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SUMMARY

Many cellular pathways are regulated by the com-
peting activity of protein kinases and phosphatases.
The recent identification of arginine phosphorylation
as a protein modification in bacteria prompted us to
analyze the molecular basis of targeting phospho-
arginine. In this work, we characterize an annotated
tyrosine phosphatase, YwlE, that counteracts the
protein arginine kinase McsB. Strikingly, structural
studies of YwlE reaction intermediates provide a
direct view on a captured arginine residue. Together
with biochemical data, the crystal structures depict
the evolution of a highly specific phospho-arginine
phosphatase, with the use of a size-and-polarity filter
for distinguishing phosphorylated arginine from
other phosphorylated side chains. To confirm the
proposed mechanism, we performed bioinformatic
searches for phosphatases, employing a similar
selectivity filter, and identified a protein inDrosophila
melanogaster exhibiting robust arginine phospha-
tase activity. In sum, our findings uncover the
molecular framework for specific targeting of phos-
pho-arginine and suggest that protein arginine (de)
phosphorylation may be relevant in eukaryotes.
INTRODUCTION

Protein phosphorylation is a reversible posttranslational modifi-

cation that is of paramount importance in regulating a variety

of cellular processes including responses to environmental

signals, metabolism, growth, and differentiation (Hunter, 1995).

Protein phosphorylation is carried out by hundreds of different

protein kinases that transfer the g-phosphate from ATP to spe-

cific amino acids on proteins, predominantly to the side chains

of serine, threonine, and tyrosine residues (Hanks and Hunter,

1995; Pereira et al., 2011). An arsenal of protein phosphatases

counteracts this reaction by catalyzing the dephosphorylation
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of specific client proteins. Based on their sequence, structure,

and function, protein phosphatases are grouped into three

main classes. Phosphatases acting on phospho-serine/threo-

nine (pSer, pThr) comprise the PPP (phospho protein phospha-

tase) and PPM (Mg2+/Mn2+-dependent protein phosphatase)

families, whereas enzymes acting on phospho-tyrosine (pTyr)

constitute the protein tyrosine phosphatase (PTP) superfamily

(Barford et al., 1998; Stoker, 2005). In addition, specialized pro-

tein phosphatases act on phospho-aspartate, phospho-histi-

dine, and phospho-cysteine residues (Klumpp and Krieglstein,

2009; Perego et al., 1994; Rigden, 2008; Sun et al., 2012). Given

the excess of phosphorylated proteins, for example, about 50%

of all eukaryotic proteins are phosphorylated once in their life-

time and about 30% of all human proteins are phosphorylated

at any given time (Olsen et al., 2006), it is evident that the activ-

ities of protein kinases and phosphatases have to be carefully

balanced to achieve the physiologically relevant phosphorylation

level of targeted substrates.

Recently, an additional type of protein kinase was identified

that targets arginine (Fuhrmann et al., 2009). This kinase,

McsB, phosphorylates arginine residues in the winged helix-

turn-helix domain of the transcriptional repressor CtsR, thereby

preventing its binding to DNA and consequently inducing the

expression of repressed genes. In vivo, its activity is counter-

acted by an annotated tyrosine phosphatase, YwlE (Elsholz

et al., 2012). However, the precise molecular mechanism of

this antagonistic effect is currently unknown. In contrast to the

kinase, which is highly specific in modifying arginine residues

(Fuhrmann et al., 2009), the substrate specificity of the YwlE

phosphatase is controversially discussed. Whereas YwlE was

initially described as having tyrosine phosphatase activity (Kirst-

ein et al., 2005; Musumeci et al., 2005), a more recent analysis

suggests that YwlE functions as an arginine phosphatase in vivo

(Elsholz et al., 2012). Based on its amino acid sequence, YwlE

belongs to the low-molecular-weight protein tyrosine phospha-

tase (LMW-PTP) family that has a conserved set of active-site

residues (Zhang, 2003). For example, all LMW-PTPs have a

specifically shaped binding pocket to distinguish pTyr from other

phosphorylated residues. Given this conserved architecture, it is

surprising that an annotated LMW-PTP appears to target a

different phospho-residue. To clarify this point, we performed a
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Figure 1. Generation of a pArg-Specific Antibody

(A) Schematic presentation of pArg antibody generation involving the enzymatic production of arginine phosphorylated peptide (step 1), selection of antigen-

specific binders by phage display (step 2), and exclusion of cross-reactive binders by counterselection toward pTyr and nonphosphorylated peptides (step 3).

(B) Dot-blot analysis highlighting the high specificity of the generated antibody in targeting the pArg-containing McsB protein (dilution of different proteins is

indicated). The E122A mutant of McsB, which is catalytically inactive and thus cannot be autophosphorylated (Fuhrmann et al., 2009), was used as the non-

phosphorylated control sample. The blot in the right panel was probed with a McsB-specific antibody yielding signals in both phosphorylated (McsB pArg) and

unphosphorylated (McsB E122A) samples.
structural and biochemical analysis of YwlE from Bacillus subti-

lis. Using distinct phospho-peptide substrates, we show that

YwlE is the founding member of a phosphatase family acting

specifically on phosphorylated arginine residues. Crystal struc-

tures of YwlE reaction intermediates reveal molecular features

that are essential to distinguish phospho-arginine (pArg) from

other phospho-residues and ultimately led to the identification

of a putative eukaryotic protein arginine phosphatase.

RESULTS

Generation of pArg-Specific Antibodies by an In Vitro
Phage-Display Approach
To directly monitor the phosphorylation and dephosphorylation

of arginine residues in bacterial cell lysates, we generated a

pArg-specific antibody. Although we could produce pArg-con-

taining proteins and peptides in large amounts, immunization

trials carried out in various animal systems failed to produce a

selective antibody. In contrast to O-linked phosphates such as

pSer, pThr, and pTyr, free pArg has been described as an acid
C

labile modification (Sickmann and Meyer, 2001). Presumably,

it is this inherent lability of P-N linkages that caused prob-

lems in producing antibodies against pArg by classical

immunization methods that rely on antigen internalization and

processing in endosomal/lysosomal compartments under

acidic pH conditions. Therefore, we switched to a defined

in vitro methodology and applied, together with Morphosys

AG, a specific phage-display approach at neutral pH (Prassler

et al., 2011) (Figure 1A). For antibody screening, we used the

branched phospho-peptide antigen (KIVQSKpRGGGGYIK)2KC

featuring two pArg residues. To remove cross-reactive anti-

bodies, resulting phages recognizing the pArg peptide were

further counterselected against the corresponding nonphos-

phorylated and pTyr-containing peptides (Figure 1A). The

candidate pArg-specific binders were sequenced and subcl-

oned into human F(ab)2 antibody format. These antibodies were

further selected by comparing their sensitivity of pArg recog-

nition employing recombinant autophosphorylated McsB.

Based on these data, we selected a single antibody for further

characterizations. Ultimately, the specificity of the generated
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Figure 2. Characterization of the Protein

Arginine Phosphatase YwlE

(A) ELISA-based screen monitoring the capabil-

ities of different B. subtilis cell extracts to

dephosphorylate a pArg containing substrate

(McsB-P). The illustrated data are from three in-

dependent experiments performed in duplicates

using wild-type (WT) and different phosphatase-

deficient B. subtilis strains (disrupted genes

indicated; PI, phosphatase inhibitors; Pase,

phosphatase). Data are presented as mean ± SE.

(B) Autoradiogram of an SDS-PAGE gel of 32P-

labeled CtsR incubated with the recombinant

phosphatases YwlE, YfkJ, and YwqE from

B. subtilis (control, no phosphatase added).

(C) EMSA analysis monitoring the ability of CtsR

to bind clpC promoter DNA. After preincubation

with the protein arginine kinase McsB, various

B. subtilis phosphatases were tested for their

ability to restore the DNA-binding function of CtsR.

(D) Dephosphorylation of KpXGGGGYIKIIKV

phospho-peptides. The pArg containing peptide

was incubated with 5 nM YwlE, whereas all other

phospho-peptides were treated with 20 mM YwlE.
recombinant pArg antibodywas tested toward distinct phospho-

proteins by dot-blot assays. For this purpose, pArg-containing

McsB, pTyr BSA, pSer BSA, pThr BSA, and nonphosphory-

lated McsB were spotted onto a nitrocellulose membrane and

incubated with the F(ab’)2 anti-pArg antibody. The resulting

signals clearly indicated that the generated F(ab’)2 antibody is

highly selective for pArg and does not cross-react with nonphos-

phorylated McsB or pTyr, pSer, or pThr proteins (Figure 1B). In

sum, these findings demonstrate that the described phage-

display methodology can be used to generate specific pArg

antibodies in vitro. Given the chemical instability of the

phospho-mark, it will be interesting to test whether this

approach may be also applicable to raise antibodies against

other acid labile posttranslational protein modifications such

as pHis.

Characterization of YwlE as a Highly Specific pArg
Phosphatase
Given the varying characterizations of McsB and YwlE as tyro-

sine and/or arginine directed enzymes (Elsholz et al., 2012; Fuhr-

mann et al., 2009; Hahn et al., 2009; Kirstein et al., 2005), we

wanted to test whether the reported in vivo activity of dephos-

phorylating pArg-containing proteins is directly mediated by

YwlE or a ‘‘side’’ reaction catalyzed by other B. subtilis protein

phosphatases as well. Upon developing a pArg-specific anti-

body, we carried out ELISA screens to monitor the endogenous

pArg phosphatase activity of various B. subtilis cell extracts.

Using the autophosphorylated formof the protein arginine kinase

McsB (McsB-P) as model substrate, we observed that a cell

extract prepared from the B. subtilis wild-type strain had sub-

stantial pArg dephosphorylation activity, which was blocked by

phosphatase inhibitors (Figure 2A). To pinpoint the responsible

enzyme(s), we analyzed the pArg phosphatase activity of 16

B. subtilis mutant strains carrying chromosomal deletions of

genes of all annotated protein phosphatases. These ELISA

analyses revealed that the strain lacking YwlE was impaired in
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dephosphorylating McsB-P (Figure 2A), whereas cell lysates

of the other phosphatase-deficient strains could not promote

pArg dephosphorylation. Accordingly, YwlE should be the only

active pArg phosphatase present in B. subtilis. To characterize

this pArg phosphatase activity in vitro, we cloned and purified

the three annotated B. subtilis tyrosine phosphatases YfkJ,

YwqE, and YwlE and analyzed their ability to target the arginine

phosphorylated CtsR (CtsR-P). Whereas recombinant YwlE effi-

ciently removed the 32P-labeled phosphate from CtsR-P within

short time, CtsR-P was entirely resistant to dephosphorylation

by YfkJ or YwqE (Figure 2B). Consistently, electrophoretic

mobility shift assay (EMSA) studies showed that only YwlE can

restore the DNA-binding ability of the repressor (Figure 2C) by

reversing the McsB-mediated phosphorylation. Because YwlE

was previously described as a tyrosine phosphatase, a classifi-

cation mainly derived from sequence homology and the

enzyme’s activity against the general phosphatase substrate

pNPP (Mijakovic et al., 2005), we next studied the activity against

various peptide substrates containing different phospho-

residues embedded within the same sequence context

(KpXGGGGYIKIIKV). Whereas the KpRGGGGYIKIIKV peptide

was rapidly dephosphorylated, even at very low (5 nM) enzyme

concentration, YwlE exhibited almost no activity against pSer,

pThr, or pTyr peptides (Figure 2D). To rule out the possibility

that unrelated phosphatases could have a similarly unpredicted

arginine phosphatase activity, we tested different types of tyro-

sine, serine/threonine, and dual specificity phosphatases from

different organisms in a pArg phosphatase assay (data not

shown). Except for the promiscuous alkaline phosphatase,

which showed about 15% of the YwlE activity, none of the

enzymes was able to efficiently remove the phosphate group

from the pArg peptide. Therefore, the dephosphorylation of

pArg is not a general property or side reaction of other protein

phosphatases. We conclude that YwlE is a highly specific pro-

tein arginine phosphatase (PAP) counteracting the McsB

protein arginine kinase.



Figure 3. Active-Site Architecture of the

YwlE Arginine Phosphatase

(A) Ribbon representation of YwlE with labeled

secondary structural elements and highlighted

P-loop (blue).

(B) Molecular surface of YwlE colored by its elec-

trostatic potential. The C-terminal segment of a

crystallographic neighbor is shown as a ribbon

model (yellow) from where Arg149* protrudes into

the active-site crevice (shown in closeup view in

right panel).

(C) Mutational analysis of residues interacting with

Arg149*. The panel represents the specific activity

of distinct active-site mutants toward the pArg

peptide (blue bars), whereas the right part depicts

the specific activity against the corresponding

pTyr peptide (gray bars). Additionally, an arrow

above each bar highlights the relative increase or

decrease in specific activity compared to the wild-

type enzyme (na, no activity detectable).

See also Figure S1.
Crystal Structure of YwlECapturing anArginine Residue
Despite limited sequence similarity, all PTP enzymes share a

seven residue CXXXXXR active-site loop region that comprises

a conserved cysteine and arginine residue. This P-loop is critical

for binding the phosphate group of the incoming substrate and

subsequently, to form a transient enzyme-substrate phospho-

thioester adduct (Denu and Dixon, 1998). Unfortunately, neither

detailed sequence analyses of PTP proteins nor the YwlE NMR

structure (Xu et al., 2006), in which the active site is largely disor-

dered, provides insight how to distinguish between pArg and

pTyr substrates. To address this point, we determined the

high-resolution crystal structure of YwlE from B. subtilis in its

phosphate bound form (Table S1). Overall, YwlE adopts the

typical LMW-PTP fold consisting of four b strands forming a cen-

tral, highly twisted parallel b sheet that is flanked by helices H1,

H2, H5, and H6 on one side, and H3 and H4 on the other side

(Figure 3A). The P-loop encompassing the C7XXXXXR13 motif

connects strand S1 and a helix H1 and constitutes the base of

the active-site pocket. Here, residues Cys7 and Asp118 are

properly arranged to dephosphorylate the incoming substrate

in a concerted reaction (Zhang, 2003). The phosphate-binding

site is formed akin LMW-PTPs by the side chain of Arg13, the

backbone amides of the P-loop and the positive end of the mac-

rodipole of helix H1, which together generate a highly positively

charged pocket at the bottom of the substrate-binding cleft (Fig-

ures 3B and S1). Closer inspection of the active site revealed an

additional electron density that could be unambiguously attrib-

uted to an arginine side chain that protrudes from a neighboring

YwlE molecule in the crystal lattice (Arg149*), thus providing the

unbiased view on the preferred YwlE ligand (Figure 3B). Remark-

ably, the loop segment harboring Arg149* adopts a similarly

kinked conformation as the peptide ligand in the PTP1B phos-

pho-substrate complex (Jia et al., 1995; Sarmiento et al., 2000)

(Figure S1) implying that the observed crystal contact indeed

reflects the interaction with a potential ligand. The substrate-

mimicking Arg149* is sandwiched between Thr11, Asp118,

and Phe120 with its guanidinium group hydrogen bonding to

Asp118 (Figure 3B). To test the impact of Thr11, Asp118, and
C

Phe120 on substrate specificity, we assayed the phosphatase

activity of selected mutant proteins using pArg- and pTyr-

containing peptides. Whereas mutating residues Asp118 and

Phe120 almost completely abolished phosphatase activity,

mutating residue Thr11 had opposing effects on the two sub-

strates. Replacing Thr11 of YwlE by isoleucine resulted in signif-

icant reduction of pArg phosphatase activity while markedly

increasing the activity toward the pTyr substrate (Figure 3C).

The same effect was observed for the T11V mutation converting

the YwlE arginine phosphatase into a better tyrosine phospha-

tase. Accordingly, substitution of a single hydroxyl group (threo-

nine) by amethyl group (valine) or ethyl group (isoleucine) led to a

drastic change in the substrate specificity of YwlE.

Structure of a Phospho-Enzyme Intermediate Reveals
Details of pArg Recognition and Hydrolysis
The crystal structure of phosphate-bound YwlE provides a

detailed view on the enzyme-product complex. To determine

structural data of a distinct reaction intermediate illustrating

how Thr11 directly interacts with the substrate’s guanidinium

group, we incubated several catalytically inactive YwlE mutants

with the phosphorylated form of free arginine. By using the C7S

mutant, we succeeded to obtain a complex, in which the chemi-

cally labile phosphate group of pArg was transferred to the

introducedSer7. The electron densitymap of theC7Smutant un-

equivocally reveals the formation of the covalent phospho-Ser7

adduct indicating that the crystallized mutant mimics the phos-

pho-enzyme intermediateof thedephosphorylation reaction (Fig-

ure 4A). Interestingly, in the crystal structure of phospho-Ser7

YwlE, Arg149* moves 1.5 Å deeper into the substrate binding

pocket such that its terminal nitrogens can form bidentate

hydrogen bonds with the hydroxyl group of Thr11 and the

carboxyl group of Asp118 (Figure 4A). Oriented by these resi-

dues, the angle formed by the h2 nitrogen atom of Arg149*, the

phosphorus of the phosphate group and the hydroxyl oxygen of

Ser7 is approximately 180� and thus consistent with a SN2 nucle-

ophilic substitution reaction, as outlined in Figure 4B. Accord-

ingly, the C7S structure in complex with Arg149* highlights the
ell Reports 3, 1832–1839, June 27, 2013 ª2013 The Authors 1835



Figure 4. Structural Basis for Specifically Binding and Hydrolyzing pArg

(A) Active-site architecture of YwlE C7Smutant (left) and YwlEWT (right) reflecting the phospho-enzyme reaction intermediate and the enzyme-product complex,

respectively (corresponding reaction intermediates indicated by arrows). The bound phosphate and Arg149* are overlaid with the 2FoFc omit electron density

maps (contoured at 1.5 s). The panel in the middle illustrates the superposition of the respective active sites.

(B) Supposed reaction mechanism of YwlE highlighting residues involved in substrate binding and catalysis. The structure of the phospho-C7S reaction inter-

mediate supports a catalytic mechanism involving two sequential inline nucleophilic substitutions (SN) at the phosphorus. The first SN reaction ismediated by the

thiolate of Cys7 that attacks the phosphorus atom of the incoming substrate, the second by an active-site water molecule that displaces the Cys7 thiolate, thus

triggering phosphate release. Arg13 is critical for the coordination of the phosphate group (red), whereas residues Asp118 and Thr11 are crucial for precisely

orienting the guanidinium group (blue) of the pArg substrate protein.

(C) Sequence alignment of the N-terminal segment of LMW-PTPs from various species. The PX5 residue of the conserved P loop is shaded in red.

(D) Substrate specificity of various PX5 mutants. The bars represent relative phosphatase activities toward pArg (up) and pTyr (down) peptide substrates.

(E) Activity of the putative Drosophila PAP. The bars represent the specific activity of CG31469 (blue) and its mutant version (CG31469 T11I, purple) toward

pTyr, pArg, pSer, and pThr peptide substrates, respectively. The dephosphorylation activity was tested against the phospho-peptide ac-KpXGGGGYIKIIKV

(pX denotes pTyr, pArg, pSer, or pThr).

See also Figures S2 and S3.
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Figure 5. Determinants of Substrate Speci-

ficity within the LMW-PTP Family

Substrate selectivity against different phosphory-

lated residues is achieved by a two-step mecha-

nism. First, phosphatases have evolved binding

pockets of characteristic depth that reflects the

size of their cognate substrates. The active-site

clefts of PTPs (HPTP, Zabell et al., 2006) and PAPs

(YwlE) are much deeper than those of the dual-

specificity phosphatases (TMDP, Kim et al., 2007),

which can dephosphorylate both pTyr and pSer/

pThr residues (Patterson et al., 2009). Second,

PAPs appear to have installed a polarity filter,

Thr11, to detect the presence of the hydrophilic

guanidinium group of the pArg substrate. Con-

versely, PTPs express an isoleucine as PX5 res-

idue that contributes to the hydrophobic pocket

accommodating the phenyl group of pTyr. See

also Figure S3.
importanceof Thr11 inbinding thesidechainof the incomingsub-

strate, thereby ensuring the precise alignment of the phosphory-

lated guanidinium group for the dephosphorylation reaction.

Switching Phospho-Substrate Specificities by Mutating
the PX5 Residue
Though all LMW-PTPs exhibit a similar active-site architecture,

in which residues lining the substrate-binding cleft are particu-

larly well conserved, structural comparison of YwlE with the

related PtpA tyrosine phosphatase (Vega et al., 2011) reveals a

remarkable difference regarding position 5 within the CXXXX5XR

P-loop (the PX5 residue; Thr11 in YwlE, Ile12 in PtpA) (Figure S2).

As PX5 of YwlE directly interacts with the pArg substrate, teth-

ering the guanidinium group adjacent to the phosphate group,

the respective threonine-to-isoleucine exchange may have an

immediate effect on substrate selection. Consistently, sequence

analyses evaluating the conservation of the PX5 residue revealed

that LMW-PTPs either express a hydrophobic residue (most

often an isoleucine) or a threonine at this position (Figure 4C).

Therefore, the PX5 residue may define the substrate specificity

of the different phosphatase families. To test this idea, we gener-

ated Thr / Ile and Ile / Thr inversion mutants in PAP and

PTP enzymes, respectively, and compared their activity with

the wild-type proteins. Similarly as observed for the B. subtilis

YwlE (Figure 3C), a Thr / Ile inversion in the PAP from Geoba-

cillus stearothermophilus strongly diminished the hydrolysis of

pArg substrates and markedly increased the pTyr phosphatase

activity (Figure 4D). In analogy, the Ile / Thr exchange drasti-

cally improved the pArg phosphatase activity of the PTPs YfkJ

or PtpA, while weakening their pTyr phosphatase activity. The

effect of the Thr 4 Ile mutations on substrate selection was

further confirmed by analyzing the dephosphorylation of the

pTyr mimicking compound para-nitrophenylphosphate (pNPP;

Table S2). Derived kinetic parameters indicated that the PX5

mutation affects both the KM (substrate binding) and the kcat
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(orienting substrate for catalysis) of the

dephosphorylation reaction. In sum,

these findings demonstrate that position
PX5 of the CXXXX5XR P loop is critical to direct substrate selec-

tivity either to pArg (PX5 = Thr) or pTyr (PX5 = Ile) and thus to

determine, in combination with the depth of the active site, the

substrate specificity of the LMW-PTPs and most probably also

that of other protein phosphatase families (Figure 5).

To test this prediction, we performed a bioinformatic search

for potential eukaryotic PAPs containing a PX5 threonine

residue. In this search, we identified CG31469 of Drosophila

melanogaster, a so-far-uncharacterized protein showing an

age-dependent expression pattern (Lai et al., 2007), as fitting

candidate (Figure S3). We then analyzed the activity of the puta-

tive phosphatase against different phospho-peptides. Remark-

ably, CG31469 exhibits substantial pArg phosphatase activity

(Figure 4E), whereas it fails to dephosphorylate other substrates.

Moreover, the Thr/ Ile mutant (T11I) showed a similar effect in

changing substrate specificity as observed for the bacterial PAP

YwlE (Figure 4E; Table S2). Compared to the wild-type enzyme,

the pArg phosphatase activity of CG31469 T11I was diminished

35-fold, whereas the activity against pTyr was improved 20-fold.

Although we cannot exclude that this Drosophila phosphatase

also dephosphorylates nonprotein substrates, the robust activity

toward pArg-containing peptide implies that CG31469 acts

in vivo as a bona fide PAP.

DISCUSSION

Owing to technical difficulties in working with phospho-arginine

peptides (Schmidt et al., 2013), little is known about their func-

tional and biological relevance as posttranslational protein

modifiers. So far, it has been shown that McsB is a bacterial pro-

tein arginine kinase that exclusively targets arginine residues

(Fuhrmann et al., 2009). In addition, a recent phospho-arginine

proteome analysis revealed a number of arginine phosphory-

lated proteins in B. subtilis (Elsholz et al., 2012). Together these

data demonstrate that arginine phosphorylation represents an
9, June 27, 2013 ª2013 The Authors 1837



important posttranslational protein modification in Gram-posi-

tive bacteria. In this work, we show that the McsB-mediated

phosphorylation can be directly reversed by YwlE, which is the

founding member of the PAP phosphatase family targeting

pArg residues with high specificity. The close interplay of YwlE

and McsB is also evidenced by previous findings showing that

YwlE influences the localization of McsB-regulated proteins in

the cell (Hahn et al., 2009), functions as ‘‘inhibitor’’ of McsB

(Elsholz et al., 2011) and is involved in the bacterial stress

response (Musumeci et al., 2005). Moreover, our study reveals

that the dephosphorylation of pArg residues by YwlE is a clearly

defined enzymatic activity that is not shared by other protein

phosphatases. To ensure substrate selectivity, YwlE encom-

passes a dual selectivity filter comprising a deep active-site

pocket that has a polar belt at its bottom. This construction is

perfectly suited to specifically accommodate phospho-arginine

residues while discriminating the small pSer/pThr phospho-res-

idues (filter: size) as well as the hydrophobic pTyr (filter: polarity)

(Figure 5). The efficient hydrolysis of phospho-arginine is accom-

plished by selective recognition of the pArg guanidinium group

that is recognized and oriented for catalysis by Asp118 and

Thr11, the PX5 residue. Comparison of YwlE with related PTPs

indicates that the exchange of isoleucine to threonine at the

PX5 position is critical to evolve the PAP activity, a finding that

led to the discovery of a YwlE homolog in D. melanogaster. We

thus suppose that the dephosphorylation mechanism outlined

for the bacterial YwlE enzymemay be conserved in other eukary-

otic protein phosphatases as well, which are known to occur in

great diversity. Among themany different types of phosphatases

and pseudophosphatases are several proteins that could not be

classified according to activity and thus represent attractive tar-

gets to screen for potential PAP activity. Moreover, the presence

of a putative eukaryotic PAP suggests that protein arginine phos-

phorylation constitutes a widespread protein modification that

may have been underestimated so far. To this regard, the crystal

structure of the YwlE reaction intermediate provides an excellent

basis to develop highly specific PAP inhibitors. Such inhibitors

should be essential to monitor arginine-phosphorylated proteins

in eukaryotic cells and evaluate the previously proposed impact

of arginine phosphorylation for transcriptional regulation, epige-

netics (Wakim and Aswad, 1994), and other fundamental biolog-

ical processes.

EXPERIMENTAL PROCEDURES

The detailed description of experimental procedures is available online in the

Supplemental Information.

Protein Expression and Purification

For functional studies, all phosphatase constructs were overexpressed in

Escherichia coli BL21(DE3) cells. Protein purification was proceeded by

Ni-NTA affinity and size-exclusion chromatography (SEC). Structural integrity

of the proteins was validated by analytical SEC, dynamic light scattering, and

circular dichroism measurements. For structural studies, YwlE from B. subtilis

was expressed in the methionine auxotrophic E. coli cell line B834.

Generation of pArg-Specific Antibody

A pArg-specific antibody was generated in a phage-display screen (synthetic

HuCAL PLATINUM library, Morphosys; Prassler et al., 2011) using a branched

arginine phosphorylated peptide (KIVQSKpRGGGGYIK)2KC derived from the
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CtsR protein. To obtain pArg-specific phages, primary hits were counterse-

lected against closely related antigenic peptides that either were unphos-

phorylated or contained a pTyr residue instead of the pArg. The pArg-specific

binders were sequenced and subcloned into human F(ab)2 antibody format.

Subsequently, the generated antibodies were tested for pArg selectivity using

dot-blot analysis.

ELISA Screen for the Identification of Potential pArg Phosphatases

To pinpoint endogenous arginine phosphatases in B. subtilis, we developed a

specific ELISA screen. In this screen, the pArg-specific antibody was instru-

mental to monitor the dephosphorylation of a pArg-containing protein

(McsB-P) in the presence of various B. subtilis cell extracts. A secondary anti-

body (anti-human F(ab’)2-specific) conjugatedwith horseradish peroxidasewas

applied to quantify the bound pArg antibody, and thus the phospho-mark.

Characterization of the pArg Phosphatase Activity

To monitor the effect of different phosphatases on arginine phosphorylated

CtsR (CtsR-P), different biochemical assays were carried out. First, phospha-

tase activity was evaluated by monitoring the dephosphorylation of radioac-

tively (g-32P) labeled CtsR-P. Second, the counteracting effect of various

phosphatases in restoring the DNA-binding capability of CtsR was tested in

EMSA. Phosphatase activity against KpXSGGGYIKIIKV phospho-peptides

was determined by the EnzCheck Phosphate assay (Invitrogen). In parallel,

phosphatase activity was tested against pNPP following standard procedures.

Crystallization and Structure Solution of YwlE and YwlEC7S

All YwlE crystals were grown with the sitting-drop vapor diffusion method in

96-well plates at 19�C. The YwlE crystals belonged to space groupC2 contain-

ing one YwlE molecule per asymmetric unit. For structure solution, a single

wavelength anomalous dispersion (SAD) data set was collected at the Swiss

Light Source (SLS, Beamline X06SA) at l = 0.9791 Å using a Pilatus detector

(Dectris). The C7S mutant of YwlE was crystallized after preincubation with

10 mM pArg. The structure of the C7S mutant was solved by molecular

replacement at 1.8 Å resolution with diffraction data collected at the European

Synchrotron Radiation Facility (ESRF, Grenoble, beamline ID 14-4). Data

collection, phasing, and refinement statistics are summarized in Table S1.

For further details, please refer to Extended Experimental Procedures.
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