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Abstract Insects have evolved chitin-containing structures such
as the cuticle or peritrophic membranes that serve to protect their
bodies against the hostile environment. The specific mechanisms
by which these structures are produced, are mostly unknown.
We have identified a novel multigene family, the obstructor family,
which encodes ten putatively secreted chitin-binding proteins that
are characterized by a stereotype arrangement of a N-terminal
signaling peptide and 3 chitin-binding-domains. Gene expression
studies in Drosophila melanogaster embryos demonstrate that
obstructor family members are expressed in cuticle forming tis-
sues. Using computational and phylogenetic analysis, we show
that obstructor genes represent an evolutionary conserved multi-
gene family in invertebrates.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.

Keywords: Obstructor; Cuticle; Chitin secretion; Epithelial
barrier
1. Introduction

Multicellular organisms have to protect their body against

mechanical disruption, digestion or inflammatory processes

mediated by their hostile environment. In insects, septate junc-

tions and cuticular structures are the key components for pro-

tective barriers [1–4]. Cuticles are established by sclerotization

of chitin polymers and extracellular matrix proteins at the api-

cal surface of epidermal cells [5]. They are composed of lipids,

sclerotized proteins and the polysaccharide chitin which func-

tions as scaffold material [4]. Chitin is also an integral part of

insect peritrophic matrices providing a permeability barrier at

the proventriculus organ and the midgut epithelium [4].

Insect growth and development are strictly dependent on the

capability to remodel chitinous structures to allow molting and

regeneration of the cuticular structures. However, the regula-

tion of the chitin metabolism and secretion are still largely elu-

sive [5–7]. Using computational and phylogenetic analysis, and

gene expression studies we have identified and characterized a

novel multigene family encoding ten putatively secreted chitin-

binding proteins evolutionary conserved in invertebrates, but

not in vertebrates.
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2. Materials and methods

2.1. Computer-based analysis
Blast searches [8] were performed with the flybase (http://flybase.net/

blast/) and the NCBI blast (http://www.ncbi.nlm.nih.gov/), domain
prediction with SMART (http://smart.embl-heidelberg.de/) [9], NCBI
Conserved Domain search (http://www.ncbi.nlm.nih.gov/), and the
CBS Prediction server (http://www.cbs.dtu.dk/services/). 3D-JIGSAW
was used for protein 3D modeling (http://www.bmm.icnet.uk/servers/
3djigsaw/) [10]. The phylogenetic tree was carried out with MegAlign
(Lasergene, DNASTAR). Parameters are indicated in supplementary
data.
2.2. Gene expression
Micro-array data were searched via BDGP [11] (http://www.fruit-

fly.org/). RNA-antisense in situ hybridizations were done as described
by Bauer et al. [12]. For signal amplification, we used the Elite ABC kit
(Vector Laboratories) and the TSA-Cyanine-3 system (NEN). cDNA
clones obtained from the Drosophila gene collection (http://www.fruit-
fly.org/EST/index.shtml) were used for RNA antisense in situ expres-
sion and sequence analysis.
3. Results and discussion

3.1. The obstructor multigene family

In order to understand more about the mechanisms underly-

ing cuticle formation, cuticle rearrangement and its function in

epithelial barrier formation, we screened the BDGP expression

pattern database for novel genes that are strictly expressed in

ectodermal derived cuticle forming organs such as the epider-

mis, the trachea and the fore- and hindgut. We identified the

gene locus CG17052 that is expressed in chitin-secreting tissues

(see below) and we could show that mutant embryos for

CG17052 display a barrier brake down phenotype (M. Behr

and M. Hoch, unpublished data); we thus named the locus

obstructor (obst). Blasting the obst Open Reading Frame

(ORF) against flybase and NCBI DNA and protein databases,

we discovered four additional genes with significant expecta-

tion value (E-value) and similarities in size, length and putative

protein features.

obst and the four related genes show more than 50% identity

in their putative ORF DNA sequences (693–1014 bp; Fig. 1A).

Thus, according to their obvious relationship we termed obst

and the four related as obst-A to obst-E (Fig. 1A); obst-C is

synonymous to the previously described gasp gene [13]. obst

genes most likely possess one transcript with the exception of

obst-E encoding for two different transcripts E1 and E2 due

to alternative splicing (Fig. 1A). Translations of obstructor

ORFs result in putative proteins with 219–353 amino acids
blished by Elsevier B.V. All rights reserved.
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Fig. 1. The obstructor multigene family subgroup 1. (A,B) obst-A and the four homologous candidates obst-B, -C, -D and -E are summarized in both
tables; identities (id) and similarities (sim). (C) Protein domain analysis among Obst-A to E: one N-terminal signal peptide, three regularly spaced
CBD2s, two linker regions and individual C-terminal stretches. The domain nomenclature is indicated in the upper drawing.
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(aa) and 26–38 kDa in size (Fig. 1B). Protein sequence align-

ments revealed 28–32% identities and 34–38% similarities

among Obst-A to E (Fig. 1B). In addition, Obst proteins evi-

dently share specific and regular domain arrangements. For

all Obsts, we discovered a putative signal peptide (Fig. 1C).

The signal peptide is followed by three specific chitin-bind-

ing-domains type2 (CBD2; Fig. 1C), which show identities

and similarities of 25–52% and 34–61%, respectively, between

Obst-A and E (Fig. 1B). Furthermore, the presence of linker

regions that are similar in length among Obst-A to E

(Fig. 1C), results in a stereotype spacing of the three CBD2 do-

mains which is characteristic for these genes. In a SMART

database search to identify more genes encoding proteins with

the characteristic obst-like domain arrangement, we discovered

five more Drosophila genes, containing again a small ORF

(660–1062 bp) and 38–41% identity to the obst-A DNA se-

quence (Fig. 2A). We classified the genes as obst-F to J. Two

putative transcripts exist for obst-H and a single transcript

for the others. The putative proteins are small in length

(219–326 aa) and predicted size (24–39 kDa; Fig. 2B). Align-

ments of the protein sequences to Obst-A and among each

other (not shown) reveal 19–24% identity and 24–29% similar-

ity (Fig. 2B). Domain analyses show an obvious relation

between Obst-F to J and Obst A. All contain a putative N-ter-

minal signal peptide (Fig. 2C) and three CBD2s; the spacing of

the CBD2s is more variable in case of Obst-F to J due to var-

iable linker regions, as compared to Obst-A to E. In summary,

the specific gene and putative protein relationship between all

obst family members indicates that we identified a novel multi-
gene family, that can be subdivided into a subgroup 1 (obst-A

to E) and into a subgroup 2 (obst-F to J).

3.2. Obstructor protein domain arrangements

The signal peptide sequences at the N-terminus of Obst pro-

teins are 16–21 aa in length (Fig. 3A). They contain a consen-

sus cleavage site (not shown), indicating that these proteins are

secreted. The most prominent protein motif of the Obst pro-

teins is, however, the CBD2 domain which occurs in a triple

arrangement. This domain (SMART accession: SM00494) is

mainly found in animal and baculovirus proteins. CBD2s, also

characterized as the so-called Peritrophin-A domain [14], are

in average 65 aa in length and have been identified as a com-

mon structural motif for chitin-binding proteins in inverte-

brates [15,16] that are required for different classes of

proteins involved in degradation [17] or cross-linking of chitin

fibrils [18,19]. Consistent with this the Obst CBD2s vary

between 52 and 69 aa residues, although for Obst-J they are

little smaller in length (45–55 aa). As a common consensus

sequence, Obst CBD2s contain the typical motif of 6 cysteines

probably forming intradomain disulfide bonds, as it might be

the case for other chitin binding proteins [7] and has been de-

scribed for the well-studied CBD2 of Tachycitin, an immuno-

regulatory peptide [16]. In addition, they exhibit a core region

between cysteine 1 and 5 that is more conserved compared to

other domain regions and possess four regular aromatic resi-

dues (Fig. 3B).

For subgroup 1, the regular spacing of the three CBD2s is

determined by two linkers that are similar in size, with 10 aa



Fig. 2. The obstructor multigene family subgroup 2. (A,B) Both tables summarize the obst-A related proteins obst-F, -G, -H, -I, -J. Identities (id),
similarities (sim). (C) Obst-F to -J reveal characteristic Obst domain arrangements containing an N-terminal signal peptide that is followed by three
irregular spaced CBD2s. The domain nomenclature is indicated in the upper cartoon.
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for linker 1 and 6–8 aa for linker 2. Also, residues at the tran-

sition sites between CBD2s and linkers are conserved for sub-

group 1 members (Fig. 3C and D). In contrast, subgroup 2

proteins possess variable linkers with no specific sequence sim-

ilarities (Fig. 3C and D). The most variable region among the

Obst family members comprises the C-termini with no signifi-

cant similarities (Fig. 3E).

The structure of the chitin-binding-protein Tachycitin has

been well characterized by nuclear magnetic resonance spec-

troscopy [16]. Suetake et al. showed that a short part of the

Tachycitin CBD2 (Cys 20 to Gly 60) is conserved among inver-

tebrates and plants for certain residues of Cys, Pro and Gly

that are significant for structural constructions. In addition

conservation of specific polar and hydrophobic residues have

been discovered. We compared the corresponding region of

the second CBD2s of all 10 Obst proteins (Fig. 3F) and could

identify all Cys and in most cases the Pro and Gly residues.

Furthermore, Obst CBD2s show polar and hydrophobic resi-

dues similar to Tachycitin or other typical chitin-binding pro-

teins as the Chitinase (Ag-Chit; aa 486–524) [20] and the Adult

Peritrophin-1 (Ag-Aper1; aa 19–79) [21] of Anopheles gambiae,

the Trichoplusia ni intestinal Mucin (aa 419–476) [22] and the

Lucilia cuprina Peritrophin-44 (Per-44; aa 29–85) [23]. To im-

prove putative Obst chitin-binding function, we compared

the predicted structure of all Obst CBD2s (Fig. 4 left and right

panel) with Tachycitin and the other chitin-binding proteins

(Fig. 4, middle panel). The Tachycitin structure includes a

backbone of 3 b-sheets and a conserved antiparallel b-sheet
within the CBD2 (Fig. 4, frame). Resembling structures are
found for the other chitin-binding proteins. Similar, most of

the Obst CBD2s display a Tachycitin like folding in particular

for the antiparallel b-sheets. Thus chitin binding of Obst pro-

teins is highly probable according to the sequence and struc-

ture similarities of the Obst CBD2 domains.

3.3. The Obstructor family is conserved among invertebrates

To investigate whether the Obst family is evolutionary con-

served, we searched via SMART, NCBI and BDGP databases

for Obst homologues in Drosophila pseudoobscura and the

more distant A. gambiae and Apis mellifera insect species. With

the exception of Obst-I, we could identify homologues for

all Obst proteins in D. pseudoobscura (Fig. 5). In contrast,

A. gambiae and A. mellifera orthologous were discovered only

for subgroup 1 members (Fig. 5). All putative proteins are sim-

ilar to their corresponding Obst homologues (40–97% identity)

and contain a typical Obst domain arrangement (not shown).

To unravel phylogenetic relationships among the Obst fam-

ily, a phylogenetic tree was constructed based on protein

sequences (Fig. 5A). We found that Obst family members

group together with their corresponding partners, suggesting

a high conservation during insect evolution. The phylogenetic

tree reveals two main branches: subgroup 1 and subgroup 2.

We conclude from these data that the Obst family is conserved

among insects.

Interestingly, Obst-related proteins exist in the nematodes

Caenorhabditis elegans (C. elegans; NCBI database

W03F11.1; 235 aa) and Caenorhabditis briggsae (C. briggsae;

CAE60308; 236 aa) with remote sequence identities (20%)



Fig. 3. Obstructor sequence and domain comparison. (A) Obst proteins encode at their N-terminus a signal peptide (marked in green). (B) As an
example the first Obst CBD2s is compared among the 10 Obst proteins and Tachycitin (6 cysteines are indicated in blue and a core region in gray and
aromatic residues in red). Homologous aa among Obst proteins are pointed out in yellow. (C,D) Obst linker regions between their CBD2s: Subgroup
1 transition sites are marked in red; homologous aa residues are marked in yellow. Obst subgroup 2 homologous aa residues are marked in green. (E)
C-terminal part of Obst proteins. (F) Parts of second CBD2s of Obst and known chitin-binding proteins are compared. Conserved aa are bold &
underlined (see asterisks on top), specific polar aa are in red and hydrophobic aa are in turquoise indicated.
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and similarities (26%). Both putative proteins are yet unchar-

acterized. The nematode Obst proteins reveal subgroup 1-re-

lated domain composition (Fig. 5B). In contrast, we did not

find Obst-related proteins in vertebrates, neither by sequence

searches nor by domain composition analysis. Thus, Obst pro-

teins are conserved in invertebrate species but very likely not in

vertebrates.
3.4. Expression patterns of obstructor family members in

Drosophila melanogaster

In Drosophila melanogaster, chitin is strongly secreted during

late embryogenesis [24,6]. Time course micro-array-charts

from the BDGP database show a weak expression level for

obst subgroup 1 genes during early and mid embryogenesis

(Fig. 6A, E and H). In parallel to cuticle formation, the expres-



Fig. 4. CBD2 structure determination. Tachycitin and the CBD2s of
other chitin-binding proteins are shown in the middle panel and
CBD2s (1–3, from left to right) of subgroup 1 and subgroup 2 Obst
proteins in the left and right panel, respectively.

Fig. 5. The Obstructor protein family is conserved among invertebrates. The
A. gambiae and A. mellifera. (A) A phylogenetic tree of Obst proteins. D. m
shadowed in blue and subgroup 2 proteins in yellow. (B) Obst-related p
nomenclature is indicated in the upper cartoon.
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sion of subgroup 1 genes increases dramatically during late

embryogenesis with the exception of obst-E. Enhanced embry-

onic chitin secretion takes place in ectodermally derived organs

[24,25]. In particular within the tracheal system, first chitin fi-

brils are formed when tubes start to expand with the beginning

of embryonic stage (st) 14 [26]. Consistent with this, our obst-A

RNA antisense in situ hybridizations (Fig. 6) demonstrate

strong expression within the tracheal system starting at late

st 13 until st 17. Further expression is detectable at st 14 in

the epidermis and at st 15, we find weaker expression in the

fore- (not shown) and hindgut (Fig. 6B–D). Similarly,

(Fig. 6F and G) obst-B is active within the tracheal system

and epidermis starting at st 14. We detect low expression levels

in the hindgut and in the midgut at late embryogenesis. obst-C

(gasp) RNA can be observed within the tracheal system, as

shown by Barry et al. [13]. obst-D and obst-E are predomi-

nantly active within the midgut, starting at st 14, and within

the epidermis (Fig. 6I and L). During later stages also the tra-

cheal system and the fore- and hindgut express obst-D and -E

(Fig. 6J and M). Thus, subgroup 1 genes are activated slightly

prior to chitin secretion specifically in tubular epithelial or-

gans, consistent with a functional role during this process. In

contrast, the expression of subgroup 2 genes is not elevated;

micro-array-chart analysis shows continuous, low level expres-

sion during embryogenesis (Fig. 6N, not shown). obst-J RNA

antisense hybridizations reveal restricted gene activity only at

late embryogenesis in the recurrent layer of the proventriculus

(Fig. 6O), which is known to secrete low level of chitin within

the peritrophic matrix [7]. Further expression is found in the

midgut at the end of embryogenesis (Fig. 6P).

In summary, we have identified a novel, evolutionary con-

served multigene family, the obstructor family, which encodes

putatively secreted chitin-binding proteins. Obst proteins are

characterized by a stereotype arrangement of a N-terminal
table shows Obst subgroups homologous proteins in D. pseudoobscura,
elanogaster proteins are boxed in red; Obst subgroup 1 proteins are

roteins exist in nematodes C. elegans and C. briggsae. The domain



Fig. 6. obstructor genes are expressed in Chitin secreting organs. Shown are time course micro array gene chip data (BDGP; A, E, H, K, N st 1–14)
and fluorescence RNA antisense hybridization in situ studies of Wild-type embryos for obst-A (B–D), obst-B (F,G), obst-D (I, J), obst-E (L,M) and
obst-J (O,P). Arrows indicate fore (I,L) and hindgut (F,J,L), tracheal system (green) or cardia (blue); arrowheads points to midgut; dorsal view is
shown in F, G, I, J; lateral view in B-D, L, M, O, P. anterior is left; dorsal is up.
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signaling peptide and three CBD2s. SMART database analy-

sis identifies 127 different CBD2 containing proteins in D.

melanogaster, however, only few of those have been analyzed

so far. Zhu and colleagues discovered recently by sequence

homology searches chitinases possessing CBD2s [17]. Barry

et al. described in 1999 the gasp gene (obst-C) [13]. gasp en-

codes a putative protein containing CBD2s that reveal se-

quence similarities to peritrophins of other insects and to

the hypothetical uncharacterized Drosophila Peritrophin-A

(Obst-D) sequence. However, the combination of a N-termi-

nal signal peptide with three CBD2 domains is a specific fea-

ture of Obst proteins and identifies a novel class of proteins

which we demonstrate, is highly conserved in invertebrates.

Our gene expression studies in Drosophila embryos show that

obst subgroup 1 genes are active during late embryogenesis in

chitin secreting organs.

It has been determined that chitin synthesis takes place at

stage 17 in the epidermis [25] whereas luminal chitin bundle

assembly in the tracheae occurs at stage 14 [26]. The subgroup

1 obst proteins which are strongly expressed in the tracheal

cells may be required during luminal chitin bundle assembly

in the trachea. Interestingly, the expression pattern of kro-

tzkopf verkehrt (kkv; CG2666) which encodes one of the two

Drosophila chitin synthases [25,26] resembles the expression

of obst subgroup 1 genes. kkv is essential for cuticle formation

[25,27] and chitin localization in the Drosophila tracheal system

[26]. In contrast to kkv, CG7464 the second Drosophila chitin

synthase is expressed similar to the obst subgroup 2 genes, as

revealed by micro-array-chart analysis. What function obst

protein serve is not clear. It is likely, however, that the chi-

tin-binding proteins may be required for chitin packaging dur-

ing cuticle differentiation rather than assisting chitin synthesis

per se. In this respect, it is of note that obst subgroup 1 and

subgroup 2 family members differ in the spacing of the

CBD2 domains which is more stereotype within subgroup 1
family members. The midgut chitinous peritrophic matrix is

not as organized as the cuticle chitinous procuticle; this notion

may explain why the spacing of CBD2 in subgroup 2 proteins

is variable compared to subgroup 1 members.
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