
Discrete Mathematics 124 (1994) 137-153 

North-Holland 

137 

Stable sets and polynomials 

L. Lovisz 
Department of Computer Science, Yale University, New Haven, CT 06517, USA 

Received 2 June 1990 

Abstract 

Several applications of methods from nonlinear algebra to the stable set problem in graphs are 

surveyed. The most recent work cited was cowritten by A. Schrijver and involves nonlinear 
inequalities. These yield a procedure to generate facets of the stable set polytope. If a class of graphs 

has the property that all facets of the stable set polytope can be generated this way in a bounded 

number of setps, then the stable set problem is polynomially solvable for these graphs. Perfect, 

t-perfect and h-perfect graphs have this property. 

0. Introduction 

The stable set problem is one of the simplest and most fundamental problems 

concerning graphs. As is to be expected, the problem may serve as a pilot case in the 

application of various methods to NP-hard problems. Indeed, the stable set problem 

was among the first to which polyhedral and linear algebraic methods have been 

successfully applied. 

In this paper we survey some applications of nonlinear commutative algebra 

(polynomials) in the study of the stable set problem. While several of our consider- 

ations will have a similar flavor, they have not yet been unified in a single theory. 

Rather, I consider them as pieces of a jigsaw puzzle, where it is easy to feel that they 

belong to one bigger picture but their exact position is not found yet. 

A stable set in a graph G = (I’, E) is a set of nodes, no two of which are adjacent. The 

maximum size U(G) of a stable set is called the stability number of G. It is well known 

that the computation of a(G) is NP-hard. 

However, quite often we are not concerned with the stability number of an explicitly 

given graph but rather with the stability number of graphs derived from some other 

combinatorial structure. In fact, many results in extremal combinatorics and coding 

theory can be formulated in this way. In such cases, general algebraic methods for the 

determination of a(G) have a greater chance of success. 
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For example, let S be an n-element set, V=(z), the set of its k-element subsets, and 

define a graph K,k on V by connecting two k-subsets iff they are disjoint. These graphs 

are called Kneser graphs. The stability number of Ki is the maximum number of 

mutually intersecting k-subsets of an n-set. The Erdds-Ko-Rado theorem asserts that 

this number is (I: I :) if n > 2k. There is at least one general algebraic upper bound on 

the stability number from which this bound can be derived [17]. 

1. Turin’s theorem and the Motzkin-Straus formula 

One of the first results in extremal graph theory is Turan’s theorem, which can be 

formulated as a result on the stability number. 

Theorem 1.1. Let G be a graph with n nodes, m edges and stability number cc. Write 
n=clq+r. Then 

mata-r) (z)+r (“: ‘). 

This theorem is usually formulated for the complement. The best way to remember 

the bound is that the graph with a given number of nodes n, with given stability 

number GI and with a minimum number of edges is the union of tl node-disjoint cliques, 

as equal in size as possible. The complement of this graph (a complete multipartite 

graph) is called the Turlm graph T:. 
Turan’s theorem can be proved by double induction on n and CI (and in many other 

ways). For our purposes the most interesting is an algebraic proof by Motzkin and 

Strauss [21], which in fact gives an explicit formula for a(G). 

Theorem 1.2. Let G = (V, E) be a graph. Then 

l- ~=maX{Z~x,xj:~.i=l,Xi~O}. 

Turin’s theorem (at least for the case when &In) can be obtained by substituting 

Xi= l/n. 

Proof. Consider a vector x maximizing the right-hand side and (if it is not unique) 

having a maximum number of 0 entries. We claim that the support of x is a stable set. 

Assume, to the contrary, that nodes 1 and 2 are adjacent nodes belonging to the 

support of x. If -x1 <t < x2 then the vector (x1 + t, x2 -t, x3, . . . ) also satisfies the 

constraints Xi30 and xi Xi= 1. The objective function is a linear function of t (since 

the term x1x2 does not occur in the objective function), and hence it can assume its 

maximum at 0 only if it is constant. But then for t =x2, we have another optimizing 

vector with more 0 entries. 
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Now if the support of x is a stable set A, then high school algebra shows that the 

maximum is attained when xi = l/IA1 for all SEA, and then the value of the objective 

function is exactly 1 - l/IAl. The maximum is attained when A is a maximum stable 

set. 0 

2. Polynomial ideals, stable sets and chromatic number 

With every graph G=(V,E) on V={l,..., n), we associate the polynomial 

Pch, ... ,Xn)= n Cximxj) 
ijsE 

(we need a reference orientation of the edges for this, but this plays a small role). It is 

interesting to remark that this correspondence was one of the starting points of graph 

theory. Hilbert (1898) (see K(inig [12]) considered the question of decomposing such 

a polynomial in which every variable has degree d into factors in which every variable 

has degree 1. This is of course equivalent to decomposing a regular graph in l-factors 

and was one of the motivations for the work of Petersen. The wordsfactor and degree 

come from this correspondence. 

More recently, Li and Li [13] related this polynomial to the independence number 

of the graph G. Their starting point was the following observation. 

Lemma 2.1. The graph G has independence number at most c1 if and only if the 
identijication of any c( + 1 variables in pG yields the 0 polynomial. 

Let 1.” denote the set of all polynomialsfE R[xl, . . . ,x,1 such thatf(x,, . . . ,x,) = 0 if 

at least LX+ 1 variables are equal. Clearly 1.” is an ideal. Now Li and Li prove the 

following characterization of this ideal. 

Theorem 2.2. The ideal I,” is generated by the polynomials PH, where H is a graph 
isomorphic to the complement of the TurLxn graph Tz. 

Let fi denote the ideal generated by the polynomials pH, H E T:. Trivially ft E If. It 

is easy to see that an n-tuple (yl, . . . , y,) is a zero of fi if and only if some GL + 1 of the 

yi are equal. Hence, by the Nullstellensatz of Hilbert, every fez.” has some powerfP 

which belongs to f;. The theorem says that we have p= 1. 

One consequence of this result is Turin’s theorem. In fact, if G is a graph with 

n nodes, m edges, and cc(G) = CI, then PGel,“. By Theorem 2.2, this ideal is generated by 

homogeneous polynomials of degree m,, = I E (Fi) 1, and hence m = deg( PC) 2 mO. 
The proof of Theorem 2.1 is quite involved. We shall state and prove an analogue 

for the chromatic number, due to Kleitman and Lo&z (unpublished), whose proof is 

simpler. We start with the following observation. 
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Lemma 2.3. The graph G has chromatic number at least x if and only if every way of 

identifying variables in po, so that at most x- 1 distinct variables remain, yields the 

0 polynomial. 

Let J,” denote the set of all polynomialsfE R [x1, . . . , x,] such thatf(xl, . . . , x,) = 0 if 

at most x - 1 variables are distinct. Clearly J,” is an ideal. This ideal can be character- 

ized as follows. 

Theorem 2.4. The ideal J,” is generated by the polynomials Pn, where H is a graph 

consisting of a clique of size x and isolated nodes. 

The relation of this theorem to the Nullstellensatz is similar to that of Theorem 2.2. 

Proof. Let 57: denote the ideal generated by the polynomials pn, where H consists of 

a X-clique and isolated nodes. Trivially jt c Ji. To show the converse inclusion, let 

fEJt. For S&(1,..., n - l}, let fs denote the polynomial obtained from f by substi- 

tuting x, for each xi, iES. 

Clearly fse J:, and so by induction on the number of variables we may assume that 

fsEjt for every nonempty S. 

Consider also the polynomial 

g=c(-lys’fs. 
S 

If we substitute x, for any xi (1 < i < n - 1) in g, we get the 0 polynomial; hence g is 

divisible by the product (x r -x,) (x2 - x,) . . . (x, _ 1 - x,). Write 

9=(x1-x,,) (x2-x,)...(x,_1-x,)h. 

It is clear that gEJ,X and hence h vanishes whenever at most x - 2 of the variables 

x1, . . . , x,_ 1 are distinct. So if we expand h by the powers of x,, the coefficient of every 

x,” will belong to J,XIi. By induction on n, we may assume that these coefficients 

belong to J^,x-:. This implies that gE.?i. 

It follows that 

f=g- c (- l)‘S’fsEJ^,x, 
S#0 

which proves Theorem 2.4. 0 

A slight modification of the proof gives the following results. 

Corollary 2.5. (a) A graph G has a(G)< k ifspo has a representation of the form 

PG=PHr+PH2+ ‘*’ +&I,> 

where each Hi is a graph on V(G) containing k cliques covering all nodes. 
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(b) A graph G has x(G) >, k if pG has a representation of the form 

PG=hf~+hIx+ “. +&fN) 

where each Hi is a graph on V(G) containing a k-clique. 

Fig. 1 shows a representation of P ,-5 illustrating both parts of the theorem. This 

shows that there is a certain ‘graph calculus’ involved here. We can write xi Gi=O 

instead of xi pGi = 0; here the Gi are directed graphs but we identify two orientations 

differing on an even number of edges. Let us call a relation 

a graph identity. It might be interesting to study the structure of graph identities. For 

example, it is not difficult to show that (after cancellation of edges common to all 

terms) there are two graph identities with 3 terms, illustrated in Fig. 2. Is the number 

of graph identities with a fixed number of terms finite? Can one verify a graph identity 

in polynomial time? (It can be verified in randomized polynomial time by substituting 

random values for the variables.) One would expect that the number of terms N in the 

representations in Corollary 2.5 is exponentially large in the worst case (else, NP 

would be equal to randomized co-NP). Can one prove this about some particular 

series of graphs? How does one find representations for graphs for which a lower 

bound for a(G), or an upper bound for x(G), has been proved by other means (e.g. for 

the Kneser graphs)? 

Recently Alon and Tarsi [l] obtained another related result. Let f(x) be any 

polynomial in one variable with k distinct roots. Consider the polynomial ideal Q.” in 

Q 
0 

6 0 

0 

T r 0 

=fTr+n 
Fig. 1. 

Fig. 2 
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RCx i, . . . ,x,1 generated by the polynomials f(xl), f(xz), . . . , f(x.); an n-tuple 

(u 1, . . . , u,) is a zero of this ideal iff every entry Ui is a root off: It is easy to see that 

G has chromatic number greater than k iff it vanishes on all zeros of Qi. It is not 

difficult to prove again the stronger ‘Nullstellensatz’, asserting that this is equivalent 

to saying that pcgQi. 

Alon and Tarsi use this to prove the following sufficient condition on colorability. 

Theorem 2.6. Assume that the expansion of pc contains a monomial with nonzero 
coej‘icient in which every exponent is less than k. Then G is k-colorable, 

It should be remarked that every expansion term x’;‘xy . . . x; of pc corresponds to 

an orientation of G in which node i has outdegree ai. However, different orientations 

may give expansion terms with different sign, which therefore may cancel. So the 

condition in Theorem 2.6 requires more than just the existence of an orientation with 

outdegrees less than k (which would not suffice anyway, as the complete graphs show). 

An advantage of this method is that it extends to restricted colorations in which 

every node has a set of at most k colors assigned and we want a legal coloration where 

the color of each node is one of the colors assigned to it. 

3. a-Critical graphs 

A graph G is called a-critical if it has no isolated nodes and, for every edge e, 

cc(G-e)>a(G). This is equivalent to saying that r(G’)<r(G) for every proper sub- 

graph G’ of G, and so these graphs can also be called z-critical. Having a good 

description of a-critical graphs would yield a good description of a; this means that we 

probably cannot have a complete list of a-critical graphs (in particular, the class of 

a-critical graphs is probably neither in NP nor in co-NP). 

Cliques and odd circuits are a-critical, and so are many other graphs; we just 

mention the icosahedron graph as an interesting example. Several monographs treat 

a-critical graphs [S, 181, so here we only sketch some of the most important results 

and discuss one proof in detail which relates to our main topic. For the following 

paragraphs, let G be an a-critical graph with n nodes and m edges, and set a=a(G), 
z = s(G). 

The first result on a-critical graphs was obtained by Erdos and Gallai [7]. 

Theorem 3.1. For every a-critical graph, 

a<n/2 

(equivalently, 7 3 n/2). Equality holds ifl G is a matching. 

The quantity 6 = 6(G) = n-2a = 22 -n = z -a turns out to be an important measure 

of the complexity of the a-critical graph, as we shall see below. This was first suggested 

by Gallai, and we call 6(G) the Gallai class number of the a-critical graph G. 
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The result of ErdBs and Gallai can be viewed as a Helly-type result: it is equivalent 
to saying that ifthe edges of every subgraph of a graph G with at most 2k nodes can be 
blocked by k nodes then all edges of G can be blocked by k nodes. There is an analogous 
result on the number of edges, proved by Erdos et al. [8]. 

Theorem 3.2. For every cc-critical graph, 

Hajnal [l l] proved two extensions of the Erdos-Gallai theorem. For every set 
AG V, let T(A) denote the set of nodes in G adjacent to some node in A. 

Theorem 3.3. Zf A is stable then 1 T(A)1 > I Al. 

The ErdiisGallai theorem corresponds to the case when A is a maximum stable set. 
Theorem 3.3 implies that G has a perfect 2-matching, i.e. a collection of node-disjoint 
circuits and edges covering all nodes. 

The other theorem of Hajnal asserts the following. 

Theorem 3.4. The degree of any node in an u-critical graph G is bounded by 6(G)+ 1. 

Besides the Erdiis-Gallai theorem, this also implies the theorem of ErdBs et al. [S] 
by summing over all elements of a minimum blocking set. Suranyi (1975) obtained the 
following common generalization of all the results mentioned so far. 

Theorem 3.5. Zf A is a stable set and acA then the degree of a is at most I T(A)] - I Al + 1. 

The proof of this theorem is elegant but elementary (see [18, Theorem 12.1.131). 
The following generalization of the theorem of Erdos et al. [8], however, is not known 
to follow by elementary methods [15]. 

Theorem 3.6. A blocking set B in an a-critical graph G spans at most (I Bi _2”’ ‘) edges. 

The Erdiis-Hajnal-Moon theorem is obtained when B = V(G). Another interesting 
case is when I BJ = z: a minimum blocking set in an cc-critical graph spans at most (‘:I) 
edges. 

Since the proof of Theorem 3.6 fits in our discussions, we give it here. The key is the 
following lemma. 

Lemma 3.7. Let H be any graph with n nodes and m edges, and let, to each ieV(H), 
a vector viERk be assigned. Assume that these vi span Rk, and 

(i) every stable set corresponds to linearly independent vectors; 
(ii) deleting any edge this will not hold any more. 

Then m <(“-5”). 
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Each cc-critical graph provides an example when the conditions of the lemma hold: 

choose vectors ViE[W’ in general position. More interesting examples will come up in 

the proof of Theorem 3.6. 

Proof of Lemma 3.7. Let us assign a variable xi to each node i, and consider the 

following equations: 

XiXj=O (ijEE(H)), 

Note that the first set of equations is equivalent to saying that the support of x is 

a stable set in H; the second set implies that the support of x corresponds to linearly 

dependent vectors. So by assumption (i) in the lemma, this system has no nontrivial 

solution; moreover, (ii) implies that dropping any equation from the first set, the 

remaining system will have a nontrivial solution. 

The solutions of 1 i xiui = 0 form a linear space with dimension n-k; over this space, 

the first set of equations gives m quadratic equations. By the above remarks, these 

quadratic equations must be linearly independent. Since the linear space of all 

quadratic equations over an (n- k)-dimensional space as dimension (“-i+‘), the 

lemma follows. 

Proof of Theorem 3.6. For simplicity, we describe the proof in the case when B is 

a minimum blocking set in G. Let A = V(H)\B and let H be the subgraph of G induced 

by B. Let the numbers 5ij (ieB, jcA) be algebraically independent transcendentals, 

and let, for each DEB, vi be the vector in [WA whose jth entry is tij if GLEE and 

0 otherwise. The reader familiar with matroid theory will recognize that this is 

a representation of the transversal matroid induced on B by the edges connecting A to 

B. In particular, a set S E B corresponds to linearly independent vectors iff every S’ s S 

has at least IS’1 neighbors in A. 

We claim that H and the set of vectors {Ui} satisfy the conditions of the lemma. The 

fact that {Ui}‘s span the space RA follows e.g. from Theorem 3.3. To verify (i), let S be 

a stable set in G and assume that the vectors {Ui : ins} are not linearly independent. 

Then there exists a set S’ z S having fewer than IS’1 neighbors in A. But then 

A\r(S’)uS’ is a stable set in G larger than A, a contradiction. The proof that (ii) holds 

is similar. 

Thus Lemma 3.7 implies that H has at most (I”l-;1”)=(“~‘) edges. 

Corollary 3.6 plays an important role in the proof of the following theorem. 

Theorem 3.8. For every 6 2 0, the number of a-critical graphs with Gallai class number 

6 and with all degrees at least 3 is$nite. 

For 6= 1, this follows trivially from Theorem 3.4. It was proved by Andrasfai [2] 

that every connected cl-critical graph with 6=2 arises from K4 by subdividing every 
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edge by an even number of nodes; this implies Theorem 3.8 in this case. Case 6 = 3 was 

settled by Suranyi, and the general case by Lo&z [16]. 

It should be mentioned that those cl-critical graphs with Gallai class number 6 and 

having nodes with degree 1 or 2 can be generated from this finite ‘basis’ in a rather 

simple way: one may add node-disjoint copies of K,, or split a node into two and 

connect these two to a new node. 

Let us remark that there are many unsolved problems concerning a-critical graphs. 

The known bounds on the maximum number of nodes of an cc-critical graph G with 

d(G)=6 and all degrees at least 3 are very poor: the proof of Theorem 3.8 gives an 

upper bound of 2@, while a construction of Suranyi (1978) gives a lower bound of S’. 

Is it true that if G’ is an cc-critical subgraph of an n-critical graph G then 6(G’)< 6(G)? 

The following conjecture of Chvatal is also unsettled: any k edges ofan cc-critical graph 
G adjacent to the same node are contained in an cc-critical subgraph G’ with 
6(G’)=k- 1. (For k=2 this is a result of Berge.) Recently, Sewell [22] proved that 

every cc-critical graph G with d(G)>2 contains an even subdivision of K4 (i.e. a con- 

nected a-critical subgraph H with S(H)=2). 

4. The stable set polytope 

At this point we have to recall some results on the stable set polytope. A detailed 

account can be found e.g. in Grijtschel et al. [lo]. 

Let G = (V, E) be a graph. For every subset S c V, let X’E [WV denote its incidence 

vector, i.e. the vector defined by 

Xs= 1 if iES, 
I 0 otherwise. 

The stable set polytope STAB (G) of G is the convex hull of incidence vectors of all 

stable sets. 

Since the stable set polytope is defined in terms of its vertices, it is natural to ask for 

a description of its facets. There is no hope of getting a complete description, but many 

interesting classes of facets, and more generally of inequalities valid for STAB(G), are 

known. We mention some of them. To exclude some trivial complications, we assume 

that G has no isolated nodes. 

There are two classes of trivial inequalities: the nonnegativity constraints 

xi30 (iEV) (4.1) 

and the edge constraints 

Xi+Xj~l (ijEE). (4.2) 

These inequalities define a polytope FRAC(G) which is in general larger than 

STAB(G). In fact, one has STAB(G)=FRAC(G) iff G is bipartite. An important 

property of FRAC(G) is that its vertices are half-integral. 
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A natural extension of (4.2) is the class of clique constraints: 

C Xi<12 where B is a clique. (4.3) 
iEB 

Inequalities (4.1) and (4.3) suffice to describe STAB(G) iff G is perfect. 

The next important class of inequalities valid for STAB(G) is the class of odd hole 
constraints: 

c 
x,<lW 

IL 
2 ’ 

where B induces a chordless odd cycle. (4.4) 
ieB 

A graph is called t-perfect if (4.1), (4.2) and (4.4) suffice to describe STAB(G), and 

h-perfect if (4.1), (4.3) and (4.4) suffice to describe STAB(G). 

A further, perhaps less well studied, class of inequalities is the class of odd antihole 
constraints: 

LxiG2, where B induces the complement of a chordless odd cycle. (4.5) 

All these inequalities are facets at least if B = V. If there are nodes not occurring in 

the inequality then they may sometimes be added to the constraint with nonzero 

coefficient; this is called lifting (we do not discuss this procedure here). 

A wider class of facets was found by Chvatal [6]. 

Theorem 4.1. Let G = (V, E) be an cc-critical graph. Then the inequality sumie”Xi ~ a(G) 
de$nes a facet of STAB(G). 

This theorem indicates how complex the facets of STAB(G) can be. Another 

important consequence of it is that we may in a sense consider facets of STAB(G) as 

generalizations of a-critical graphs and extend the theory of cl-critical graphs to 

facets. This idea is rather unexplored; most of the results are due to Sewell [22]. 

We only state one result (found also by Lo&z and Schrijver [19]) which will be 

needed later on. 

Let xi aixi<b be an inequality defining a facet of STAB(G). We define its Gallai 
class number as Ci ai - 2b. The following lemma implies that this value is nonnegative, 

and in fact positive except for the edge constraints. 

Lemma 4.2. Let Ci aixi< b be u facet of STAB(G). Then 

max ( C aixi: XEFRAC(G)) =f 1 ai. 
i i 

In other words, the left-hand side of any facet of STAB(G) is maximized over 

FRAC(G) by the vector (l/2, . . . , l/2)=. It can also be shown that if a,>0 for all i, and 

the facet is different from the edge constraints, then this is the unique vector maximiz- 

ing the left-hand side. 
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This lemma also generalizes Hajnal’s theorem (3.3). It also follows that the Gallai 

class number is a kind of ‘integrality gap’: 

1 ai-2b=2 max C Ui Xi: x~FRAC(G) -2 max C aixi: XESTAB(G) . 

I Ii 1 ii 

Certain extensions of Theorems 3.5 and 3.6 were given by Sewell. It would be 

interesting to find extensions of Theorem 3.8 to facets. 

We introduce one further class of inequalities valid for STAB(G). An orthonormal 

representation of a graph G is an assignment of a vector VIE [Wk to each node i (for some 

k 2 1) so that 1 uiI = 1 and vTuj= 0 for every pair i, j of nonadjacent nodes. Consider any 

vector c with (c( = 1, and the inequality 

T (CTUi)' Xi d l. 

If x is the incidence vector of a stable set A then the left-hand side is sUmi,=A(cTUi)2, and 

the inequality holds by Parseval’s formula since the vectors Uir ieA, are mutually 

orthogonal. So this inequality holds true for every vector xeSTAB(G). These inequali- 

ties are called orthogonality constraints. The set of vectors satisfying all orthogonality 

constraints is denoted by TH(G). 

The definition of TH(G) is rather complicated. In particular, there are infinitely 

many orthogonality constraints for a fixed graph and, accordingly, TH(G) is in 

general not a polytope. But TH(G) has some surprisingly nice properties (see [9, lo]). 

We mention a few. If c denotes the complement of the graph G, then TH(G) is the 

antiblocker of TH(G). TH(G) is polyhedral iff G is perfect, and in this case it is equal to 

the stable set polytope of G. Perhaps most important is the following fact: every linear 

objective function can be optimized over TH (G) in polynomial time. 

5. Projection representations 

If we project a polytope to a subspace then the number of vertices can, of course, not 

increase, but we have little control over the number of facets, which may increase 

substantially. This seemingly negative fact can be turned around: a polytope having 

an inconveniently large number of facets may be represented as the projection of 

a polytope with a much smaller number of facets. This technique in polyhedral 

optimization is relatively new and promising [3,4,14-J; at the same time, many of the 

basic questions are unsettled. 

As an example, consider the stable set polytope of a comparability graph G, 

obtained by taking a partially ordered set (V, <) and connecting two elements of V 

iff they are comparable in this partial order. This graph is perfect and so its stable 
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set polytope is described by the nonnegativity and clique constraints: 

xi 20 for every iE V, 

for every chain Bc V. 

This latter family of constraints is typically exponentially large. However, STAB(G) 

can be represented as the projection of a polytope with O(l VI’) facets. 

Lemma 5.1. Let (V, <) be a poset. Assign two variables xi, yi to each iE V and consider 
the polytope P defined by the inequalities 

O<XiQyidl for all iEV, 

yi + Xj d Yj for all pairs i < j. 

Then projecting P on the x-coordinates, we obtain STAB(G). 

It is a very interesting question whether STAB(G) in general can be represented as 

the projection of a polytope with a polynomial number of facets. The answer is in the 

affirmative for comparability graphs and their complements, chordal graphs and their 

complements, and several other classes of perfect graphs, but is not known for all 

perfect graphs. The answer is positive for t-perfect graphs (cf. the next section). One 

suspects that the answer will be negative for a general graph. However, the only 

negative result to date is that of Yannakakis (1988) who proves that if we also require 

that the automorphism group of G ‘lifts up’ to isometries of the polytope then the 

stable set polytope of the line-graph of K, (i.e. the matching polytope of K,) cannot be 

represented as the projection of a polytope with a polynomial number of facets. 

Yannakakis also formulated the following combinatorial necessary condition. Let 

{U,, WI>, (U,, W,>> . ..> {UN, WN} be partitions of V(G) into two classes. We say that 

this familiy separates cliques and stable sets if for every stable set A and clique B such 

that AnB=@ there exists an i with AE Vi and B & K. 

Lemma 5.2. If STAB(G) can be represented as the projection of a polytope with 
N facets then there exist N partitions of V(G) separating cliques from stable sets. 

It is not known whether in every graph (or even in every perfect graph) cliques can 

be separated from stable sets by a polynomial number of partitions. It follows from 

the theory of communication complexity that O(nlogn) partitions suffice in every 

graph. This was improved by A. Hajnal (unpublished) to 0(n(1/2)‘ogn). 

6. Quadratic inequalities 

The polyhedral theory of stable sets can be viewed as a theory of linear inequalities 

valid for the incidence vectors of stable sets. In view of the results discussed in 
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Sections 1 and 3, it is natural to ask for quadratic inequalities (and, of course, higher 

degree inequalities) valid for the incidence vectors of stable sets. 

At first sight it seems that we are getting too much too easily. Let G=( V, E) be 

a graph and consider the following system of equations: 

Xi” = xi for every node in I’, (6.1) 

xixj=O for every edge ij~E. (6.2) 

Trivially, the solutions of (6.1) are precisely the O-l vectors, and so the solutions of 

(6.1) and (6.2) are precisely the incidence vectors of stable sets. Unfortunately, little is 

known about the solutions of systems of quadratic equations. In fact, what this shows 

is that even the solvability of such a simple system of quadratic equations (together 

with a linear equation xi Xi = a) is NP-hard. 

However, we can use this system to derive some other constraints. Equation (6.1) 

implies that for every node i, 

Xi=X2~0, l_Xi=(l_Xi)‘30, (6.3) 

and using this (6.2) implies that for every edge ij, 

l-Xi-Xj=l-Xi_Xj+XiXj=(l_Xi)(l_Xj)30. (6.4) 

So we can derive the edge constraints from (6.1) and (6.2) formally. We can go on 

and use these to derive the odd hole constraints. Consider e.g. a pentagon (1,2,3,4,5). 

Then we have 

1--I-x2--x3+x~x3=1-x~-x2-x3+x1x2+x1x3 

=(l-x1)(1-X2-X,)20, 

and similarly 

1-xx,-x,-x~+x~x~~o. 

Furthermore, 

x,-xx,x~-x~x~=x~(1 -x,x4)30. 

Summing these inequalities, we get the odd hole constraint 

2-x~-x2-xx3-xxq--xx5~0. (6.5) 

We can also derive the clique constraints. Assume that nodes 1,2,3,4,5 induce 

a complete 5-graph. We start with the trivial inequality 

(1-xl-x2-x3-xxq-x5)2~o. 

Expanding, we get 

l+ ~ Xt-2 ~ Xi+2 C XiXj30. 
i=l i=l i#i 
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Here the first sum is just xi xi by (6.1) and the third sum is 0 by (6.2), so we get 

1-x~-x~-xj-xxq-x~20. (6.6) 

We can in fact derive any orthogonality constraint. Let {Ui: iE V} be any orthonor- 

ma1 representation of G and let c be a unit vector in the same space. Then we have the 

trivial inequality 

( i 1 
2 

C-C (C’Ui) XiUi ~0. 

Expanding, we get 

C2+C(CTUi)2XfUf-2 C(CTUi)‘Xi+2 1 (CTUi)(CTUj)XiXjU~Uj~O. 
I I i+j 

Here x?uF =xi by (6.1) and by luil= 1. Moreover, XiXjU’Oj=O; this follows from (6.2) if 

i and j are adjacent, and from the definition of orthonormal representations if i and 

j are nonadjacent. Using also that ICI = 1 we get 

1 -C (CTUi)‘Xi~O, 

I 
(6.7) 

which is just an orthogonality constraint. 

We can formalize these procedures: if we have a family of linear inequalities valid 

for STAB(G), then by multiplying pairs of them we obtain quadratic inequalities. 

Other sources of quadratic inequalities are (6.1) and (6.2) and the fact that the square 

of a linear form is nonnegative. By taking nonnegative linear combinations of such 

quadratic inequalities, we may be able to get rid of all quadratic terms and obtain 

a linear inequality. The above examples show that quite complicated linear inequali- 

ties can be derived in this way. 

This way of deriving inequalities was introduced and studied by Lo&z and 

Schrijver [19,20] and we do not repeat the details here. But we have to address the 

question: what is the point in deriving inequalities algebraically, which can be proved 

true anyway by trivial combinatorial considerations? 

Let F be a family of linear inequalities valid for STAB(G); we shall assume that 

F contains the family F0 of inequalities (6.3). As a minimal set of operations, allow the 

following: multiply each member of F by Xi and by 1 -xi to get a family of quadratic 

inequalities; take nonnegative linear combinations of these inequalities; use (6.1) and 

(6.2) to get rid of certain quadratic terms. Let T(F) be the family of linear inequalities 

obtained in this way. Let T+(F) be the set of linear inequalities obtained if also 

squares of linear functions can be taken at the start. Clearly F G T(F) G T+ (F). We 

denote by Tk(F) the family of inequalities obtained by repeating the T operator 

k times. 

The following facts are the key to the algorithmic applications of these methods. 
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Theorem 6.1. Every linear inequality validfor STAB(G) occurs in Tk(F,,)for some k < n. 

Let K be the solution set of F ; we denote by N(K) [N+(K)] the solution set T(F) 
[T+(K)] (it is easy to see that this does indeed depend on K only). Let K” denote the 

convex hull of O-l solutions of F. Then it follows from these considerations that 

and that iterating the N operator n times we get down to K”. 
We define the N-index of a linear inequality valid for STAB(G) as the least k for 

which it belongs to Tk ((6.3) and (6.4)). The N.-index is defined analogously. It 

follows that every inequality has an N-index at most n, but in fact the N-index of an 

inequality is usually much smaller. 

Theorem 6.2. The N-index of an inequality is at most its Gallai class number. The 
N-index of an inequality is 1 iff it is a nonnegative combination of odd hole constraints. 
The N+-index of an odd antihole constraint is 2. The N-index of a clique constraint 
involving k nodes is k-2. 

Corollary 6.3. A graph is t-perfect if and only if T(F) dejines its stable set polytope, 
where F consists of the edge constraints. 

The T+ procedure generates inequalities even faster. 

Theorem 6.4. Clique, orthogonality, odd hole, and odd antihole constraints have 
N+-index 1. 

It follows that if G is perfect then STAB(G) = N + (FRAC(G)); if G is t-perfect then 

STAB(G)= N(FRAC(G)). 

It is also worth noting that N(K) is the projection of a convex set in the (;)+n 
dimensional space, obtained as the solution set of the following inequalities: take all 

quadratic inequalities generated from F by multiplying by Xi or 1 -xi, and replace the 

products xix] by a new variable yij. So if IF I=m then N(K) is the projection of 

a polytope defined by at most 2 mn inequalities. Corollary 6.5 follows. 

Corollary 6.5. If G is t-perfect then STAB(G) can be obtained as the projection of 
a polytope with 0 (mn) facets. 

It is also interesting to remark that the convex (but generally nonpolyhedral) set 

TH(G) is just the solution set of all linear inequalities derived from (6.1), (6.2) and all 

inequalities 1’ 2 0, where I is a linear form. 

An important feature of the N- and N + -operators is that they preserve algorithmic 

‘niceness’. Stating this somewhat imprecisely, if every linear objective function can be 
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optimized over K in polynomial time, then the same is true for N(K) and N+(K) (with 

a different polynomial in the time bound). In particular, the following holds. 

Theorem 6.6. Let c >O be any constant. Then for the class of graphs G such that 

STAB(G) can be described by inequalities with N+-index at most c, the value a(G) is 

polynomial-time-computable. 

The theorem applies in particular to perfect, t-perfect and h-perfect graphs. It also 

applies to graphs whose stable set polytope can be defined by constraints with 

bounded Gallai class number. We remark that the class of graphs whose stable set 

polytope can be defined by rank constraints with bounded Gallai class number was 

studied in detail by Sewell [22]. 

Let G = (I’, E) be a graph and let Z(G) denote the polynomial ideal generated by the 

polynomials x:-xi (in I’) and by the polynomials XiXj (ij~.E). Consider the quotient 

ringR=R[x,,..., x,1/Z(G) (this is related to the so-called Reisner-Stanley ring of the 

graph; cf. [24]). We can introduce an order of polynomials by writing f 20 (mod Z(G)) 

ifff(x) > 0 for every root of the ideal Z(G); clearly, this induces an order on the quotient 

ring. It is not difficult to prove the following lemma. 

Lemma 6.7. For any polynomialf, we have f 3 0 (mod Z(G)) iff there exist polynomials 

gl, . . ..gN such thatf=g:+ . . . +gi (modZ(G)). 

In fact, this holds for every ideal with a finite number of zeros. But the following 

theorem shows an interesting connection between this property and the perfectness of 

a graph. 

Theorem 6.8. A graph G is perfect if and only if the following holds: 
(*) For any linear polynomial f, we have f >O(modZ(G)) iff there exist linear 

polynomials gl, . . . , gN such that f = g: + . . . + gi (mod Z(G )). 

The proof of this theorem follows from the characterization of perfectness in terms 

of the body TH(G). One could formulate analogous characterizations of t-perfect 

graphs using Corollary 6.10. It would be interesting to know which polynomial ideals 

in general have property ( *). 

The method sketched here is not restricted to the stable set problem; in fact, it can 

be applied to any O-l optimization problem. Moreover, it can be extended from 

quadratic to higher-order inequalities. For these extensions, see [ 19,20,23]. 
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