,

(iii) 1"r (0)=
1

p+1
K"(0) } |

�

0
z p+1

0 (r) rN+1 dr.

In addition, using arguments similar to those carried out in the proof of
Lemmas 4.1 and 3.3 one can show:

Lemma 4.3. Suppose that

K$(r) r # L1((0, �), rN&1 dr) (24)

and let

} :=|
�

0
K$(r) rN dr.

Then, if }<0, resp. >0, one has that 1 $r(+) � 0&, resp. 0+, as + � +�.

Theorem 4.4. Let (K3) hold. Then for |=| small (2) has a positive radial
solution u= # D1, 2

r provided one of the following conditions is satisfied:

(a) K # C 2(RN) and K(0) } K"(0)>0;

(b) (24) holds and K(0) } }>0.

Proof. (a) Let us suppose that, for example, K(0)>0. Then (i) yields
1r(0)>0. If K"(0)>0 then (iii) implies that 1"r(0)>0. Using also
Lemma 4.1 it follows that 1r has a (global) maximum at some +� >0 and
(a) follows.
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(b) On the other hand, if (24) holds and, say K(0)<0 as well as
}<0, we use Lemma 4.3 to infer that 1 $r(+) � 0& as + � +�. Then 1 has
still a maximum at some +� >0 and (b) follows. K

In the following result we make an assumption on

# :=CN |
RN

K( |x| )(1+|x|2)&N dx and�or

#$ :=CN |
�

0
K$(r)(1+r2)&N rN dr.

Theorem 4.5. Let (K3) hold. Then for |=| small (2) has a positive radial
solution u= # D1, 2

r provided one of the following conditions is satisfied:

(a) #{0 and # } K(0)�0;
(b) #=0 and #${0.

Furthermore, in case (b) there exists a second positive radial solution
v= # D1, 2

r provided #$ } K(0)�0.

Proof. (a) It suffices to observe that there results 1r(1)=#�( p+1)
and hence by (i), 1r has a maximum or a minimum at some +� >0.

(b) Since 1 $r(1)=#$ then 1r has a maximum or a minimum in
(1, �). If, in addition, #$ } K(0)�0 then 1r has another maximum or mini-
mum in (0, 1) yielding a second solution. K

Remarks 4.6. (i) Likewise in the preceding section we can substitute
the assumption that K"(0)>0 with weaker ones.

(ii) It is clear that one could state other possible existence results,
in the same spirit of the preceding theorems. For example, if K is bounded,
#=0, #${0, and #$ } K(0)�0 then (2) has a positive radial solution
(namely, r&:K # L1 is unnecessary in such a case). Similarly, if in Theorem 4.5
one has that K # C 2, #$=0 and 1"r (1)=��

0 K"(r)(1+r2)&N rN+1 dr{0
then +=1 is a local minimum or maximum for 1r which gives rise to a
solution of (2).

(iii) Let us make a comparison with [6, 7]. The former deals with
the radial case only, but possibly not perturbative. In the perturbative case
our Theorem 4.2 improves Theorem 0.1 of [6], because we do not need to
assume here that K(�) :=limr � � K(r) exists. Likewise Theorem 0.2 of
[6] is essentially covered by our Theorem 4.5(a). The remaining results of
[6] require various kind of conditions involving integrals such as #. Unlike
Theorem 4.5, these conditions are made in [6] jointly with further assump-
tions on the behaviour and decay of K(r) at r=0 and r=�.

As anticipated in the Introduction, the solutions are found in [6] as
constrained critical points, either minima or m-p. The former ones corre-
spond to the case that our 1r has a minimum, the latter to a maximum
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(=>0). In particular, these critical points have Morse index �2. According
to Remark 3.10(iii), this highlights that such a procedure cannot be
extended to handle the non radial case with =>0 where the critical points
that give rise to solutions of (2) have a larger Morse index.

As for [7], it deals with the perturbative, radial case. Roughly, the
results proved therein have the following form: if +0>0 is such that
1 $r(+0)=0 and 1"r (+0){0 then (2) has a solution (of course, we are using
our notation). The condition 1 $r(+0)=0 is deduced from the Pohozaev
identity, thanks to the homogeneity of the problem. However, this kind of
result is nothing but a particular case of the abstract Theorem 2.1. Indeed,
as we have shown before, the condition 1"r (+0){0 is, in general, not
necessary. Let us also mention Theorem 3.2 of [7] dealing with pertur-
bative problems with nonradial K. This result is also a particular case of
Theorem 2.1. However, as we have stressed before, critical points of 1 with
+=0 do not give rise, in general, to solutions of (2), and this crucial point
is not discussed in [7].

In the next result we consider the case in which, instead of (K3), we
suppose that K(r) is periodic, namely

(K3$) K # C2(RN), K(x)=K(r), K(r) is T-periodic and �T
0 K(r) dr=0.

Hypothesis (K3$) allows us to use the following Riemann�Lebesgue
convergence result.

Lemma 4.7. Let Q=[0, T]N be a cube in RN, and f # Lq(Q) be a
T-periodic function. Consider f+(x)= f (+x), then

f+ ( f� =
1

|Q| |Q
f dx, weakly in Lq

loc(RN), as + � +�

Lemma 4.8. If (K3$) holds, then

1r(+) � 0 + � +�

Proof. Given =>0, there exists R>0 large enough such that

} 1
p+1 |

�

R
K(r) z p+1

+ (r) rN&1 dr }� 1
p+1

&K(r)&� |
�

R
z p+1

+ (r) rN&1 dr<=.

On the other hand, the remainder integral over the interval 0�r<R tends
to 0 as + � � because of hypothesis (K3$) and the Riemann�Lebesgue
lemma. K
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Theorem 4.9. Let K satisfy (K3$) and condition (a) of Theorem 4.4.
Then the same conclusion holds true.

Proof. It suffices to repeat the arguments used to prove (a) of Theorem
4.4 using Lemma 4.8 instead of Lemma 4.3. K

Remark 4.10. Functions K(x) which are periodic in one variable have
been considered in [20, 21]. However, those results require an additional
nondegeneracy condition that is not needed here.

5. EXISTENCE RESULTS FOR PROBLEM (4), I

In these last two sections we will study problem (6). First we deal with
the case that q=1 that requires a restriction on the dimension. Precisely,
let us consider the equation

&2u==h(x) u+[1+=K(x)] u p, x # RN, N>4. (25)

We will suppose that (K1a and b) holds and that h satisfies:

(h1.a) h # C2(RN) and 7 :=supp[h] is compact;

(h1.b) (h$(x), x) # L1(RN) and (h$(x), x) �0.

We can repeat the general argument with

f� =(u)= f0(u)&=G� (u), u # D1, 2(RN),

where the perturbation is given by

G� (u)=
1

p+1 |
R N

K(x) u p+1
+ +

1
2 |

7
h(x) u2.

Let us point out that f� = is of class C 2. By the same kind of arguments as
above we find

f� = | Z=
=b&=1� (+, !)+o(=), (26)

where

1� =
+&N

p+1 |
R N

K(x) z p+1
0 \x&!

+ + dx+
1
2

+2&N |
7

h(x) z2
0 \x&!

+ + dx,

or, changing variables,

1� (+, !)=
1

p+1 |
R N

K(+y+!) z p+1
0 ( y) dy+

1
2

+2 |
RN

h(+y+!) z2
0( y) dy.
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Let

c2=|
RN

z2
0( y) dy.

Notice that c2<� if and only if N>4.

Lemma 5.1. Let (K1.a and b) hold and suppose h # L1(RN) & L�(RN).
Then there results

lim
+ � 0 +

1� (+, !)=1(0, !)=
1

p+1 |
R N

K(!) z p+1
0 ( y) dy.

If, in addition, h # C 2(RN) one has:

lim
+ � 0 +

D+1� (+, !)=0, lim
+ � 0 +

D2
+, !i

1� (+, !)=0,

lim
+ � 0 +

D2
+, +1� (+, !)=c12K(!)+c2h(!). (27)

Moreover, if (h1.b) holds then there exists R>0 such that for all q=(+, !),
|q|�R there results

(1� $(q), q)<0. (28)

Proof. Let

8(+, !)= 1
2 +2 |

RN
h(+y+!) z2

0( y) dy

so that 1� (+, !)=1(+, !)+8(+, !). One has

|8(+, !)|� 1
2 +2c2 &h&� � 0,

proving the first statement. One also has

D+ 8(+, !)=+ |
RN

h(+y+!) z2
0( y) dy+ 1

2 +2 |
RN

(h$(+y+!), y) z2
0( y) dy

and, as before, we find

lim
+ � 0 +

D+8(+, !)=0.

Similarly one shows that lim+ � 0 + D2
+, !i

8(+, !)=0, proving the second
statement. As for (27) one has

D2
+, +8(+, !)=|

R N
h(+y+!) z2

0( y) dy+2+ |
RN

(h(+y+!), y) z2
0( y) dy

+ 1
2 +2 |

R N
(h"(+y+!) y, y) z2

0( y) dy.
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The last two integrals tend to 0 as + � 0+ and since z0 # L1 one finds

lim
+ � 0 +

D2
+, +8(+, !)=c2h(!),

and (27) follows.
Finally, as for (28), there results

(1� $(q), q) =(1� $(q), q)+ 1
2 +2 |

R N
(h$(+y+!), +y+!) z2

0( y) dy.

Using (h1.b) one has that

(1� $(q), q)�(1 $(q), q) ,

and the result follows from Lemma 3.3. K

The previous lemma allows us to extend, as in the previous section, by
continuity and symmetry, 1� to +�0.

In the following, we deal, for simplicity, with K satisfying conditions
which are the counterpart of assumption (K2) in Corollary 3.9. It is easy
to check that the more general case related to assumption (K1.c and d)
could also be handled. In view of (27) we set

X+=[! # Crit(K): c12K(!)+c2h(!)>0],

X&=[! # Crit(K): c12K(!)+c2h(!)<0, ]

where c1 is defined in (16).

Theorem 5.2. Let (K1.a and b) and (h1) hold and suppose that c12K(!)
+c2h(!){0 for all ! # Crit(K). Furthermore, assume

:
! # X &

degloc(K$, !){(&1)N. (29)

Then for |=| small problem (25) has a positive solution u= # D1, 2(RN).

Proof. As in Lemma 3.6 one shows that q=(0, !) is an isolated critical
point of 1 and there results

! # X+ O degloc(1� $, q)=degloc(K$, !)

! # X& O degloc(1� $, q)=&degloc(K$, !).

Taking also into account the preceding discussion one can repeat the argu-
ment used in Section 3 to show that 1� has a critical point with +>0,
corresponding to a solution u= of (25). It remains to prove that u=>0.

We know that u==z%= , +=
+w(%= , += , =) for suitable (+= , %=) near a critical

point of 1� on ]0, �)_RN. In particular the proof of Theorem 3.7 shows
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that (+= , %=) remain bounded for =�=0 . Then, up to a subsequence,
(%= , +=) � (%, +) and

&w=(%= , += , =)&D 1, 2 (RN) � 0, as = � 0.

By using the L� estimate in [30] on a ball B(0, R0) containing 7 and the
previous decay of the energy, we obtain

sup
x # BR 0

|w=(x)|�C(R0) &w=&L2N�(N&2)�C1(R0) &w=&D1, 2 .

Hence u= converges in L� on BR0
and in particular in 7, the support of h.

Let '=infx # BR0
z%, +(x) and let =0>0 be such that

&w=&L �(BR 0
)�

'
2

, if |=|�=0 .

For such = the support of (u=)& is disjoint with BR0
and a fortiori with the

support of h. Consider the corresponding Euler equation

&2u===h(x) u=+(1+=K(x))(u=)
p
+ ,

multiplying by (u=)& and integrating by parts we obtain (u=)& #0. Then
y=�0 and by the strong maximum principle we get u=>0 for |=| small
enough. K

As anticipated in he Introduction, in some cases we can take advantage
of the presence of h to greatly weaken assumption (K1). First, we need a
lemma.

Lemma 5.3. Suppose that K # L1(RN) & L�(RN), K(x) � 0 as |x| � �
and let h # L1(RN) & L�(RN). Then

lim
++|!| � �

1� (+, !)=0.

Proof. Let us proof separately that

(i) lim++|!| � � 1(+, !)=0,

(ii) lim++|!| � � 8(+, !)=0.

Proof of (i). If + � 0 (and |!| � �) then the result follows by the
dominated convergence theorem, because

|K(+y+!) z p+1
0 ( y)|�&K&� z p+1

0 # L1(RN)

and

lim
(+, !) � (0, �)

K(+y+!) z p+1
0 ( y)=0 a.e.
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So we can assume that + � +� # (0, �], and |+|+|!| � �. Then

( p+1) 1(+, !)=+&N |
R N

K(x) z p+1
0 \x&!

+ + dx=I1, R+I2, R ,

where

I1, R =+&N |
|x|�R

K(x) z p+1
0 \x&!

+ + dx,

I2, R=+&N |
|x|>R

K(x) z p+1
0 \x&!

+ + dx.

Since + is bounded away from 0 then there exists C>0 such that

+&Nz p+1
0 ( y)�C

and hence, given =>0, by the integrability of K, we can choose R large
enough such that

I2, R�C |
|x|>R

K(x) dx�=.

On the other hand, changing variables,

I1, R =|
| y&!�+| <R�+

K(+y+!) z p+1
0 ( y) dy

�&K&� |
| y&!�+| <R�+

z p+1
0 ( y) dy.

It is easy to see that the last integral tends to zero. Actually, z p+1
0 # L1(RN)

and either + � � or + � +� >0. In the former case R�+, the radius of the
domain of integration, tends to zero, in the latter the center !�+ tends to
infinity and the radius is bounded.

Proof of (ii). If + � 0 the result follows as in Lemma 5.1. If + � +� we
have that

|8(+, !)|� 1
2 +2&N &h&L 1 } &z0&2

� � 0.

Finally, when + � u� # (0, �) and |+|+ |!| � � the result follows from the
preceding formula and the fact that sup7 z2

0((x&!)�+) � 0 as + � +� # (0, �),
and |+|+ |!| � �. K
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Theorem 5.4. Suppose that K # L1(RN) & C2(RN), K(x) � 0 as |x| � �,
K(x)�0, resp. K(x)�0 and that there exists !0 # RN such that K(!0)=0. In
addition, let h satisfy (h1.a) and be such that

h(!0)<&
c1

c2

2K(!0), resp. h(!0)>&
c1

c2

2K(!0).

Then for |=| small problem (25) has a positive solution u= # D1, 2(RN).

Proof. Let K�0 (the other case is similar). One has that 1� (0, !0)=0
and

D2
+, +1� (0, !0)=c12K(!0)+c2h(!0)<0.

Using Lemma 5.3, we deduce that 1� has a global negative minimum at
some (+� , !� ). Since 1� (0, !)=c0K(!)�0, we infer that +� >0 and the conclu-
sion follows. K

It is worth completing the preceding result with the case when K#0.
Actually, in such a case one has that 1� (0, !)#0 and

D2
+, +1� (0, !)=c2 h(!).

Then, if h is somewhere positive (negative) then 1� has a positive global
maximum (negative global minimum), with +>0. This implies:

Theorem 5.5. Let h satisfy (h1.a) and be not identically zero. Then for
|=| small

&2u==h(x) u+u p, x # RN, N>4 (30)

has a positive solution u= # D1, 2(RN). Furthermore, if there exist !1 , !2 # RN

such that

h(!1)>0, h(!2)<0

then for |=| small (30) has at least two distinct positive solutions in D1, 2(RN).

In the next result we do not need N>4.

Theorem 5.6. Let h # L1(RN) have compact support and suppose that
�R N h(x) dx{0. Then for |=| small

&2u==h(x)u+u p, x # RN, N�3 (31)

has a positive solution u= # D1, 2(RN).
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Proof. By the Dominated Convergence Theorem, we find

|
R N

h(x) z2
0 \x

++ dx � C 2
N |

R N
h(x) dx{0, as + � �.

Since 1� (0, !)#0 and 1� (0, !) � 0 as |+|+ |!| � +� (remark that the
proof of Lemma 5.3 does not make use of N>4) 1� has a global maximum
or minimum and the result follows. K

Remark 5.7. The assumption that h has compact support has been
used only to prove the positivity of the solutions. Let us also emphasize
that we obtain positive solutions independent of the sign of h (and =).

6. EXISTENCE RESULTS FOR PROBLEM (4), II

In this final section we deal with

&2u==h(x) uq+u p, x # RN, (31)

where 1<q<p=(N+2)�(N&2). In contrast with the preceding section,
here we neither assume N>4 nor that h has compact support, but merely
that h # L1(RN) & L�(RN).

Let

f� == f0(u)&=G� (u),

where

G� (u)=
1

q+1 |
R N

h(x) uq+1
+ .

Let us point out that G� is of class C2 because q>1. As before, one finds

f� = | Z=
=b&=1� (+, !)+o(=), (32)

where

1� (+, !)=
+N&%

q+1 |
RN

h(+y+!) zq+1
0 ( y) dy

and %=(N&2)(q+1)�2. Since N>% we can repeat the arguments carried
out in Lemmas 5.1 and 5.3 to show that 1� can be extended to all of R_RN

and there results
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Lemma 6.1. Let h # L1(RN) & L�(RN). Then there results:

(i) 1� (0, !)=0;

(ii) 1� (+, !) � 0 if |+|+|!| � �.

Proof. Let s and s$ be conjugate exponents and let s>N�(N&2). Then
z0 # Ls and, by the Ho� lder inequality,

} |RN
h(x) zq+1

0 \x&!
+ + dx }�&h&L s $ } \|R N

zs
0 \x&!

+ + dx+
q+1�s

=+N(q+1)�s &h&Ls $ } &z0&q+1
L s , (+>0).

Hence

|1� (+, !)|�+N(q+1)�s&% &h&L s $ } &z0&q+1
L s , (+>0).

Taking s such that N�(N&2)<s<2N�(N&2), one has that N(q+1)�s>%
and thus 1� (+, !) � 0 as + � 0+.

The proof of (ii) when + � +� >0 (otherwise we use (i)) follows as in the
proof of (ii) of Lemma 5.3. Actually the condition N>4 has not been used
there. K

We also need:

Lemma 6.2. 1� (+, !) is not identically zero provided h does.

Proof. The result is immediate if zq+1
0 # L1 or if �RN h(x) dx{0. Actually,

in the former case one has

lim
+ � 0 +

1� (+, !)
+N&% =

h(!)
q+1

} |
R N

zq+1
0 .

In the latter, as in Theorem 5.6, we find

|
R N

h(x) zq+1
0 \x

++ dx � C q+1
N |

R N
h(x) dx{0, as + � �.

If zq+1
0 � L1, namely, in dimensions N=3, 4, we argue as follows.

It is well known know that zq+1
0 is the Fourier transform of a positive L1

function, say ,. By assumption we know that h # L p for all 1�p�� and
then

|
RN

h( y+!) zq+1
0 ( y) dy # L2(RN)
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as a function of !. Now choose a sequence of tempered functions hn such
that hn � h in L2. Then

1� n(1, !)=|
RN

hn( y+!) zq+1
0 ( y) dy

� |
R N

h( y+!) zq+1
0 ( y) dy in L2(RN).

Taking the Fourier transform we have

h� n(') ,(') � h� (') ,(') pointwise.

Then 1� (1, !)#0 implies h� (') ,(')#0. Since ,>0 we get h� #0 which is a
contradiction with the fact that h�0. K

From the preceding statements we immediately deduce:

Theorem 6.3. Assume that 1<q<p and let h # L1(RN) & L�(RN) be
not identically equal to 0. Then for |=| small enough problem (31) has a
positive solution in D1, 2(RN).

Proof. It is clear that 1� has either a positive global maximum or a
negative global minimum and hence Theorem 2.1(ii) applies. The positivity
of the corresponding solution of (31) follows as in Subsection 3.1. K

Remark 6.4. (i) The case 0<q<1 can also be handled, although the
perturbation 1� is no more regular. In such a case one has to modify the
abstract setting, following the arguments of [17]. The details will be given
in a forthcoming paper.

(ii) Some of the results concerning (31) can be obtained by means of
the mountain pass theorem following the ideas of [9] and the concentra-
tion compactness principle, see [22, 23]. To be short, we will only give an
idea of the results one can find and sketch an outline of the arguments one
should use. Using the concentration compactness principle, one shows that
the (PS) condition holds at level c provided c<SN�2�N, where S denotes
the best Sobolev constant. In such a case, if q>1 and =>0 is small it turns
out that c is a m-p critical level for f� = . In general, to show that c<S N�2�N
one needs some additional condition on h such as, e.g. h(x)�h0>0 in a
ball of RN. Let us point out that, on the contrary, the result in Theorem 6.3
does not depend on such kind of assumptions.

ACKNOWLEDGMENTS

The first author has been supported by a grant of the Fundacion Banco Bilbao Vizcaya. He
also thanks the Department of Mathematics of the Universidad Autonoma of Madrid for the
warm hospitality.

147SCALAR CURVATURE



Note added in proof. After the paper was completed a new volume by Th. Aubin, ``Some
Non-linear Problems in Riemannian Geometry,'' Springer-Verlag, Berlin, has appeared.
Among other things, it contains a broad bibliography on the prescribed curvature problems.
In particular, we became aware of some results of E. Hebey, see Theorem 6.92 in the foremen-
tioned book. These results deal with rotationally symmetric curvatures on S N corresponding
to radially symmetric K on RN. Our Theorems 4.2 and 4.4(a) improve, in the perturbative
case, the Hebey results.
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