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Abstract

We classify pointed rank one Hopf algebras over fields of prime characteristic which are generated as
algebras by the first term of the coradical filtration. We obtain three types of Hopf algebras presented
by generators and relations. For Hopf algebras with semi-simple coradical only the first and second type
appears. We determine the indecomposable projective modules for certain classes of pointed rank one Hopf
algebras.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In [KrR] Krop and Radford introduce the rank as a measure of complexity for finite-
dimensional Hopf algebras whose coradical is a sub Hopf algebra. They classify the finite-
dimensional pointed Hopf algebras H of rank one which are generated as algebras by the first
term of the coradical filtration H1 over fields k of characteristic zero. These algebras are para-
metrised by tuples (G,χ,a,α), where G is a finite group, χ a linear character of G, a ∈ Z(G)

and α ∈ k. As algebras they are generated by an (a,1)-primitive element x and the group G,
subject to the action gxg−1 = χ(a)x and xn = α(an − 1).

In this paper, we classify the finite-dimensional pointed rank one Hopf algebras H over alge-
braically closed fields k of prime characteristic p, which are generated as algebras by H1. The
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list consists of three types of Hopf algebras parametrised by tuples. The type only depends on the
conjugation action of the so-called skew point a on the (a,1)-primitive elements. The first type
is parametrised by the same tuple as the one in Krop and Radford’s paper and is given by similar
relations. For Hopf algebras with semi-simple coradical only the first and second type appears.
The second and third types are new. Analysing the third type requires new ideas and methods. In
every type we analyse when two Hopf algebras parametrised by a different tuple are isomorphic
as Hopf algebras. Furthermore, we are able to determine the indecomposable projective mod-
ules for certain Hopf algebras in every type. The second and third type provide new examples of
pointed rank one Hopf algebras.

By [TaW] and [KrR] we know that a finite-dimensional pointed rank one Hopf algebra has
a uniquely determined group-like element a such that there exists an (a,1)-primitive element
which does not lie in the coradical. Let X be the set of (a,1)-primitive elements which do not
lie in the coradical. The group of group-like elements G together with any x ∈ X generate the
algebra and determine its Hopf algebra structure.

To describe the first type we assume that there exists an x ∈ X which is an eigenvector with
eigenvalue q �= 1 of the conjugation action of a. Then we can show that x is a simultaneous
eigenvector of the conjugation action of G. The eigenvalues of this action are given by a linear
character χ of G. Similarly to [KrR] we compute n such that {gxi | g ∈ G, 0 � i � n − 1} is
a basis of the algebra. We call n the degree of x. We show that n is equal to the multiplicative
order of q and that xn = α(an − 1) for an α ∈ k. Thus this Hopf algebra is parametrised by the
tuple R = (G,a,χ,α).

The second type appears only if a has an eigenvector x ∈ X with eigenvalue 1. Then
the degree of x is p and xp = α−1(a

p − 1) + α0x for α−1, α0 ∈ k. The conjugation action
of G on x is described by two functions, a linear character χ of G and a map c :G → k

such that gxg−1 = χ(g)x + c(g)(a − 1). Thus this Hopf algebra is parametrised by the tuple
F = (G,a,χ, c, (α−1, α0)).

Generalising the results in [KrR], we show that if the order of the skew point is not divisible
by p then there exists such an eigenvector x ∈ X and the Hopf algebra is of first or second type.
A corollary is that if H has a semi-simple coradical then it is of first or second type. If H is
cocommutative it is of second type.

The third type appears if no eigenvector of the conjugation action of a in X exists. Then we
can show that there is an x ∈ X such that axa−1 = x + (a − 1). We show that the degree of x

is p, that xp = x and that the conjugation action of G is described by a group homomorphism
c :G → (k,+) such that gxg−1 = x + c(g)(a − 1). Thus this Hopf algebra is parametrised by
the tuple E = (G,a, c).

Conversely for every tuple R, F and E we show that there exists a uniquely determined Hopf
algebra HR , HF and HE which satisfies the given relations. Then we prove that HR , HF and
HE are pointed rank one Hopf algebras and determine for which given tuples they are isomor-
phic.

Following [KrR] we define HR and HF to be of nilpotent type if xn = 0. We describe the pro-
jective idecomposable modules and the simple modules for Hopf algebras of nilpotent type. We
show that HR and HF are uniserial if their coradical is semi-simple generalising a result in [KrR]
formulated in the case that the group of group-like elements is abelian and the characteristic of
the field is zero. Finally we prove that the blocks of Hopf algebras HR that are not of nilpotent
type with semi-simple coradical are Morita equivalent to the Taft algebra ΓN,χ(a) or the matrix
ring MN(k).
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2. Preliminaries

We first introduce some basic definitions and facts that will be used in the other sections.
Throughout this section H is a finite-dimensional Hopf algebra.

Definition 2.1. (See [Mon, Definitions 5.1.5, 5.2.1].) The coradical H0 of H is the sum of its
simple subcoalgebras. We define inductively Hi := Δ−1(H ⊗Hi−1 +H0 ⊗H) and call (Hi)i∈N

the coradical filtration of H . A coradical filtration is called a Hopf algebra filtration if HiHj ⊂
Hi+j and S(Hi) ⊂ Hi for all i, j ∈ N.

The following results are well known.

Lemma 2.2. (See [Mon, Theorem 5.2.2, Lemma 5.2.8].) Let (Hi)i∈N be the coradical filtration
of H .

(1) The (Hi)i∈N are a family of subcoalgebras satisfying Hi ⊂ Hi+1 for all i ∈ N and⋃
i∈N

Hi = H . For the comultiplication of the elements of the filtration we have Δ(Hi) ⊂∑i
k=0 Hk ⊗ Hi−k .

(2) The coradical filtration (Hi)i∈N is a Hopf algebra filtration if and only if H0 is a sub Hopf
algebra of H .

If H is a pointed Hopf algebra, then H0 is the group algebra generated by the set of group-like
elements, which is a sub Hopf algebra of H . Thus the coradical filtration of H is a Hopf filtration.

We introduce variations of primitive elements of a Hopf algebra. We will use certain primitive
elements in order to classify pointed rank one Hopf algebras.

Definition 2.3. (See [Mon, Definition 1.3.4].) Let c ∈ H be an element such that Δ(c) = c ⊗
g + h ⊗ c for some group-like elements g,h ∈ G(H). Then we say that c is a (g,h)-primitive
element, and denote the set of those elements by Pg,h. If c ∈ Pg,1, then we say that c is a skew
primitive element.

In the following lemma we determine the skew primitive elements in kG(H).

Lemma 2.4. Let H be a Hopf algebra, a ∈ G(H) a group-like element and c ∈ kG(H) a skew
primitive element in Pa,1. Then c = α(a − 1) for some α ∈ k. Thus Pa,1 ∩ kG(H) = {α(a − 1) |
α ∈ k}.

Proof. The group-like elements are linearly independent by [Swe, 3.2.1]. Thus we can write c as
a uniquely determined linear combination of the group-like elements. We take c = ∑

g∈G(H) bgg.
Then the following equation holds

∑
g∈G(H)

bg(g ⊗ a + 1 ⊗ g) = Δ(c) =
∑

g∈G(H)

bgg ⊗ g.

As the elements of G(H) ⊗k G(H) are a basis of kG(H) ⊗k kG(H) ∼= k(G(H) ⊗k G(H)),
comparing coefficients of this basis on the left- and right-hand sides gives us bg = 0 for all
g ∈ G(H) − {a,1} and ba = −b1. �
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We define certain kinds of group-like elements.

Definition 2.5. We say that g ∈ G(H) is a skew point if Pg,1 \ H0 is not empty.

The following lemma shows that every pointed, non-cosemi-simple Hopf algebra H has a
skew point a ∈ G(H). This result can also be found in a similar form in [KrR, Lemma 1, Propo-
sition 1].

Lemma 2.6. Let H be a pointed Hopf algebra and (Hi)i∈N its Hopf filtration. The set of primitive
elements lies in H1. Furthermore we have H1 = H0 + ∑

{a,b∈G(H)} Pa,b . So if H �= H0 there
exists a skew primitive element x ∈ Pa,1 \ H0 for some a ∈ G(H).

Proof. As all group-like elements lie in H0, the primitive elements are in H1 by definition. The
second part is [TaW, Proposition 2]. �

We introduce the rank of a pointed Hopf algebra and some properties of these Hopf algebras.
Let H be a pointed Hopf algebra and (Hi)i∈N the coradical filtration of H . Then (Hi)i∈N is

a Hopf filtration and we can view the Hi ’s as H0-module. The trivial module k is an H0-module
via the counit map. If dimk ⊗H0 H1 = t + 1 we call H a rank t pointed Hopf algebra. Using the
next remark, we see that Hi is a free left H0-module for all i ∈ N.

Remark 2.7. (See [KrR, Section 1].) Let V0 ⊂ V1 ⊂ · · · be a chain of subcomodules of H such
that V0 is a sub Hopf algebra, V0Vi ⊂ Vi and Δ(Vi) ⊂ ∑i

t=0 Vt ⊗Vi−t . Then we can view Qi :=
Vi/Vi−1 as a left V0-Hopf module via the map ρi :Qi → V0 ⊗Qi,h+Vi−1 	→ Δ(h)+Vi ⊗Vi−1.
By the Fundamental Theorem of Hopf modules [Swe, Theorem 4.1.1] either Qi = {0}, or it is a
free left V0-module on a linear basis of Qi

coV0 = {z ∈ Qi | ρi(z) = 1 ⊗ z}. Therefore Vi is a free
left V0-module for all i ∈ N.

Let a be a skew point of a pointed rank one Hopf algebra and x ∈ Pa,1 \ H0, then 1, x is a
basis of H1 as left H0-module by the preceding remark.

The next lemma shows that if H is a pointed, rank one Hopf algebra then it has exactly one
skew point. This skew point is an element of the centre of G(H). The proof of the following is
a combination of [KrR, Lemma 1(c)] and [KrR, Proposition 1(d)]. However the setup is slightly
different and therefore we give the details.

Lemma 2.8. Let H be a pointed, rank one Hopf algebra and x ∈ Pa,1 \ H0 for some a ∈ G(H).
Then the set of skew primitive elements in H1 −H0 is given by Pa,1 \H0 := {sx+ t (a−1) | s ∈ k∗,
t ∈ k}. Thus a ∈ G(H) is uniquely determined. We have a ∈ Z(G) and for each y ∈ Pa,1 \ H0
there are maps χ and c depending on y such that gyg−1 = χ(g)y + c(g)(a − 1) for all g ∈ G.
Then χ :G → k∗ is a linear character and c :G → k satisfies the condition c(hg) = χ(g)c(h) +
c(g).

Proof. Suppose that z ∈ H − H0 is a skew primitive element in Pg,1 for some g ∈ G. Then
z ∈ H1 − H0 and has a unique presentation as z = a0 + a1x for a0, a1 ∈ H0 and a1 �= 0. Thus
Δ(a1)(x ⊗a)+Δ(a1)(1⊗x)+Δ(a0) = Δ(z) = z⊗g +1⊗ z = a0 ⊗g +1⊗a0 + (a1 ⊗g)(x ⊗
1) + (1 ⊗ a1)(1 ⊗ x). Using the fact that {1 ⊗ 1, x ⊗ 1,1 ⊗ x, x ⊗ x} is a basis of H1 ⊗ H1 as
an H0 ⊗ H0-module gives us g = a and therefore Δ(a0) = a0 ⊗ a + 1 ⊗ a0 and Δ(a1) = 1 ⊗ a1.
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Thus by applying Lemma 2.4 we have a0 = α(a − 1) with α ∈ k. Applying the counit to the last
equation gives us a1 = 1ε(a1). Thus a1 ∈ k∗.

Let y ∈ Pa,1 \ H0. The element gyg−1 is a {gag−1,1}-skew primitive element and lies in
H1 −H0. The previous part gives us gag−1 = a for all g ∈ G and gyg−1 = χ(g)y + c(g)(a − 1)

for χ(g) ∈ k∗ and c(g) ∈ k. The equation χ(hg)y + c(hg)(a −1) = hgyg−1h−1 = χ(h)χ(g)y +
(χ(g)c(h) + c(g))(a − 1) proves the relations for χ and c. �

Finally we state a combinatorial result that we will use to prove some results of the next
section.

Lemma 2.9. (See [Rad2, Corollary 2].) Let k be a field of positive characteristic p, q ∈ k and
n ∈ N. We set (n)q = ∑n−1

i=0 qi and define

(
n

m

)
q

:= (n)q !/(n − m)q !(m)q !.

Suppose n > 1. Then
(
n
m

)
q

= 0 for all 1 � m � n − 1 if and only if n = Npr with 1 � N , 0 � r

where N and p are coprime and q is a primitive N th root of unity.

3. Pointed rank one Hopf algebras of first and second type

In this section we introduce the pointed Hopf algebras HR and HF given by tuples R and F

and generators and relations similar to [KrR]. We determine under which conditions a pointed,
rank one Hopf algebra is isomorphic to HR or HF . In particular we classify pointed rank one
Hopf algebras with semi-simple coradical and cocommutative pointed rank one Hopf algebras.
Throughout this section we will assume that H is a pointed, finite-dimensional Hopf algebra over
a field k of positive characteristic p such that H �= H0. Let a be a skew point of H .

As in characteristic zero [KrR, Proposition 1] we can find for any skew point a whose order
is not divisible by p, a skew primitive element in Pa,1 \ H0 which is an eigenvector of the
conjugation action of a.

Lemma 3.1. Let a be a skew point of H , k an algebraically closed field and suppose that p does
not divide the order of a. Then there is an element x ∈ Pa,1 − H0 such that axa−1 = qx for a
primitive N th root of unity q ∈ k∗. If q �= 1 and H is rank one, then x is uniquely determined up
to scalar multiplicities by these properties.

Proof. By definition Pa,1 ⊂ H1 contains an element of H1 − H0 and is therefore not trivial. Let
m be the order of a. For the linear transformation T :Pa,1 → Pa,1, y 	→ aya−1 we have then
T m = id. As p does not divide m and as k is algebraically closed, T is diagonalisable. Thus
Pa,1 has a basis of eigenvectors for T whose eigenvalues are roots of unity. As Pa,1 \ H0 is non-
trivial, there is an eigenvector x ∈ H1 − H0 with eigenvalue q . If H has rank one and q �= 1 the
uniqueness of x follows from Lemma 2.8. �

We define the degree of an element in H1 − H0 as the freeness degree of its powers over H0.

Definition 3.2. We call the degree of x ∈ H1 − H0 the smallest integer n such that xn ∈∑n−1
H0x

i . Such an n exists as H is finite-dimensional. If H is rank one, then all elements in
i=0
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H1 −H0 have the same degree. This holds because H1 = H0 +H0y for any element y ∈ H1 −H0
and therefore the dimension of the subalgebra generated by H1 is the product of the dimension
of H0 and the degree of y.

Suppose that H is a rank one Hopf algebra which is generated as an algebra by H1 and has
an element x defined as in Lemma 3.1. Then by [KrR, Lemma 1] the degree of x is the smallest
integer such that 1, x, . . . , xn−1 form a basis for H over H0.

We show that x is a common eigenvector of the conjugation action of the group-like elements
if q �= 1. The analogous result for a field of characteristic zero can be found in [KrR, Proposi-
tion 2]. Part (1) and (2) for q �= 1 can be found in [Rad2, pp. 696–699] and part (3) has the same
proof as [KrR, Proposition 1(d)].

Theorem 3.3. Let a ∈ G(H) be a skew point of H . Suppose there is an x ∈ Pa,1 \ H0, which is
an eigenvector of the conjugation action of a with eigenvalue q , where q is a primitive N th root
of unity.

(1) If x has degree n, then n = Npr for some r ∈ N and

xn = α−1
(
an − 1

) +
r−1∑
i=0

αix
Npi

with αi ∈ k. In addition if aN(pr−pi) �= 1 for 0 � i, then αi = 0.
(2) If H is rank one we have (r = 0 and N > 1) or (r = 1 and N = 1) for r and N defined as

in (1).
(3) Suppose that H is rank one with N > 1 and r = 0. Then x is a common eigenvector for the

conjugation action of the elements in G(H), that is gxg−1 = χ(g)x for all g ∈ G where
χ :G(H) → k∗ is a linear character.

(4) Suppose that H has rank one with N = 1 and r = 1. All elements of Pa,1 \ H0 are eigenvec-
tors of the conjugation action of a with eigenvalue 1. If α0 = 0 and k is algebraically closed
there exist an element y ∈ Pa,1 \ H0 with yp = 0. If in addition a is not of order p, then y is
a common eigenvector of the conjugation action of G(H).

(5) Let H be rank one and generated by H1 as an algebra and A be the sub Hopf algebra of H

generated by a and x ∈ Pa,1 \ H0, where x is an eigenvector of the conjugation action of a.
Then A is a kG-module via conjugation. We denote the smash product between A and kG

by A ∗ kG. The map A ∗ kG → H,(h,g) 	→ hg is a surjective Hopf algebra homomorphism
whose kernel is generated by a ∗ 1 − 1 ∗ a.

Proof. Let n be the degree of x. Then xn has a unique presentation as xn = ∑n−1
i=0 bix

i with
bi ∈ H0. Applying Δ to both sides of the equation and substituting xn gives us

n−1∑
i=1

(
n

i

)
q−1

xi ⊗ aixn−i +
n−1∑
i=0

(
bix

i ⊗ an + 1 ⊗ bix
i
)

= (
Δ(x)

)n = Δ
(
xn

) =
n−1∑

Δ
(
bix

i
) =

n−1∑
Δ(bi)

i∑(
i

k

)
q−1

xk ⊗ akxi−k.
i=0 i=0 k=0
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The set {xi ⊗xj : 0 � i, j � n−1} is a free H0 ⊗H0-basis of an H0 ⊗H0-submodule of H ⊗H .
So we can compare coefficients.

(1) Equating the coefficients of xi ⊗ xn−i gives
(
n
i

)
q−1 = 0 for 1 � i � n − 1,

(2) equating the coefficients of xi ⊗ 1 and 1 ⊗ xi for 1 � i � n − 1 gives Δ(bi) = bi ⊗ an−i =
1 ⊗ bi ,

(3) equating the coefficients of xk ⊗ xi−k for 1 < i < n gives Δ(bi)
(
i
k

)
q−1 = 0 for all 1 � k �

i − 1,
(4) comparing the coefficients of 1 ⊗ 1 gives Δ(b0) = b0 ⊗ an + 1 ⊗ b0.

By Lemma 2.4 and (4) we have that b0 = α−1(a
n − 1) for an α−1 ∈ k.

Lemma 2.9 and (1) gives us n = Npr . By (3) and Lemma 2.9 we have Δ(bi) = 0 in the case
that 1 < i and there is no s < r such that i = Nps . As Δ is injective we have bi = 0. We deduce
from (2) that ε(bi) = ε(bi)a

n−i = bi ∈ k for all 1 � i � n − 1. In case bNps �= 0 we thus have
aN(pr−ps) = 1. Suppose now b1 �= 0, then an−1 = aNpr−1 = 1. As N divides the order of a it
divides Npr − 1. Thus we have N = 1 in this case. This proves the degree formula.

From now on let H be rank one. Suppose (r > 1) or (r = 1 and N > 1), then we have for
z = xNp in the first case that Δ(z) = z ⊗ aNp + 1 ⊗ z and for z = xN in the second case that
Δ(z) = z ⊗ aN + 1 ⊗ z using Lemma 2.9. Thus z ∈ H1 − H0 and H is not a rank one Hopf
algebra as 1, x, z are H0-independent. Therefore x has degree N for N > 1 or degree p if N = 1.

To prove part (3) we have by Lemma 2.8 that gxg−1 = χ(g)x + c(g)(a − 1) for some maps
c,χ :G → k. Furthermore we have gag−1 = a as a ∈ Z(G). Conjugating with a gives

qχ(g)x + qc(g)(a − 1) = qgxg−1 = agxg−1a−1 = qχ(g)x + c(g)(a − 1).

If q �= 1 this gives us c(g)(a − 1) = 0 for all g ∈ G and therefore c(g) = 0.
If we have r = 1 and N = 1, then q = 1. Let α0 = 0 and suppose α−1 �= 0. As k is alge-

braically closed, we have α
1/p

−1 ∈ k. Then y := x − α
1/p

−1 (a − 1) is an element in Pa,1 \ H0 and an
eigenvector of the conjugation action of a. It satisfies yp = 0. Therefore

0 = yp = gypg−1 = (
gyg−1)p = c(g)p

(
ap − 1

)
.

If we assume ap �= 1 or a = 1, then c(g)(a − 1) = 0 for all g ∈ G.
For the last part the surjectivity follows from the fact that x and H0 generate H . By direct

computation using the basis (alxi){0�i�n−1,1�l�|a|} of A and the basis (g)g∈G of kG we can see
that the kernel is generated by (a ∗ 1 − 1 ∗ a) and that this map is a Hopf algebra morphism. �

We introduce Hopf algebras given by a tuple and generators and relations. We use them to
classify the pointed rank one Hopf algebras of Theorem 3.3 with N > 1 and r = 0.

Definition 3.4 (First type). Let R = (G,χ,a,α) be a tuple where G is a finite group, a ∈ Z(G),
χ :G → k∗ is a linear character with χ(a) �= 1 and α := (α−1, α0, . . . , αr−1) ∈ kr+1. Let χ(a)

be a primitive N th root and n := prN .
The Hopf algebra HR is the algebra with basis (gxi){g∈G,0�i�n−1} and relations gxg−1 =

χ(g)x for all g ∈ G and xn = α−1(a
n − 1) + ∑r−1

i=0 αix
piN . The Hopf algebra structure is deter-

mined by Δ(gxi) = (g ⊗ g)(x ⊗ a + 1 ⊗ x)i , ε(gxi) = δi,0 and S(gxi) = (−xa−1)ig−1 for all
g ∈ G and 0 � i � n − 1.
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We assume that α−1 = 0 if an − 1 = 0. In addition we assume that

(1) if αi �= 0 for some i � 0 then aN(pr−pi) = 1 and χ(g)N(pr−pi) = 1 for all g ∈ G;
(2) if α−1 �= 0, then χ(g)Npr = 1 for all g ∈ G.

The Hopf algebra HR is uniquely determined by the given relations. In order to show that for
any tuple R, satisfying the conditions of Definition 3.4, the Hopf algebra HR is well defined, we
give a construction of HR in the following lemma.

Lemma 3.5 (Constructing HR). Let (G,χ,a,α) be a tuple with the properties described in
Definition 3.4. We set q := χ(a), N := |χ(a)| and m := |a| and let A := A(q,α,N,m) be the
Hopf algebra defined in [Rad2, (C.6)] which is generated by the group-like element a and the
skew primitive element x. Then A is a kG-module algebra by conjugation with the relation
gxg−1 = χ(g)x for all g ∈ G. Let A ∗ kG be the smash product of A and kG whose coalgebra
structure is given by the tensor coalgebra A ⊗ kG. Then the quotient A ∗ kG/(1 ∗ a − a ∗ 1)

fulfils all conditions for HR .

We also analyse for which tuples R and R′ the corresponding Hopf algebras HR and HR′ are
isomorphic. The arguments are similar to [KrR, Theorem 1(c)].

Lemma 3.6. Let R = (G,χ,a,α) and R′ = (G′, χ ′, a′, α′) be two tuples as in 3.4. Then HR and
HR′ are isomorphic if and only if there is a group isomorphism f :G → G′ with f (a) = a′, χ =
χ ′ ◦ f and an element β ∈ k∗ such that βNpi

αi = βnα′
i for all 0 � i � r = r ′ and α−1 = βnα′−1.

Proof. First assume there is a map f and a scalar β as above. Let F :HR → HR′ the linear map
with F(gxi) = f (g)(βx′)i with respect to the basis (gxi){g∈G, 0�i�n−1} of HR . As r = r ′ and
|χ(a)| = |χ ′(a′)| we have n = n′ such that F is obviously a vector space isomorphism and direct
computation shows that it is a Hopf algebra isomorphism.

Now suppose F :HR → HR′ is a Hopf algebra isomorphism. Then N = N ′ and r = r ′ as HR

and HR′ need to have the same dimension. As group-like elements are mapped to group-like
elements, f := F |G is a group isomorphism from G to G′. The map F also maps skew primitive
elements to skew primitive elements. Therefore F(x) is a skew primitive element with skew
point f (a). Direct computation shows that the skew primitive elements of HR′ − kG′ are the
elements a′ with corresponding skew primitive elements {βx′ + γ (a′ − 1) | β ∈ k∗, γ ∈ k} and
a′Nps

with corresponding skew primitive elements

{
r−1∑
i=0

βix
′Npi + γ

(
a′Nps − 1

) ∣∣∣ βi, γ ∈ k, βi = 0 if aNpi �= aNps

, ∃βi �= 0

}

for 0 � s � r − 1. As f (a)F (x)f (a)−1 = χ(a)f (x) where χ(a) is a primitive N th root of
unity unequal 1, we have f (a) = a′. Then F(x) = βx′ for some β ∈ k∗. As F(gxg−1) =
f (g)βx′f −1(g), we have χ = χ ′ ◦ f . Finally F(x)p = F(xp) gives βNpi

αi = βnα′
i for all

0 � i � r = r ′ and α−1 = βnα′ . �
−1
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We need to introduce a second type of Hopf algebras in order to classify the case N = 1, r = 1
from Theorem 3.3. First we give a typical example of a Hopf algebra of second type which will
be defined in 3.8.

Example 3.7. There is a Hopf algebra L over a field of characteristic 2 generated by an elemen-
tary abelian group G of order 4 and an element x. Let a, b ∈ G be the generators of G such that
1, a, b, ab, ax, bx, x, abx is a basis of H . The multiplication is defined by the relations axa = x,
bxb = x + a − 1 and x2 = 0. The coalgebra structure is determined by Δ(x) = x ⊗ a + 1 ⊗ x,
Δ(a) = a ⊗ a, Δ(b) = b ⊗ b. This gives us an example for a Hopf algebra with χ(a) = χ(b) = 1
and c(b) = 1, c(a) = 0 where c and χ are defined as in 2.8. Thus all skew primitive elements
which do not lie in L0 are eigenvectors of the conjugation action of a but not of b.

In the following definition we describe those pointed rank one Hopf algebras in a formal way
and characterise them.

Definition 3.8 (Second type). Let F = (G,χ, c, a, (α−1, α0)) be a tuple, where G is a finite
group, a ∈ Z(G), χ :G → k∗ is a linear character with χ(a) = 1 and c :G → k is a map with
c(hg) = χ(g)c(h)+ c(g) for all g,h ∈ G and c(a) = 0. The Hopf algebra HF is the algebra with
basis {gxi | g ∈ G, 0 � i � p − 1} and relations xp = α−1(a

p − 1)+α0x where α−1, α0 ∈ k and
gxg−1 = χ(g)x + c(g)(a − 1) for all g ∈ G.

The Hopf algebra structure is determined by Δ(gxi) = (g ⊗g)(x ⊗ a + 1 ⊗ x)i , ε(gxi) = δi,0
and S(gxi) = (−xa−1)ig−1 for all g ∈ G and 0 � i � p − 1.

We require that α0 ∈ {0,1} and that if α0 = 0 then α−1 = 0. In addition we assume that

(1) if α0 = 0, then c(g)(ap − 1) = 0 for all g ∈ G;
(2) if α0 = 1, then ap = a, χ(g) ∈ F ∗

p and (α−1(χ(g) − 1) + c(g)p − c(g))(a − 1) = 0 for all
g ∈ G.

The following explains the two conditions α0 ∈ {0,1} and if α0 = 0 then α−1 = 0.
Assume H is rank one and a has an eigenvector x in Pa,1 \ H0 with eigenvalue 1. Then

any element of Pa,1 \ H0 is fixed by conjugation with a and has degree p. If α0 = 0 and k

algebraically closed, then there exists an element y ∈ Pa,1 \ H0 with yp = 0 by part (4) of
Theorem 3.3.

If α0 �= 0 then wx with w = (α0)
−1/p−1 ∈ k∗ is an element in Pa,1 \ H0 such that (wx)p =

wx + (wα−1
0 α−1)(a

p − 1). Therefore we can choose an eigenvector in Pa,1 \ H0 of a with
α0 = α−1 = 0 or with α0 = 1.

The proof of the next lemma shows that HF is well defined if and only if the conditions (1)

and (2) are satisfied.

Lemma 3.9. The Hopf algebra HF is well defined.

Proof. In order to check that the algebra structure is well defined, we need to consider the
equation χ(g)pα0x + (χ(g)pα−1 + c(g)p)(ap − 1) = (χ(g)x + c(g)(a − 1))p = (gxg−1)p =
gxpg−1 = g(α−1(a

p − 1) + α0x)g−1 = α−1(a
p − 1) + α0χ(g)x + α0c(g)(a − 1) for all g ∈ G.

By the first part of Theorem 3.3 we have ap = a in case that α0 = 1. The relations for c and χ

follow immediately by comparing coefficients.
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The maps Δ and ε are algebra homomorphism and provide HF with a coalgebra structure.
An easy computation using the basis shows that S is the antipode. �

The Hopf algebras HF can be constructed similarly to Lemma 3.5 as the smash product of A

and kG with the kG action gxg−1 = χ(g)x + c(g)(a − 1) on A modulo the ideal generated by
(a ∗ 1 − 1 ∗ a).

We show that HR and HF are pointed and determine under which conditions HR and HF are
rank one Hopf algebras. This depends only on the degree of x. The following result can also be
deduced from [Rad2, Proposition 2].

Proposition 3.10. The Hopf algebras HR and HF are pointed. The Hopf algebra HR is rank one
if and only if r = 0. The Hopf algebra HF is rank one.

Proof. We use that by [LaR, Corollary 1.74] every bialgebra B over a field generated by skew
primitive elements is pointed. Therefore HR and HF are pointed.

By Theorem 3.3 we have that if HR is rank one, then r = 0. Suppose now that r = 0 for
H = HR . We have r = 1 for H = HF . Then any element z ∈ H has a unique presentation of the
form

∑n−1
i=0 bix

i with n = N > 1 in the first case and n = p in the second case and bi ∈ kG(H)

for all 0 � i � n−1. The conditions Δ(z) = z⊗g+1⊗z and z /∈ H0 give the following equation

n−1∑
i=1

Δ(bi)

i∑
k=0

(
i

k

)
q−1

xk ⊗ akxi−k =
n−1∑
i=0

Δ(bi)Δ(x)i

= Δ(z) = z ⊗ g + 1 ⊗ z

=
n−1∑
i=0

(bi ⊗ g)
(
xi ⊗ 1

) + (1 ⊗ bi)
(
1 ⊗ xi

)
.

This equation is equivalent to

(1) for all 1 � k � i − 1 we have Δ(bi)
(
i
k

)
q−1 = 0;

(2) furthermore Δ(b0) = 1 ⊗ b0 + b0 ⊗ g;
(3) and Δ(bi) = (bi ⊗ g)(1 ⊗ a−i ) = 1 ⊗ bi for all 1 � i � n − 1.

By Lemma 2.9 for all 2 � i � n − 1 there exists a natural number k in {1, . . . , i − 1} such that(
i
k

)
q−1 is not zero. This forces bi = 0 for all 2 � i � n − 1 using the first equation. The second

equation gives us b0 ∈ H0 ∩Pg,1 = {γ (g −1) | γ ∈ k} by Lemma 2.4 and the last equation shows
b1 ∈ k∗ and a−1g = 1.

Thus z = βx + γ (a − 1) for β ∈ k∗, γ ∈ k and g = a. For all h ∈ Pb,d \ H0 with b, d ∈ G(H)

we have h = 0 for d−1b �= a and else h = d−1(βx +γ (a−1)). As H1 = H0 +∑
b,d∈G(H) Pb,d ⊂

H0 +H0x and x /∈ H0, the dimension of k⊗H0 H1 is two. Thus H is a rank one Hopf algebra. �
We classify certain pointed rank one Hopf algebras using HR and HF .

Theorem 3.11. Let H be a rank one Hopf algebra that is generated as an algebra by H1. Assume
there exists an eigenvector in Pa,1 \H0 of the conjugation action of a with eigenvalue q . If q �= 1
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then H is isomorphic to a Hopf algebra HR given by a tuple R with r = 0. If q = 1 and k

algebraically closed, then H is isomorphic to a Hopf algebra HF given by a tuple F .

Proof. This follows directly by Theorem 3.3, Lemmas 3.5, 3.9 and Proposition 3.10. �
We can now classify pointed rank one Hopf algebras with semi-simple coradical.

Corollary 3.12 (Semi-simple coradical). Let H be a rank one Hopf algebra over an algebraically
closed field that is generated as an algebra by H1 and has a semi-simple coradical. Then H is
isomorphic to a Hopf algebra HR with r = 0 or to a Hopf algebra HF .

Proof. The coradical of a pointed Hopf algebra is semi-simple if and only if the characteristic p

of k does not divide the order of the group of group-like elements. Thus p does not divide the
order of the skew point and 3.1 holds. The rest follows then directly by Theorem 3.11. �

Note that this proof only requires that the order of the skew point is not divisible by p.

Corollary 3.13. Let H be a cocommutative rank one Hopf algebra over an algebraically closed
field. Then H is isomorphic to HF . Furthermore x is a common eigenvector of the conjugation
action of G.

Proof. If H is cocommutative then a = 1. Therefore every element of P1,1 \ H0 is an eigen-
vector of the conjugation action of a with eigenvalue 1. By Theorem 3.11 we have H ∼= HF .
Furthermore c(g)(a − 1) = 0 for all g ∈ G which proves the last statement. �

We introduce nilpotent type Hopf algebras which have also been defined similarly by Krop
and Radford [KrR].

Definition 3.14 (Nilpotent type). Let H be a rank one Hopf algebra as in 3.3. We call H of
nilpotent type if there exists an eigenvector x in Pa,1 \ H0 of the conjugation action of a such
that xn = 0, where n denotes the degree of x.

Corollary 3.15. The rank one Hopf algebra HR is of nilpotent type if and only if α−1 = 0. The
Hopf algebra HF is of nilpotent type if and only if α0 = 0.

Proof. As HR is rank one, we have r = 0 by 3.10. Since χ(a) �= 1 the eigenvector x ∈ Pa,1 \ H0
of the conjugation action of a is uniquely determined up to scalar multiplicities. By Theorem 3.3
we have xN = α−1(a

N − 1) and by the definition of α−1 we have that xN = 0 if and only if
α−1 = 0.

Now consider HF . All elements of Pa,1 \ H0 are eigenvectors of the conjugation action of a.
An easy computation shows that if α0 = 1, then there exist no element y in Pa,1 \ H0 such that
yp = 0. If αo = 0 then by definition α−1 = 0 and HF is of nilpotent type. �

For certain orders of the skew point we have the following structure.

Corollary 3.16. Let H be as in 3.11 and let a be an element of p-power order. Then H is
isomorphic to a nilpotent type Hopf algebra HF for a suitable tuple F = (G,a,χ, c, (0,0)). If a
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does not have order p, then c is identical zero and x ∈ HF is therefore a common eigenvector of
the conjugation action of G.

Proof. As the order of a is a p-power, we have χ(a) = 1. Then H ∼= HF by Theorem 3.11. As
ap �= a we have by Lemma 3.9 that α0 = 0 and HF is therefore of nilpotent type. If ap �= 1 then
it follows from Theorem 3.3(4) that c(g) = 0 for all g ∈ G. �

We have already determined precisely in 3.6 under which conditions rank one Hopf algebras
HR and HR′ are isomorphic and we can now determine when nilpotent type Hopf algebras HF

and H ′
F are isomorphic.

Lemma 3.17. Let HF ′ and HF be rank one Hopf algebras. If there exists a group isomorphism
f :G → G′ with f (a) = a′, χ = χ ′ ◦f , c = c′ ◦f and α = α′, then HF and HF ′ are isomorphic.
Conversely suppose that HF ′ and HF are isomorphic rank one Hopf algebras of nilpotent type
and a does not have order p. Then there exists a group isomorphism f :G → G′ with f (a) = a′
and χ = χ ′ ◦ f .

Proof. We set ρ(gxi) := f (g)x′i . Then ρ is a Hopf algebra isomorphism.
Conversely suppose now that HF and HF ′ are isomorphic via the Hopf morphism

ρ :HF → HF ′ . Analogously to 3.6 we have that f := ρ|G :G → G′ is a group isomorphism with
f (a) = a′ and ρ(x) = βx′ + γ (a′ − 1) for β ∈ k∗ and γ ∈ k. We have 0 = ρ(xp) = γ p(a′p − 1).
Thus γ (a′ − 1) = 0 and χ = χ ′ ◦ f . �

In the following we analyse the representations of the pointed rank one Hopf algebras HR

and HF . We first consider the non-nilpotent type Hopf algebra HR .
Suppose HR is not of nilpotent type and k is algebraically closed. We can assume without loss

of generality that α = 1. Let Z ⊂ G be the kernel of χ and let {ei | 1 � i � s} be the set of central
primitive idempotents in kZ corresponding to the blocks of kZ. As HR is not of nilpotent type
χN(g) = 1 for all g ∈ G by 3.4(2). Thus the cyclic group {χ(g) | g ∈ G} is generated by χ(a)

and therefore G = ⋃N
i=1 aiZ. We set Bi := kZei for the blocks of kZ. By the definition of Z and

as a ∈ Z(G), the elements ei commute with G and x. We have HR = ⊕
1�i�s Hi where Hi :=

HRei . Let Ai be the subalgebra of Hi generated by x̄ := xei and ā := aei . Then Ai is isomorphic
to Aχ(a),1,N,|aei | as in [Rad2, (C.6)]. Then Hi

∼= Ai ⊗k Bi/〈ei ⊗ āN − āN ⊗ei〉. We have Z(Ai) =
k〈āN 〉 and therefore Z(Ai) ⊂ Z(Bi). As ei is the unique primitive central idempotent in Bi and
ei ∈ Z(Ai), ei is primitive in Z(Ai) as well. Therefore Z(Ai) is indecomposable. So āN is either
a scalar wei for some w ∈ k if dimZ(Ai) = 1 or Z(Ai) ∼= kCpt for some t ∈ N. As an algebra
with indecomposable centre is indecomposable Ai is indecomposable. In the case of āN = ei

we have (x̄)N = 0 and 〈ā〉 has order N . Thus Ai is isomorphic to the Taft algebra ΓN,χ(a)

and Hi
∼= ΓN,χ(a) ⊗k Bi . If āN = wei with w �= 1, then Ai

∼= Mn(k) by [Rad1, 1.3] as k is
algebraically closed and Hi

∼= Mn(Bi). As the tensor product of two indecomposable algebras is
indecomposable, Hi is indecomposable if āN is a scalar. In the case that Z(Ai) ∼= kCpt , we have

that āNpt
is a scalar and 〈1 ⊗ āN − āN ⊗ 1〉pt = 0. Therefore idempotents can be lifted from

Ai ⊗k Bi/〈ei ⊗ āN − āN ⊗ ei〉 to Ai ⊗k Bi . As Ai ⊗k Bi is an indecomposable algebra, Hi is
indecomposable as well.

The proof of [KrR, Proposition 4] works in the following case.
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Theorem 3.18. Let HR be a pointed rank one Hopf algebra over an algebraically closed field
which is not of nilpotent type and which has a semi-simple coradical. Then its blocks are Morita
equivalent to the Taft algebra ΓN,χ(a) or to the matrix ring MN(k).

Proof. We fix i and set B = Bi , e = ei , x̄ = xe, ā = ae and A = Ai . As kG is semi-simple and
k algebraically closed we have B ∼= Mn(k) for some n ∈ N by the Wedderburn–Artin Theorem.
The element āN lies in the centre of B , hence āN = we for some w ∈ k. Therefore He ∼= A⊗k B

and x̄N = (w − 1)e. If w = 1, then A is isomorphic to the Taft algebra ΓN,χ(a). Therefore He ∼=
ΓN,χ(a) ⊗ Mn(k) is Morita equivalent to ΓN,χ(a) by [ASS, 6.11]. If w �= 1, then A ∼= MN(k) and
He is Morita equivalent to the full matrix ring. �

The representations of Hopf algebras H of nilpotent type can be described entirely in terms
of those of the underlying group algebra kG(H). We generalise a result in [KrR, Proposition 3]
which has only been proven for the nilpotent type in characteristic zero and G an abelian group.

Theorem 3.19. Suppose H is a pointed rank one Hopf algebra of nilpotent type so that H ∼= HR

for some tuple R or H ∼= HF for some tuple F .

(a) The simple H -modules are the simple kG-modules on which x acts as zero.
(b) Assume that the coradical of H is semi-simple. Let Lλ be the simple module where the re-

striction to kG has character λ, and let eλ be the primitive idempotent of kG associated to λ.
Then Heλ is an indecomposable projective H -module, and every indecomposable projective
H -module is isomorphic to some Heλ.

(c) The module Heλ is uniserial, with composition factors

Lλ,Lλχ ,Lλχ2 , . . . ,Lλχn−1 .

Hence two projectives Heλ, Heμ are in the same block if and only if μ = λχi for some i.

Proof. We will prove this theorem separately for the case H ∼= HR and H ∼= HF . We suppose
first that H ∼= HR . (a) As HR is of nilpotent type, (x) is a nilpotent ideal. Therefore (x) ⊂ J (HR).
Note that the quotient HR/(x) is isomorphic to kG. Thus all simple modules are isomorphic to
simple kG-modules on which x acts as zero and a as the identity.

(b) and (c) We can take Lλ = kGeλ. Consider the module Heλ, define subspaces

Mi :=
⊕
j�i

xj (kGeλ)

for j = 0,1, . . . , n − 1. These are H -submodules of Heλ and Mi+1 ⊆ Mi for each i. The action
of H can be calculated explicitly on the quotient, and one sees that Mi/Mi+1 is isomorphic to
the simple module with character λχi . We claim that Heλ is uniserial. Let M be any submodule,
then there is i such that M is contained in Mi but not in Mi+1. Then M contains some element
of the form

ω =
n−1∑

xjmj
j=i
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with mj ∈ kGeλ where mi �= 0 (note that the mj are unique). A standard argument using the
nilpotency of x shows that then M = Mi .

Since Heλ is uniserial, it is indecomposable. The group algebra kG is a direct sum of simple
modules kG = ⊕

kGej where the ej are orthogonal primitive idempotents and each kGej is
isomorphic to kGeλ for some λ. It follows that H = ⊕

Hej , and hence each indecomposable
projective H -module is isomorphic to Heλ for some λ. All other statements of (b) and (c) follow
for H ∼= HR .

We suppose now that H ∼= HF . If c is identically zero, (x) is nilpotent of index p and (x) ⊂
J (H). In this case H/(x) ∼= kG. If a does not have order p, then by the proof of Theorem 3.3
part (4) the map c is identically zero.

Suppose that a has order p and c is not identically zero. Since a is a central element of
order p, the ideal (a − 1)H is nilpotent of index p. As c is not identically zero we have
(a − 1)H ⊂ (x). Modulo (a − 1)H the elements g ∈ G act on x by multiplication through χ(g).
Therefore (x)/(a − 1)H is nilpotent of index p. Thus (x)p

2 = 0. This proves (x) ⊂ J (H). In
this case the quotient HF /(x) is isomorphic to kG/(a −1)kG as (x)∩kG = (a −1)kG. Thus all
simple modules are isomorphic to simple kG-modules on which x acts as zero and a as identity.

(b) and (c) If kG is semi-simple, a does not have order p and x is therefore a common
eigenvector of the conjugation action of G. The rest of the proof is the same then the proof of (b)
and (c) in the case that H ∼= HR . �
4. Pointed rank one Hopf algebras of third type

Throughout this section H is a finite-dimensional pointed rank one Hopf algebra over a field k

of positive characteristic p which is generated as an algebra by H1. We assume that H �= H0. Let
a be the skew point of H .

In this section we classify the pointed rank one Hopf algebras which do not have an eigenvec-
tor of the conjugacy action of a in Pa,1 \ H0.

We first analyse how the order of a and its conjugation action determine the type of Hopf
algebra and introduce the third type of pointed rank one Hopf algebras.

Theorem 4.1. Let a be the skew point of H and k algebraically closed. Then precisely one of the
following holds:

(i) There is some x ∈ Pa,1 \ H0 such that axa−1 = qx where q is a primitive N -root of unity.
(ii) There is some x ∈ Pa,1 \ H0 with axa−1 = x + (a − 1).

Suppose (i) holds. If q �= 1 then H is isomorphic to HR , with r = 0. If (i) holds and q = 1, then
H is isomorphic to an algebra HF as in 3.8.

Suppose (ii) holds, then p divides the order of a.

Proof. If x is an eigenvector of a then Theorem 3.3 and Proposition 3.10 give the result.
Suppose now that a does not have an eigenvector in Pa,1 \ H0. By 3.1 the order of a must

be divisible by p. By Lemmas 2.8 and 2.4 we know that the vector space of skew primitive
elements Pa,1 is {cx + d(a − 1) | c, d ∈ k}. Thus it has dimension two. As k is algebraically
closed, the conjugation action of a on Pa,1 is represented by a two-dimensional Jordan block.
As no element of Pa,1 \ H0 is an eigenvector, any eigenvector must be of the form d(a − 1) ∈
H0 for some d ∈ k∗. As those elements are eigenvectors with eigenvalue one, the entries on
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the diagonal of the Jordan block must be one. Thus there is an element x ∈ Pa,1 \ H0 so that
axa−1 = x + (a − 1). �

Considering the previous theorem we can introduce the following notations to classify H .

Definition 4.2. Suppose there is some x ∈ Pa,1 \H0 with axa−1 = qx. If q �= 1, we call H of first
type; and if q = 1 of second type. If Pa,1 \ H0 contains an element x with axa−1 = x + (a − 1)

then we call H of third type.

Note that all three cases are different. If k is algebraically closed then we have by the previous
theorem that H is either of first, second or third type. We have already completely described the
first and second type by generators and relations.

The conjugation action of the third type can be described as follows.

Corollary 4.3. Let H be of third type. Then the action of G(H) on H is given by gxg−1 =
x + c(g)(a − 1) where c :G → (k,+) is a group homomorphism.

Proof. By Lemma 2.8 the conjugation action of G can be described via the maps c and χ with
c(hg) = χ(g)c(h)+c(g) for all g,h ∈ G(H). We have c(h)+1 = c(ha) = c(ah) = χ(h)+c(h)

for all h ∈ G. Thus χ = 1 and c(hg) = c(h) + c(g) for all g,h ∈ G(H). �
In order to show that third type Hopf algebras do exist we give an example in characteristic 2

and 3.

Example 4.4 (Third type). Consider the four-dimensional Hopf algebra A2 over a field of char-
acteristic 2 generated by a, x with basis {1, a, ax, x} given by the following relations: a2 = 1,
x2 = x and axa = x + (a+1). The following linear maps define the Hopf algebra structure on A:

• Δ(a) = a ⊗ a, Δ(x) = x ⊗ a + 1 ⊗ x, Δ(ax) = ax ⊗ 1 + a ⊗ ax,
• ε(a) = ε(1) = 1, ε(x) = ε(ax) = 0,
• S(a) = a, S(1) = 1, S(x) = xa, S(ax) = x.

Via direct computation we can check that Δ and ε fulfil the relations and are therefore algebra
homomorphisms. The other axioms of a Hopf algebra can be checked on the basis elements.

This Hopf algebra is pointed rank one such that by Lemma 2.8 no skew primitive element is
an eigenvector of the conjugation action of a. Thus it is not isomorphic to a Hopf algebra HR

or HF .
As a left module A2 is the direct sum of the indecomposable projective modules P1 = A2x =

〈x, ax〉 and A2(x + 1) = 〈x + 1, a + ax〉. The algebra A2 has two simple one-dimensional mod-
ules S1 and S2 where a acts on both as the identity and x acts on S1 as the identity and on S2
as zero. Then socP1 = 〈x + ax〉 ∼= S2, P1/ radP1 ∼= S1 and socP2 = 〈1 + ax + a + x〉 ∼= S1,
P2/ radP2 ∼= S2.

Example 4.5. Let Ap be the algebra over a field of characteristic p generated by a and x with
basis (xiaj )0�i,j<p and the relations axa−1 = x + (a − 1), xp = x and ap = 1. Then we define
linear maps by:
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• Δ(a) = a ⊗ a, Δ(x) = x ⊗ a + 1 ⊗ x, Δ(xiaj ) = Δ(x)iΔ(a)j for all 0 � j, i � p − 1,
• ε(xiaj ) = 0 for i > 0 and equal to 1 else,
• S(a) = a, S(x) = −xa−1 and S(xiaj ) = S(a)iS(x)j for all 0 � j, i � p − 1.

The maps Δ and ε satisfy the first relation and ε fulfils both relations and is therefore an algebra
homomorphism. In the case p = 2 this is just the Hopf algebra given in Example 4.4. For p = 3
an easy calculation shows that the map Δ satisfies the second relation Δ(x)3 = Δ(x) and is
therefore an algebra homomorphism. In this case the axioms of a Hopf algebra hold and A3 is a
Hopf algebra.

In order to classify third type Hopf algebras we first show that x has degree p and xp =
x + α0(a

p − 1) with α0 ∈ k. To this end we will compute the coefficients of elements xi ⊗ xzaj

with 0 � i, z, j � p in Δ(xp). Throughout this section p is a prime number.

Lemma 4.6 (Fermat’s Little Theorem). In a field of characteristic p we have
∏p−1

m=1(t − m) =
tp−1 − 1 where t is a variable.

Furthermore we have to define two maps.

Lemma 4.7. For j, l ∈ N we define

f (j, l) =
∑

1�j1�···�jl�j

l∏
u=1

ju

and for r, q ∈ N with 0 < q < r

g(r, q) =
∑

0<j1<···<jq<r

q∏
u=1

ju.

Then f (j,p − j) = g(p,p − j) = 0 mod p for 1 < j < p. Furthermore f (1,p − 1) = 1 and
g(p,p − 1) = (p − 1)! = −1 mod p.

Proof. The value of f (j,p−j) is the coefficient of tp−j in the series expansion of
∏j

i=1 1/(1−
it), where t is a variable. Using Fermat’s Little Theorem we have

∏p−1
i=1 1/(1 − it) = 1/(1 −

tp−1). Thus

j∏
i=1

1/(1 − it) = 1/
(
1 − tp−1) ∗

p−1∏
i=j+1

(1 − it) =
( ∞∑

i=0

t i(p−1)

)
p−1∏

i=j+1

(1 − it).

As
∏p−1

i=j+1(1 − it) is a polynomial of degree p − j − 1 the coefficients of tp−j are zero for

1 < j < p and the coefficient of tp−1 is 1.
The value of g(p,p − j) is just the coefficient of tj−1 up to sign in the polynomial∏p−1

m=1(t − m). Thus by Fermat’s little Theorem we have g(p,p − j) = 0 mod p for 1 < j < p

and g(p,p − 1) = −1. �
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We set f (j,0) = g(j,0) = 1 and f (j, l) = g(j, l) = 0 for l < 0 and j > 0. As one can easily
see the following relations are true.

Lemma 4.8. We have jf (j, l − 1) + f (j − 1, l) = f (j, l) and (j − 1)g(j − 1,m − 1) +
g(j − 1,m) = g(j,m) for all m, l and j > 0.

The next lemma and corollary work in an algebra A over a field of characteristic p generated
by an element x and an element a such that the set {xiaj | i, j ∈ N} is linearly independent and
ax = xa + a2 − a. We also fix a scalar c(g) ∈ k.

Lemma 4.9. We write (x + c(g)a)k as a linear combination of elements in {xiaj | 0 � i,

j � k}. Let sk
i,j be the coefficient of xiaj . We define l := k − (i + j). Then we have sk

i,j =
(−1)l

(
k
i

)
f (j, l)

∏j

u=1[c(g) − 1 + u] for j > 0 and sk
i,0 = δi,k .

We write (x ⊗ a + 1 ⊗ x)k in A ⊗k A as linear combination of elements in {xi ⊗ xzaj | 0 � i,

j, z � k}. Let hk
i,z,j be the coefficient of xi ⊗ xzaj . We define l := k − (z + j) and m = j − i.

Then we have hk
i,z,j = (−1)l

(
k
z

)
f (j, l)g(j,m) for 0 < i, j , hk

0,z,j = δj,0δk,z and hk
i,z,0 = δi,0δk,z.

We write (xa−1)k as a linear combination of elements in {xia−j | 0 � i, j � k}. Let ck
i,j be

the coefficient of xia−j . Then we have ck
i,j = (−1)k−j g(j, j − i)f (j, k − j) for 1 � i, j � k and

ck
0,j = ck

i,0 = 0.

Proof. By definition it is clear that ajx = xaj + j (aj+1 − aj ) for all j � 0. If we set sk
v,w = 0

for v < 0 or w < 0, then the coefficients sk
i,j of xiaj are given by the recursion

sk
i,j := sk−1

i−1,j + (
c(g) + j − 1

)
sk−1
i,j−1 − jsk−1

i,j ,

where s1
0,1 = c(g), s1

1,0 = 1 and the other coefficients s1
i,j are zero. This follows directly from the

fact that xiaj (x + c(g)a) = xi+1aj + (c(g) + j)xiaj+1 − jxiaj . First one checks that sk
i,j = 0

if i + j > k by a straightforward induction using recursion. We will show by induction on k

that the stated formulae hold for the remaining case that i + j � k. For k = 1 they are true.
Suppose now that the formulae are true for k − 1. If j = 0 we have by the recursion sk

i,0 =
sk−1
i−1,0 = δi−1,k−1 = δi,k .

We have 0 � k − (i + j) =: l. If j = 1 and i < k − 1 we have

sk
i,1 = (−1)l

(
k − 1

i − 1

)
f (1, l)c(g) − (−1)l−1

(
k − 1

i

)
f (1, l − 1)c(g) = (−1)l

(
k

i

)
c(g)

using that f (1, r) = 1 for all 0 � r . If j = 1 and i = k − 1 we have

sk
k−1,1 = (k − 1)f (1,0)c(g) + c(g) − (−1)f (1,−1)c(g) = kc(g).

If j > 1 we have
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sk
i,j = (−1)l

(
k − 1

i − 1

)
f (j, l)

j∏
u=1

[
c(g) − 1 + u

]

+ (
j − 1 + c(g)

) j−1∏
u=1

[
c(g) − 1 + u

]
(−1)l

(
k − 1

i

)
f (j − 1, l)

− j (−1)l−1
(

k − 1

i

)
f (j, l − 1)

j∏
u=1

[
c(g) − 1 + u

]

= (−1)l
(

k − 1

i − 1

)
f (j, l)

j∏
u=1

[
c(g) − 1 + u

]

+ (−1)l
(

k − 1

i

)
f (j, l)

j∏
u=1

[
c(g) − 1 + u

]

= (−1)l
(

k

i

)
f (j, l)

j∏
u=1

[
c(g) − 1 + u

]

using the first identity of Lemma 4.8. This proves the coefficient formula for s.
If we set hk

r,s,t = 0 for all k and r,0 or s < 0 or t < 0, then the coefficients hk
i,z,j of xi ⊗ xzaj

are given by the recursion

hk
i,z,j := hk−1

i−1,z,j−1 + hk−1
i,z−1,j + (j − 1)hk−1

i,z,j−1 − jhk−1
i,z,j ,

where h1
0,1,0 = h1

1,0,1 = 1 and zero else. This follows from the fact that (xi ⊗ xzaj )(x ⊗ a +
1 ⊗ x) = xi+1 ⊗ xzaj+1 + xi ⊗ xz+1aj + jxi ⊗ xzaj+1 − jxi ⊗ xzaj . By an easy induction we
see that hk

i,j,z is zero if j − i < 0 or z + j > k. We show by induction on k that the formula also
holds for the other cases. We set 0 � j − i =: m and 0 � k − z − j =: l.

Suppose i = 0, then

hk
0,z,j = hk−1

0,z−1,j + (j − 1)hk−1
0,z,j−1 − jhk−1

0,z,j

= δj,0δk−1,z−1 + (j − 1)δj−1,0δk−1,z − jδj,0δk−1,z

= δj,0δk,z.

Suppose that j = 0, then hk
i,z,0 = hk−1

i,z−1,0 = δi,0δk−1,z−1 = δj,0δk,z. Now we assume that
1 < i � j , then

hk
i,z,j = (−1)l

(
k − 1

z

)
f (j − 1, l)g(j − 1,m) + (−1)l

(
k − 1

z − 1

)
f (j, l)g(j,m)

+ (j − 1)(−1)l
(

k − 1

z

)
f (j − 1, l)g(j − 1,m − 1)

− j (−1)l−1
(

k − 1
)

f (j, l − 1)g(j,m)

z
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= (−1)l
(

k − 1

z

)
f (j − 1, l)g(j,m) + (−1)l

(
k − 1

z − 1

)
f (j, l)g(j,m)

− j (−1)l−1
(

k − 1

z

)
f (j, l − 1)g(j,m)

= (−1)l
(

k − 1

z

)
f (j, l)g(j,m) + (−1)l

(
k − 1

z − 1

)
f (j, l)g(j,m)

= (−1)l
(

k

z

)
f (j, l)g(j,m)

using the second and then the first identity of Lemma 4.8.
In the case i = 1, j > 1 we have

h1,z,j = δj,0δk−1,z + (−1)l
(

k − 1

z − 1

)
f (j, l)g(j, j − 1)

+ (j − 1)(−1)l
(

k − 1

z

)
f (j − 1, l)g(j − 1, j − 2)

− j (−1)l−1
(

k − 1

z

)
f (j, l − 1)g(j, j − 1)

= (−1)l
(

k

z

)
f (j, l)g(j, j − 1),

if we use first that (j − 1)g(j − 1, j − 2) = g(j, j − 1) and then the first identity of Lemma 4.8.
Finally we consider the case i = j = 1. Then

hk
1,z,1 = δk,z + (−1)l

(
k − 1

z − 1

)
f (1, l)g(1,0)

− (−1)l−1
(

k − 1

z

)
f (1, l − 1)g(1,0)

= (−1)l
(

k

z

)

because we have k > z, since otherwise l < 0 which contradicts our assumptions. This proves
the statement.

By definition a−j x = xa−j + j (a−j − a−j+1) for j ∈ N. Therefore xia−j xa−1 =
xi+1a−j−1 + jxia−j−1 − jxia−j . So in the last case the recursion formula is given by
ck
i,j = ck−1

i−1,j−1 + (j − 1)ck−1
i,j−1 − jck−1

i,j with c1
i,j = δi,1δj,1. Then the formula for the coeffi-

cients follows as in the previous step by induction using the identities given in Lemma 4.8.
Suppose i = 0 or j = 0, then by the recursion formula ck

0,j = ck
i,0 = 0 and ck

i,j = 0 for i > j .

Suppose now that i = 1 and j = 1. Then ck
1,1 = −1ck−1

1,1 = (−1)k−1. Next suppose that i = 1 and

j > 1. Then ck
1,j = (j − 1)ck−1

1,j−1 − jck−1
1,j = (j − 1)(−1)k−j g(j − 1, j − 2)f (j − 1, k − j) +

j (−1)k−j g(j, j − 1)f (j, k − j − 1) = (−1)k−j (j − 1)![f (j − 1, k − j) + jf (j, k − j − 1)] =
(−1)k−j g(j, j − 1)f (j, k − j) by the second equation of 4.8. Finally we can assume 1 < i �
j � k. Then ck = (−1)k−j [g(j − 1, j − i)f (j − 1, k − j)+ (j − 1)g(j − 1, j − i − 1)f (j − 1,
i,j
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k−j)+jg(j, j − i)f (j, k−j −1)] = (−1)k−j [g(j, j − i)f (j −1, k−j)+jg(j, j − i)f (j, k−
j − 1)] = (−1)k−j g(j, j − i)f (j, k − j) using first the identity on g in 4.8 and then the identity
on f in 4.8. �

Using the result of the previous lemma and the same setup we can now determine the coeffi-
cients for the pth power.

Corollary 4.10. We have (x + c(g)a)p = xp + c(g)a + (c(g)p − c(g))ap , (x ⊗ a + 1 ⊗ x)p =
xp ⊗ ap + (p − 1)!x ⊗ ap + x ⊗ a + 1 ⊗ xp and (xa−1)p = xpa−p − xa−p + xa−1.

Proof. We have to show that s
p

p,0 = 1, s
p

0,1 = c(g) and s
p

0,p = c(g)p − c(g) and that all other
coefficients are zero by using the formula provided in Lemma 4.9. If we take 0 < j, i < p,
we get s

p
i,j = 0 mod p as

(
p
i

) = 0 mod p. If i = 0 and 0 < j � p, then we have s
p

0,j =
(−1)p−j f (j,p − j)

∏j

u=1[c(g) − 1 + u]. Lemma 4.7 proves that s
p

0,j = 0 for 1 < j < p and

s
p

0,1 = c(g). By Fermat’s Little Theorem we get s
p

0,p = ∏p

u=1[c(g)−1+u] = c(g)
∏p−1

u=1 [c(g)−
u] = c(g)(c(g)p−1 − 1) = c(g)p − c(g). Furthermore we have s

p
p,j = δj,0 since if j > 0 then

l < 0 and s
p

i,0 = δi,p by Lemma 4.9. Finally s
p
i,p = 0 for i > 0 since then l < 0. This proves the

first identity.
In order to prove the second identity, we have to show that h

p

0,p,0 = 1, h
p

p,0,p = 1, h
p

1,0,p =
(p − 1)! and h

p

1,0,1 = 1 and all other coefficients are zero. We first consider the case j, i > 0. If

0 < z < p we get h
p
i,z,j = 0 mod p as

(
p
z

) = 0 mod p. If z = 0 and i, j > 0 we have h
p

i,0,j =
(−1)p−j f (j,p − j)g(j, j − i). Lemma 4.7 gives us h

p

i,0,j = 0 for 1 < j < p and h
p

1,0,1 =
(−1)p−1f (1,p − 1)g(1,0) = 1. By Lemma 4.7 we have h

p

i,0,p = g(p,p − i) = 0 mod p for

1 < i < p, h
p

p,0,p = 1 and h
p

1,0,p = g(p,p − 1) = (p − 1)!. If z = p then h(i,p, j) = 0 because
l < 0.

The values of the coefficients for i = 0 or j = 0 follow immediately from 4.9.
By 4.9 we have c

p

0,j = c
p

i,0 = 0 and c
p
i,j = 0 for all 1 < i < p using 4.7. Furthermore c

p

i,1 = δ1,i

as g(1,1 − i) = 0 for i > 1 and c
p
i,p = 0 for 1 < i < p, c

p

1,p = −1 by 4.7 and c
p
p,p = 1. Therefore

the equation holds. �
One can easily see that 4.9 and 4.10 can be applied to our Hopf algebra H in order to deduce

some necessary conditions for the degree n of x.
Similarly to [KrR, Lemma 1] we prove the following property of the degree n of x.

If we set V0 = H0 and Vk := ∑k
t=0 H0x

t , then all conditions of Remark 2.7 are satisfied and
ρk(x

k + Vk−1) = 1 ⊗ (xk + Vk−1) as hk
j,z,i = δi,0δj,0δk,z for z � k and xtH0 ⊂ Vt by 4.9. We

have Qk �= {0} for all k < n and Qn = {0}. As xk + Vk−1 forms a basis for Qk as H0-module,
n is the smallest integer such that 1, x, . . . , xn−1 form a basis for H over H0.

Lemma 4.11. Let H be a pointed rank one Hopf algebra of third type. Let n be the degree of x and
xn = ∑n−1

i=0 αix
i with αi ∈ kG. Then the coefficients αi with 1 � i are in k and α0 = α(an − 1)

for some α ∈ k. Furthermore n = pq for a positive integer q .

Proof. We use that xk ⊗ xj with 0 � k, j � n − 1 is free over kG ⊗k kG and that the set
{xkg | g ∈ G, 0 � k � n − 1} is linearly independent. We have (x ⊗ a + 1 ⊗ x)n = Δ(x)n =∑n−1

Δ(αi)Δ(x)i . If we compare the coefficients in H0 ⊗ H0 of 1 ⊗ xi for all 0 � i � n − 1 on
i=0
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both sides this gives us 1 ⊗ αi = Δ(αi) for 1 � i � n − 1 and α0 ⊗ an + 1 ⊗ α0 = Δ(α0). Thus
αi ∈ k for 1 � i � n − 1 and α0 = α(an − 1) for an α ∈ k. For the second part we compare the
coefficients of xr ⊗ xn−rar for 1 � r � n− 1 using the coefficients computed in Lemma 4.9. We
have hn

r,n−r,r = (
n
r

)
on the left-hand side and hi

r,n−r,r = 0 for all 1 � i � n − 1 on the right-hand
side. Thus

(
n
r

) = 0 mod p for all 1 � r � n − 1 and n has to be a p-power. �
Now we show that n = p using the results for the coefficients of the term Δ(x)p and the

previous lemma.

Lemma 4.12. Let H be a pointed rank one algebra of third type. Then xp ∈ H1 and p is the
degree of x. We have xp = x + α(ap − 1) for some α ∈ k.

Proof. We have Δ(xp) = xp ⊗ap + (p−1)!x ⊗ap +x ⊗a +1⊗xp from Corollary 4.10. Thus
xp ∈ H1 by the definition of H1. Using Lemma 4.11 we know that the degree of x is p. By part
two of Lemma 4.11 we have xp = α1x + α(ap − 1) with α1, α ∈ k. Comparing the coefficients
of x ⊗ a in Δ(x)p with the coefficient in Δ(α1x + α(ap − 1)) gives α1 = 1 if ap �= a. By 4.1 we
know that the order of a is divisible by p and therefore ap �= a. �

If a has order p, then α = 0. If k is algebraically closed, then we can choose β ∈ k such that
β − βp = α and set x̄ = x + β(a − 1). In this case x̄ ∈ Pa,1 \ H0 and gx̄g−1 = x̄ + c(g)(a − 1)

as a is central. Furthermore x̄p = (x + βa)p − βp = xp + βa + (βp − β)ap − βp = x̄. We can
therefore assume without loss of generality that α = 0.

In the next definition we introduce Hopf algebras parametrised by a tuple E.

Definition 4.13 (third type). Let E := (G,a, c,α) be a tuple, where G is a finite group, a ∈ Z(G)

and a has an order divisible by p and c :G → (k,+) is a group homomorphism. The Hopf
algebra HE is the algebra with basis (gxi){g∈G,0�i�p−1} and relations gxg−1 = x + c(g)(a −1)

and xp = x +α(ap −1). The Hopf algebra structure is determined by the linear maps Δ, ε and S

with Δ(gxi) = (g ⊗ g)(x ⊗ a + 1 ⊗ x)i , ε(gxi) = δi,0 and S(gxi) = (−xa−1)ig−1 for all g ∈ G

and 0 � i � p − 1. If ap �= 1 we assume that c(g) ∈ Fp for all g ∈ G.

The proof of the next lemma shows that HE with ap �= 1 is well defined if and only if
c(g) ∈ Fp for all g ∈ G.

Lemma 4.14. The Hopf algebra HE is well defined.

Proof. Using the results of Corollary 4.10, we get the following equation

xp + c(g)(a − 1) = gxpg−1 = (
gxg−1)p

= (
x + c(g)a − c(g)

)p = (
x + c(g)a

)p − c(g)p

= xp + c(g)a + (
c(g)p − c(g)

)
ap − c(g)p.

If ap = 1, then the equation holds for any value of c(g). If ap �= 1, then gxpg−1 = (gxg−1)p

is true if and only if c(g)p = c(g), which is the case if and only if c(g) ∈ Fp for all g ∈ G.
Then HE is well defined as an algebra. Using Theorem 4.12 and the expression for Δ(x)p in
Corollary 4.10, we see that Δ and ε are algebra homomorphism.
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Let S be a linear map with S(gxi) = (−xa−1)ig−1 on the basis {gxi | g ∈ G, 0 � i � p − 1}.
By 4.10 and 4.12 we have S(x)p = S(x) + α(a−p − 1) and S(gxg−1) = S(g−1)S(x)S(g) for
all g ∈ G. Therefore S is an anti-algebra homomorphism. It is easy to prove that the axiom is
satisfied for all elements of this basis. �

We can now classify Hopf algebras of third type.

Theorem 4.15. Let H be a third type, then H is isomorphic to a Hopf algebra HE for a tuple
E = (G(H), a, c,α).

Proof. This follows immediately from Lemma 4.12, Definition 4.13 and Corollary 4.3. �
The converse is also true.

Lemma 4.16. The Hopf algebras HE are pointed, rank one and of third type.

Proof. Exactly as in 3.10 we can see that HE is pointed, as it is generated by skew primitive
elements. We want to show that it is rank one. Let z ∈ HE \ kG be an element with Δ(z) =
z ⊗ g + 1 ⊗ z for some g ∈ G. Then z has a unique presentation as z = ∑p−1

t=0 xtbt with bt ∈ kG

for all 0 � t � p − 1. These conditions give the following equation

p−1∑
t=0

t∑
i,z,j=0

ht
i,z,j

(
xi ⊗ xzaj

)
Δ(bt ) =

p−1∑
t=0

Δ(x)tΔ(bt )

= Δ(z) = z ⊗ g + 1 ⊗ z

=
p−1∑
t=0

(
xt ⊗ 1

)
(bt ⊗ g) + (

1 ⊗ xt
)
(1 ⊗ bt ).

We compare the coefficients of 1 ⊗ xz for 0 � z � p − 1 on both sides. We have ht
0,z,j = δj,0δt,z

for all 0 � t � p − 1. Therefore Δ(bz) = 1 ⊗ bz for 1 � z � p − 1. This forces bz ∈ k for all
1 � z � p − 1. In the case z = 0 we have Δ(b0) = b0 ⊗ g + 1 ⊗ b0 and therefore b0 = b(g − 1)

for some b ∈ k. Let n be maximal with bn �= 0. We compare now the coefficients of xn ⊗ 1.
We have ht

n,0,j = δj,nδt,n for t � n by 4.9. This gives us (1 ⊗ an)Δ(bn) = bn ⊗ g. Therefore

g = an. Suppose n > 1. The coefficient of x ⊗ xn−1a on the left-hand side is Δ(bn)n �= 0 as
ht

1,n−1,1 = δn,t

(
n

n−1

)
for t � n. As x ⊗ xn−1a does not appear on the right-hand side, this is a

contradiction. Thus z = b1x + b(a − 1) for b1 ∈ k∗ and b ∈ k.
For all h ∈ Pv,u \ H0 with v,u ∈ G we have h = 0 for u−1v �= a and else h = u(b1x +

b(a − 1)). As H1 = H0 + ∑
v,u∈G(H) Pv,u ⊂ H0 + H0x and x /∈ H0, the dimension of k ⊗H0 H1

is two. Thus HE is a rank one Hopf algebra. It is clearly of third type as the skew point a does
not have an eigenvector in Pa,1 \ H0 of the conjugation action. �

In the following lemma we determine precisely under which conditions two third type Hopf
algebras presented by different tuples are isomorphic.
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Lemma 4.17. Let HE and HE′ be two Hopf algebras of third type over an algebraically closed
field given by tuples E and E′. Then they are isomorphic if and only if there is a group isomor-
phism from f :G → G′ such that f (a) = a′ and c′ ◦ f = c.

Proof. Let f :G → G′ be a group isomorphism with f (a) = a′ and c′ ◦ f = c. We define the
linear map F :HE → HE′ , gxi → f (g)x′i which is bijective. This gives a Hopf algebra isomor-
phism.

Conversely, we suppose now that HE and HE′ are isomorphic as Hopf algebras via a map F .
As group-like elements are mapped to group-like elements, the map f := F |G :G → G′ is a
group isomorphism. Since elements in H1 \ H0 are mapped to elements in H ′

1 \ H ′
0 and skew

primitives to skew primitives, we have f (a) = a′ and F(x) = γ x′ +β(a′ −1) for some β,γ ∈ k.
We have γ x′ + (β + γ )(a′ − 1) = a′F(x)a′−1 = F(axa−1) = γ x′ + (β + 1)(a′ − 1). Thus
γ = 1. We have x′ + c′(f (g))(a′ − 1) + β(a′ − 1) = f (g)F (x)f (g)−1 = F(gxg−1) = x′ +
c(g)(a′ − 1) + β(a′ − 1). As a′ �= 1 we have c(g) = c′(f (g)) for all g ∈ G. �

In order to analyse the representation theory of third type Hopf algebras we first analyse its
subalgebra k[x]/〈xp − x〉.

Lemma 4.18. Let k[x]p := k[x]/〈xp −x〉 be a polynomial ring with indeterminate x and relation
xp = x. Let k be a field of characteristic p. Then k[x]p viewed as a left k[x]p-module is the direct
sum of p simple one-dimensional modules Sc on which x acts as scalar c with c ∈ Fp .

Proof. We have xp −x = ∏
c∈Fp

(x −c). Therefore k[x]/〈xp −x〉 is isomorphic to
∏

x∈Fp
k[x]/

〈x − c〉 by the Chinese Reminder Theorem. Notice that k[x]/〈x − c〉 is isomorphic to k for any
c ∈ Fp . Therefore k[x]p is semi-simple and the simple modules are as stated. �

Let {ec | c ∈ Fp} be the set of orthogonal central primitive idempotents in k[x]p such that
k[x]p ∼= ⊕

c∈Fp
k[x]pec and k[x]pec

∼= Sc. We can now describe the projective and simple mod-
ules of certain third type Hopf algebras.

Lemma 4.19. Let A be of third type, with G = 〈a〉 cyclic of p-power order and α = 0. Then A is
indecomposable and its simple modules are one-dimensional. There are p simple modules Tc

indexed by c ∈ Fp on which x acts by scalar multiplication with c and a as the identity. The
projective indecomposable modules of A are Aec.

Proof. We have A = ⊕
c∈Fp

Aec. The submodules Aec are clearly indecomposable as left k〈a〉-
modules. We set y := 1 − a. Then a composition series of Aec is P

pr−1
c ⊂ P

pr−2
c ⊂ · · · ⊂ P 0

c

where P i
c := 〈yj ec | i � j � pr − 1〉. The quotients are one-dimensional and a acts on them

as the identity. We have xyiec = yixec + i(yi+1 − yi)ec and therefore x acts on P i
c /P i+1

c by
scalar multiplication with c − i. As any two projective indecomposable modules have a common
composition factor, the algebra A is indecomposable. �

If a has order p, the algebra in 4.19 is isomorphic to a restricted p-Lie algebra constructed
in the following way: We choose L := 〈u,v〉 and [u,v] = −v and define the p-map u[p] := u

and v[p] := 0. It is easy to see that (adu)p = adu[p] = adu and (adv)p = adv[p] = 0. In U [p](L)

we have up = u and vp = 0. If we set x := u and a−1 := 1 − v we have ap = 1 and axa−1 =
x + (a − 1). Therefore U [p](L) is isomorphic to A.
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In general we can describe third type Hopf algebras as follows.
Let H be a third type Hopf algebra. The group G acts on the two-dimensional subspace A

spanned by a and x via conjugation. This gives by 4.3 the following representation ρ :G →
Gln(A), g 	→ ( 1 c(g)

0 1

)
.

Let Z := {g ∈ G | c(g) = 0} be the kernel of ρ. The image of c is isomorphic to a finite
additive subgroup of k. Furthermore all elements of G/Z have order p. Therefore G/Z is an
elementary abelian p-group. If a does not have order p, then |Im c| = p and therefore G/Z

is cyclic of order p and generated by aZ. Thus G ∼= Z ×〈ap〉 〈a〉 ∼= Z × 〈a〉/〈b × ap〉 with
b = a−p ∈ Z. Let {ei | 1 � i � s} be the set of orthogonal central primitive idempotents in kZ

and Bi := kZei its blocks. Then ei commutes with all elements of H . Therefore H = ⊕s
i=1 Hei

is a decomposition into subalgebras Hi := Hei . Set ā := aei , x̄ := xei and let Ai denote the
subalgebra generated by ā and x̄. Then Hi

∼= Ai ⊗k Bi/〈ei ⊗k āp − āp ⊗k ei〉. If āp = ei , then
the algebra Ai is isomorphic to the indecomposable algebra in 4.19. In this case Hi

∼= Ai ⊗k Bi .
The algebra structure of Bi can be arbitrarily complicated.

By an argument similar to the argument before 3.18 the algebra Hi is indecomposable.
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