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Classical and semi-classical energy states of relativistic electrons bounded by a massive and charged core
with the charge-mass radio Q /M and macroscopic radius Rc are discussed. We show that the energies of
semi-classical (bound) states can be much smaller than the negative electron mass-energy (−mc2), and
energy-level crossing to negative energy continuum occurs. Electron–positron pair production takes place
by quantum tunneling, if these bound states are not occupied. Electrons fill into these bound states and
positrons go to infinity. We explicitly calculate the rate of pair-production, and compare it with the rates
of electron–positron production by the Sauter–Euler–Heisenberg–Schwinger in a constant electric field. In
addition, the pair-production rate for the electro-gravitational balance ratio Q /M = 10−19 is much larger
than the pair-production rate due to the Hawking processes.

© 2010 Elsevier B.V. Open access under CC BY license.
1. Introduction

As reviewed in the recent report [1], very soon after the Dirac
equation for a relativistic electron was discovered [2,3], Gordon [4]
(for all Z < 137) and Darwin [5] (for Z = 1) found its solution in
the point-like Coulomb potential V (r) = −Zα/r, they obtained the
well-known Sommerfeld’s formula [6] for energy spectrum,

E (n, j) = mc2
[

1 +
(

Zα

n − |K | + (K 2 − Z 2α2)1/2

)2]−1/2

, (1)

where the fine-structure constant α = e2/h̄c, the principle quan-
tum number n = 1,2,3, . . . and

K =
{

−( j + 1/2) = −(l + 1), if j = l + 1
2 , l � 0,

( j + 1/2) = l, if j = l − 1
2 , l � 1,

(2)

l = 0,1,2, . . . is the orbital angular momentum corresponding to
the upper component of Dirac bi-spinor, j is the total angular mo-
mentum. The integer values n and j label bound states whose
energies are E (n, j) ∈ (0,mc2). For the example, in the case of the
lowest energy states, one has

E (1S 1
2
) = mc2

√
1 − (Zα)2, (3)
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E (2S 1
2
) = E (2P 1

2
) = mc2

√
1 + √

1 − (Zα)2

2
, (4)

E (2P 3
2
) = mc2

√
1 − 1

4
(Zα)2. (5)

For all states of the discrete spectrum, the binding energy mc2 −
E (n, j) increases as the nuclear charge Z increases. No regular so-
lution with n = 1, l = 0, j = 1/2 and K = −1 (the 1S1/2 ground
state) is found for Z > 137, this was first noticed by Gordon in his
pioneer paper [4]. This is the problem so-called “Z = 137 catastro-
phe”.

The problem was solved [7–14] by considering the fact that
the nucleus is not point-like and has an extended charge dis-
tribution, and the potential V (r) is not divergent when r → 0.
The Z = 137 catastrophe disappears and the energy-levels E (n, j)
of the bound states 1S , 2P and 2S , . . . smoothly continue to
drop toward the negative energy continuum (E− < −mc2), as Z
increases to values larger than 137. The critical values Zcr for
E (n, j) = −mc2 were found [9,11–14,17–19]: Zcr � 173 is a critical
value at which the lowest energy-level of the bound state 1S1/2
encounters the negative energy continuum, while other bound
states 2P1/2,2S3/2, . . . encounter the negative energy continuum
at Zcr > 173, thus energy-level crossings and productions of elec-
tron and positron pair takes place, provided these bound states are
unoccupied. We refer the readers to [11–19] for mathematical and
numerical details.

The energetics of this phenomenon can be understood as fol-
lows. The energy-level of the bound state 1S1/2 can be estimated
as follows,
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E (1S1/2) = mc2 − Ze2

r̄
< −mc2, (6)

where r̄ is the average radius of the 1S1/2 state’s orbit, and the
binding energy of this state Ze2/r̄ > 2mc2. If this bound state is
unoccupied, the bare nucleus gains a binding energy Ze2/r̄ larger
than 2mc2, and becomes unstable against the production of an
electron–positron pair. Assuming this pair-production occur around
the radius r̄, we have energies of electron (ε−) and positron (ε+):

ε− =
√(

c|p−|)2 + m2c4 − Ze2

r̄
;

ε+ =
√(

c|p+|)2 + m2c4 + Ze2

r̄
, (7)

where p± are electron and positron momenta, and p− = −p+ . The
total energy required for a pair production is,

ε−+ = ε− + ε+ = 2
√(

c|p−|)2 + m2c4, (8)

which is independent of the potential V (r̄). The potential ener-
gies ±eV (r̄) of electron and positron cancel each other and do not
contribute to the total energy (8) required for pair production. This
energy (8) is acquired from the binding energy (Ze2/r̄ > 2mc2) by
the electron filling into the bound state 1S1/2. A part of the bind-
ing energy becomes the kinetic energy of positron that goes out.
This is analogous to the familiar case that a proton (Z = 1) catches
an electron into the ground state 1S1/2, and a photon is emitted
with the energy not less than 13.6 eV.

In this Letter, we study classical and semi-classical states of
electrons, electron–positron pair production in an electric potential
of macroscopic cores with charge Q = Z |e|, mass M and macro-
scopic radius Rc .

2. Classical description of electrons in potential of cores

2.1. Effective potentials for particle’s radial motion

Setting the origin of spherical coordinates (r, θ,φ) at the center
of such cores, we write the vectorial potential Aμ = (A, A0), where
A = 0 and A0 is the Coulomb potential. The motion of a relativis-
tic electron with mass m and charge e is described by its radial
momentum pr , total angular momenta pφ and the Hamiltonian,

H± = ±mc2

√
1 +

(
pr

mc

)2

+
(

pφ

mcr

)2

− V (r), (9)

where the potential energy V (r) = e A0, and ± corresponds for
positive and negative energies. The states corresponding to nega-
tive energy solutions are fully occupied. The total angular momen-
tum pφ is conserved, for the potential V (r) is spherically symmet-
ric. For a given angular momentum pφ = mv⊥r, where v⊥ is the
transverse velocity, the effective potential energy for electron’s ra-
dial motion is

E±(r) = ±mc2

√
1 +

(
pφ

mcr

)2

− V (r), (10)

where ± indicates positive and negative effective energies, outside
the core (r � Rc), the Coulomb potential energy V (r) is given by

V out(r) = Ze2

r
. (11)

Inside the core (r � Rc), the Coulomb potential energy is given by

V in(r) = Ze2 [
3 −

(
r

)2]
, (12)
2Rc Rc
Fig. 1. In the case of point-like charge distribution, we plot the positive and neg-
ative effective potential energies E± (10), pφ/(mcRc) = 2 and Ze2 = 1.95mc2 Rc ,
to illustrate the radial location RL (14) of stable orbits where E+ has a minimum
(15). All stable orbits are described by cpφ > Ze2. The last stable orbits are given
by cpφ → Ze2 + 0+ , whose radial location RL → 0 and energy E → 0+ . There is no
any stable orbit with energy E < 0 and the energy-level crossing with the negative
energy spectrum E− is impossible.

where we postulate the charged core has a uniform charge dis-
tribution with constant charge density ρ = Ze/V c , and the core
volume V c = 4π R3

c /3. Coulomb potential energies outside the core
(11) and inside the core (12) are continuous at r = Rc . The electric
field on the surface of the core,

Es = Q

R2
c

= λe

Rc
Ec, β ≡ Ze2

mc2 Rc
(13)

where the electron Compton wavelength λe = h̄/(mc), the critical
electric field Ec = m2c3/(eh̄) and the parameter β is the electric
potential-energy on the surface of the core in unit of the electron
mass-energy.

2.2. Stable classical orbits (states) outside the core

Given different values of total angular momenta pφ , the stable
circulating orbits RL (states) are determined by the minimum of
the effective potential E+(r) (10) (see Fig. 1), at which dE+(r)/dr =
0. We obtain stable orbits locate at the radii RL outside the core,

RL =
( p2

φ

Ze2m

)√
1 −

(
Ze2

cpφ

)2

, RL � Rc, (14)

for different pφ-values. Substituting Eq. (14) into Eq. (10), we find
the energy of electron at each stable orbit,

E ≡ min(E+) = mc2

√
1 −

(
Ze2

cpφ

)2

. (15)

For the condition RL � Rc , we have(
Ze2

cpφ

)2

� 1

2

[
β
(
4 + β2)1/2 − β2], (16)

where the semi-equality holds for the last stable orbits outside the
core RL → Rc + 0+ . In the point-like case Rc → 0, the last stable
orbits are

cpφ → Ze2 + 0+, RL → 0+, E → 0+. (17)

Eq. (15) shows that there are only positive or null energy solu-
tions (states) in the case of a point-like charge, which corresponds
to the energy spectra equations (3), (4), (5) in quantum mechanic
scenario. While for pφ � 1, radii of stable orbits RL � 1 and ener-
gies E → mc2 + 0− , classical electrons in these orbits are critically
bound for their banding energy goes to zero. We conclude that
the energies (15) of stable orbits outside the core must be smaller
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than mc2, but larger than zero, E > 0. Therefore, no energy-level
crossing with the negative energy spectrum occurs.

2.3. Stable classical orbits inside the core

We turn to the stable orbits of electrons inside the core. Anal-
ogously, using Eqs. (10), (12) and dE+(r)/dr = 0, we obtain the
stable orbit radius RL � 1 in the unit of Rc , obeying the following
equation,

β2(R8
L + κ2 R6

L

) = κ4; κ = pφ

mcRc
, (18)

and corresponding to the minimal energy (binding energy) of these
states

E = Ze2

Rc

[(
cpφ

Ze2

)2 1

R4
L

− 1

2

(
3 − R2

L

)]
. (19)

There are 8 solutions to this polynomial equation (18), only one is
physical, the solution R L that has to be real, positive and smaller
than one. As example, the numerical solution to Eq. (18) is RL =
0.793701 for β = 4.4 · 1016 and κ = 2.2 · 1016. In following, we
respectively adopt non-relativistic and ultra-relativistic approxima-
tions to obtain analytical solutions.

First considering the non-relativistic case for those stable orbit
states whose kinetic energy term characterized by angular momen-
tum term pφ , see Eq. (10), is much smaller than the rest mass term
mc2, we obtain the following approximate equation,

β2 R8
L � κ4, (20)

and the solutions for stable orbit radii are,

RL � κ1/2

β1/4
=

(
cpφ

Ze2

)1/2

β1/4 < 1, (21)

and energies,

E �
(

1 − 3

2
β + 1

2
κβ1/2

)
mc2. (22)

The consistent conditions for this solution are β1/2 > κ for RL < 1,
and β 	 1 for non-relativistic limit v⊥ 	 c, where the transverse
velocity v⊥ = pφ/(mRL). As a result, the binding energies (22) of
these states are mc2 > E > 0, are never less than zero. These in
fact correspond to the stable states which have large radii closing
to the radius Rc of cores and v⊥ 	 c.

Second considering the ultra-relativistic case for those stable or-
bit states whose the kinetic energy term characterized by angular
momentum term pφ , see Eq. (10), is much larger than the rest
mass term mc2, we obtain the following approximate equation,

β2 R6
L � κ2, (23)

and the solutions for stable orbit radii are,

RL �
(

κ

β

)1/3

=
(

pφc

Ze2

)1/3

< 1, (24)

which gives RL � 0.7937007 for the same values of parameters β

and κ in above. The consistent condition for this solution is β >

κ � 1 for RL < 1. The energy levels of these ultra-relativistic states
are,

E � 3

2
β

[(
pφc

Ze2

)2/3

− 1

]
mc2, (25)

and mc2 > E > −1.5βmc2. The particular solutions E = 0 and E �
−mc2 are respectively given by
(
pφc

Ze2

)
� 1;

(
pφc

Ze2

)
�

(
1 − 2

3β

)3/2

. (26)

These in fact correspond to the stable states which have small radii
closing to the center of cores and v⊥ � c.

To have the energy-level crossing to the negative energy con-
tinuum, we are interested in the values β > κ � 1 for which the
energy-levels (25) of stable orbit states are equal to or less than
−mc2,

E � 3

2
β

[(
pφc

Ze2

)2/3

− 1

]
mc2 � −mc2. (27)

As example, with β = 10 and κ = 2, RL � 0.585, Emin � −9.87mc2.
The lowest energy-level of electron state is pφ/(Ze2) = κ/β → 0
with the binding energy,

Emin = −3

2
βmc2, (28)

locating at RL � (pφc/Ze2)1/3 → 0, the bottom of the potential en-
ergy V in(0) (12).

3. Semi-classical description

3.1. Bohr–Sommerfeld quantization

In order to have further understanding, we consider the semi-
classical scenario. Introducing the Planck constant h̄ = h/(2π), we
adopt the semi-classical Bohr–Sommerfeld quantization rule∫

pφ dφ � h

(
l + 1

2

)

⇒ pφ(l) � h̄

(
l + 1

2

)
, l = 0,1,2,3, . . . , (29)

which are discrete values selected from continuous total angular
momentum pφ in the classical scenario. The variation of total an-
gular momentum �pφ = ±h̄ in th unit of the Planck constant h̄,
we make substitution(

pφc

Ze2

)
⇒

(
2l + 1

2Zα

)
, α = e2

(h̄c)
, (30)

in classical solutions that we obtained in Section 2.

1. The radii and energies of stable states outside the core (14)
and (15) become:

RL = λ

(
2l + 1

Zα

)√
1 −

(
2Zα

2l + 1

)2

, (31)

E = mc2

√
1 −

(
2Zα

2l + 1

)2

, (32)

where the electron Compton length λ = h̄/(mc).
2. The radii and energies of non-relativistic stable states inside

the core (21) and (22) become:

RL �
(

2l + 1

2Zα

)1/2

β1/4, (33)

E �
(

1 − 3

2
β + λ(2l + 1)

4Rc
β1/2

)
mc2. (34)
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3. The radii and energies of ultra-relativistic stable states inside
the core (24) and (25) become:

RL �
(

2l + 1

2Zα

)1/3

, (35)

E � 3

2
β

[(
2l + 1

2Zα

)2/3

− 1

]
mc2. (36)

Note that radii RL in the second and third cases are in unit of Rc .

3.2. Stability of semi-classical states

When these semi-classical states are not occupied as required
by the Pauli principle, the transition from one state to another with
different discrete values of total angular momentum l (l1, l2 and
�l = l2 − l1 = ±1) undergoes by emission or absorption of a spin-1
(h̄) photon. Following the energy and angular-momentum conser-
vations, photon emitted or absorbed in the transition have angu-
lar momenta pγ = pφ(l2) − pφ(l1) = h̄(l2 − l1) = ±h̄ and energy
Eγ = E (l2) − E (l1). In this transition of stable states, the variation
of radius is �RL = RL(l2) − RL(l1).

We first consider the stability of semi-classical states against
such transition in the case of point-like charge, i.e., Eqs. (31),
(32) with l = 0,1,2, . . . . As required by the Heisenberg inde-
terminacy principle �φ�pφ � 4π pφ(l) � h, the absolute ground
state for minimal energy and angular momentum is given by
the l = 0 state, pφ ∼ h̄/2, RL ∼ λ(Zα)−1(1 − (2Zα)2)1/2 > 0 and
E ∼ mc2(1 − (2Zα)2)1/2 > 0, which corresponds to the last sta-
ble orbit (17) in the classical scenario. Thus the stability of all
semi-classical states l > 0 is guaranteed by the Pauli principle. This
is only case for Zα � 1/2. While for Zα > 1/2, there is not an
absolute ground state in the semi-classical scenario. This can be
understood by examining how the lowest energy states are se-
lected by the quantization rule in the semi-classical scenario out
of the last stable orbits (17) in the classical scenario. For the case
of Zα � 1/2, equating pφ in Eq. (17) to pφ = h̄(l + 1/2) (29), we
find the selected state l = 0 is only possible solution so that the
ground state l = 0 in the semi-classical scenario corresponds to the
last stable orbits (17) in the classical scenario. While for the case
of Zα > 1/2, equating pφ in Eq. (17) to pφ = h̄(l + 1/2) (29), we
find the selected semi-classical state

l̃ = Zα − 1

2
> 0, (37)

in the semi-classical scenario corresponds to the last stable or-
bits (17) in the classical scenario. This state l = l̃ > 0 is not pro-
tected by the Heisenberg indeterminacy principle from quantum-
mechanically decaying in h̄-steps to the states with lower an-
gular momenta and energies (correspondingly smaller radius RL

(31)) via photon emissions. This clearly shows that the “Z = 137-
catastrophe” corresponds to RL → 0, falling to the center of the
Coulomb potential and all semi-classical states (l) are unstable.

Then we consider the stability of semi-classical states against
such transition in the case of charged cores Rc �= 0. Substituting
pφ in Eq. (29) into Eq. (16), we obtain the selected semi-classical
state l̃ corresponding to the last classical stable orbit outside the
core,

l̃ = √
2

(
Rc

λ

)[(
4Rc

Zαλ
+ 1

)1/2

− 1

]−1/2

≈ (Zα)1/4
(

Rc
)3/4

> 0. (38)

λ

Fig. 2. For the core κ = 2 and β = 6, we plot the positive and negative effective
potentials E± (10), in order to illustrate the radial location (24) RL < Rc of sta-
ble orbit, where E+ ’s minimum (25) E < mc2 is. All stable orbits inside the core
are described by β > κ > 1. The last stable orbit is given by κ/β → 0, whose ra-
dial location RL → 0 and energy E → Emin (28). We indicate that the energy-level
crossing between bound state (stable orbit) energy at RL = Rb and negative energy
spectrum E− (25) at the turning point Rn .

Analogously to Eq. (37), the same argument concludes the instabil-
ity of this semi-classical state, which must quantum-mechanically
decay to states with angular momentum l < l̃ inside the core, pro-
vided these semi-classical states are not occupied. This conclusion
is independent of Zα-value.

We go on to examine the stability of semi-classical states inside
the core. In the non-relativistic case (1 � β > κ2), the last classical
stable orbits locate at RL → 0 and pφ → 0 given by Eqs. (21), (22),
corresponding to the lowest semi-classical state (33), (34) with l =
0 and energy mc2 > E > 0. In the ultra-relativistic case (β > κ �
1), the last classical stable orbits locate at RL → 0 and pφ → 0
given by Eqs. (24), (25), corresponding to the lowest semi-classical
state (35), (36) with l = 0 and minimal energy,

E � 3

2
β

[(
1

2Zα

)2/3

− 1

]
mc2 ≈ −3

2
βmc2. (39)

This concludes that the l = 0 semi-classical state inside the core is
an absolute ground state in both non- and ultra-relativistic cases.
The Pauli principle assures that all semi-classical states l > 0 are
stable, provided all these states accommodate electrons. The elec-
trons can be either present inside the neutral core or produced
from the vacuum polarization, later will be discussed in details.

We are particular interested in the ultra-relativistic case β >

κ � 1, i.e., Zα � 1, the energy-levels of semi-classical states can
be profound than −mc2 (E < −mc2), energy-level crossings and
pair-productions occur if these states are unoccupied, as discussed
in introductory section.

4. Production of electron–positron pair

When the energy-levels of semi-classical (bound) states E �
−mc2 (27), energy-level crossings between these energy-levels
(25) and negative energy continuum (10) for pr = 0, as shown in
Fig. 2. The energy-level crossing indicates that E (25) and E− (10)
are equal,

E = E−, (40)

where angular momenta pφ in E (36) and E− (10) are the same
for angular-momentum conservation. The production of electron–
positron pairs must takes place [20–22], provided these semi-
classical (bound) states are unoccupied. The phenomenon of pair
production can be understood as a quantum-mechanical tunnel-
ing process of relativistic electrons. The energy-levels E of semi-
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classical (bound) states are given by Eq. (36) or (27). The probabil-
ity amplitude for this process can be calculated by a semi-classical
WKB method [19]:

WWKB
(|p⊥|) ≡ exp

{
−2

h̄

Rn∫
Rb

pr dr

}
, (41)

where |p⊥| = pφ/r is transverse momenta and the radial momen-
tum,

pr(r) =
√(

c|p⊥|)2 + m2c4 − [
E + V (r)

]2
. (42)

The energy potential V (r) is either given by V out(r) (11) for r > Rc ,
or V in(r) (12) for r < Rc . The limits of integration (41): Rb = RL <

Rc (24) or (35) indicating the location of the classical orbit (clas-
sical turning point) of semi-classical (bound) state; while another
classical turning point Rn is determined by setting pr(r) = 0 in
Eq. (42). There are two cases: Rn < Rc and Rn > Rc , depending on
β and κ values.

To obtain a maximal WKB-probability amplitude (41) of pair
production, we only consider the case that the charge core is bare
and

• the lowest energy-levels of semi-classical (bound) states:
pφ/(Ze2) = κ/β → 0, the location of classical orbit (24) RL =
Rb → 0 and energy (25) E → Emin = −3βmc2/2 (28);

• another classical turning point Rn � Rc , since the probability
is exponentially suppressed by a large tunneling length � =
Rn − Rb .

In this case (Rn � Rc), Eq. (42) becomes

pr =
√(

c|p⊥|)2 + m2c4

√
1 − β2m2c4

4[(c|p⊥|)2 + m2c4]
(

r

Rc

)4

, (43)

and pr = 0 leads to

Rn

Rc
=

(
2

βmc2

)1/2[(
c|p⊥|)2 + m2c4]1/4

. (44)

Using Eqs. (41), (43), (44), we have

WWKB
(|p⊥|)

= exp

{
−23/2[(c|p⊥|)2 + m2c4]3/4 Rc

ch̄(mc2β)1/2

1∫
0

√
1 − x4 dx

}

= exp

{
−0.87

23/2[(c|p⊥|)2 + m2c4]3/4 Rc

ch̄(mc2β)1/2

}
. (45)

Dividing this probability amplitude by the tunneling length � � Rn

and time interval �t � 2π h̄/(2mc2) in which the quantum tunnel-
ing occurs, and integrating over two spin states and the transverse
phase-space 2

∫
dr⊥ dp⊥/(2π h̄)2, we approximately obtain the rate

of pair-production per the unit of time and volume,

ΓNS ≡ d4N

dt d3x
� 1.15

6π2

(
Zα

τ R3
c

)
exp

{
− 2.46

(Zα)1/2

(
Rc

λ

)3/2}
, (46)

= 1.15

6π2

(
β

τλR2
c

)
exp

{
−2.46Rc

β1/2λ

}
, (47)

= 1.15

6π2

(
1

τλ2 Rc

)(
Es

Ec

)

× exp

{
−2.46

(
Rc

)1/2( Ec
)1/2}

, (48)

λ Es
where Es = Ze/R2
c is the electric field on the surface of the core

and the Compton time τ = h̄/mc2.
To have the size of this pair-production rate, we consider

a macroscopic core of mass M = M� and radius Rc = 10 km,
and the electric field on the core surface Es (13) is about the
critical field (Es � Ec). In this case, Z = α−1(Rc/λ)2 � 9.2 ·
1034, β = Zαλ/Rc = Rc/λ � 2.59 · 1016, and the rate (47) be-
comes

ΓNS ≡ d4N

dt d3x
� 1.15

6π2

(
1

τλ3

)(
λ

Rc

)
exp

{
−2.46

(
Rc

λ

)}
, (49)

which is exponentially small for Rc � λ. In this case, the charge-
mass radio Q /(G1/2M) = 2 · 10−6|e|/(G1/2mp) = 8.46 · 10−5,
where G is the Newton constant and proton’s charge-mass radio
|e|/(G1/2mp) = 1.1 · 1018.

It is interesting to compare this rate of electron–positron pair-
production with the rate given by the Hawking effect. We take
Rc = 2GM/c2 and the charge-mass radio Q /(G1/2M) � 10−19

for a naive balance between gravitational and electric forces. In
this case β = 1

2 (Q /G1/2M)(|e|/G1/2m) � 102, the rate (47) be-
comes,

ΓNS = 1.15

6π2

(
25

τλ3

)(
1

mM

)
exp

{−0.492(mM)
}
, (50)

where mM = Rc/(2λ). This is much larger than the rate of
electron–positron emission by the Hawking effect [23],

ΓH ∼ exp
{−8π(mM)

}
, (51)

since the exponential factor exp{−0.492(mM)} is much larger than
exp{−8π(mM)}, where 2mM = Rc/λ � 1.

5. Summary and remarks

In this Letter, analogously to the study in atomic physics with
large atomic number Z , we study the classical and semi-classical
(bound) states of electrons in the electric potential of a massive
and charged core, which has a uniform charge distribution and
macroscopic radius. We have found negative energy states of elec-
trons inside the core, whose energies can be smaller than −mc2,
and the appearance of energy-level crossing to the negative en-
ergy spectrum. As a result, quantum tunneling takes place, leading
to electron–positron pairs production, electrons then occupy these
semi-classical (bound) states and positrons are repelled to infin-
ity. Assuming that massive charged cores are bare and non of
these semi-classical (bound) states are occupied, we analytically
obtain the maximal rate of electron–positron pair production in
terms of the core radius, charge and mass. We find that this rate is
much larger than the rate of electron–positron pair-production by
the Hawking effect, even for very small charge-mass radio of the
core given by the naive balance between gravitational and electric
forces.
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