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Retrotransposons Regulate Host Genes
in Mouse Oocytes and Preimplantation Embryos

human genomes (International Human Genome Sequenc-
ing Consortium, 2001; Mouse Genome Sequencing
Consortium, 2002). Almost all mammalian TEs are retro-
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and Barbara B. Knowles1,* transposons, which propagate through an RNA interme-
1The Jackson Laboratory diate. While the majority are long interspersed nuclear
Bar Harbor, Maine 04609 elements (LINEs) or short interspersed nuclear elements
2 Max-Planck-Institut für Immunobiologie (SINEs), approximately one-tenth of them are long termi-
Stübeweg 51 nal repeat (LTR) elements, which resemble retroviruses
79108 Freiburg (Mouse Genome Sequencing Consortium, 2002). Effec-
Germany tive propagation of TEs demands their expression in

germ cell lineage-competent cells. Indeed, expression
of some retrotransposons has been documented in mouse
germ cells, gametes, and preimplantation embryos (BruletSummary
et al., 1985; Evsikov et al., 2004; Kigami et al., 2003;
Norton and Hogan, 1988; Ostertag et al., 2002; PikoA comprehensive analysis of transposable element
et al., 1984; Poznanski and Calarco, 1991; Taylor and(TE) expression in mammalian full-grown oocytes re-
Piko, 1987).veals that LTR class III retrotransposons make an un-

Barbara McClintock documented evidence for a geneexpectedly high contribution to the maternal mRNA
regulatory function of TEs in maize, referring to them aspool, which persists in cleavage stage embryos. The
controlling units (McClintock, 1950, 1953). Observationsmost abundant transcripts in the mouse oocyte are
of high TE expression in sea urchin and frog eggs andfrom the mouse transcript (MT) retrotransposon fam-
developmental modulation of TE expression suggestedily, and expression of this and other TE families is
the idea that TEs might be used by host organismsdevelopmentally regulated. Furthermore, TEs act as
as regulatory elements in gene networks (Britten andalternative promoters and first exons for a subset of
Davidson, 1969; Davidson and Posakony, 1982). Subse-host genes, regulating their expression in full-grown
quent genomic analyses and experimental evidenceoocytes and cleavage stage embryos. To our knowl-

edge, this is the first example of TEs initiating synchro- demonstrated that TEs can function as regulatory units
nous, developmentally regulated expression of multi- for host genes and appear to contribute to many mam-
ple genes in mammals. We propose that differential malian gene regulatory sequences (Britten, 1997; Jordan
TE expression triggers sequential reprogramming of et al., 2003; Speek, 2001; van de Lagemaat et al., 2003).
the embryonic genome during the oocyte to embryo The effects of TEs within their host genome can be
transition and in preimplantation embryos. viewed as essentially neutral, although their proven ca-

pacity for causing deleterious genomic rearrangements
and the emergence of mechanisms for their silencing inIntroduction
somatic tissues has led many to view them as harmful
parasites (Doolittle and Sapienza, 1980; Hickey, 1982;The growth phase of mammalian oogenesis is charac-
Orgel and Crick, 1980; Walsh and Bestor, 1999). Exten-terized by mRNA synthesis and accumulation of stored
sive genomic alteration by TEs and the functional sub-mRNAs and proteins in the ooplasm. Transcription be-
version of many to host physiology prompted the viewcomes undetectable in the mouse full-grown oocyte
that TEs exert a powerful influence on genome evolution(FGO), restarting in the late zygote, with progressive
(Miller et al., 1999; Mouse Genome Sequencing Con-embryonic genome activation continuing to the morula
sortium, 2002; Smit, 1999). TEs influence higher order eu-stage (Latham and Schultz, 2001). During the period of
karyotic genomic structure and function by initiatingtranscriptional silence, maternal mRNAs and proteins,
DNA modifications and chromatin remodeling throughaccumulated during oocyte growth, drive meiotic matu-
mechanisms such as RNA interference (RNAi)-mediatedration, fertilization, reprogramming of the gametic nu-
TE posttranscriptional processing and DNA targetingclei, and embryonic genome activation itself. We have
(Schramke and Allshire, 2003).previously shown that transposable elements (TEs) are

Comparative expression levels of TEs in mammalianhighly expressed during the mouse embryonic genome
oocytes and preimplantation embryos have not beenactivation at the 2-cell stage (Evsikov et al., 2004). How-
determined, and the range of activated TEs in theseever, the functional significance of this expression re-
unique cells is largely unknown. Analysis of a newlymains unclear (Kigami et al., 2003; Pittoggi et al., 2003).
sequenced FGO cDNA library led us to focus on theTEs are a significant component of eukaryotic ge-

nomes, occupying more than one third of mouse and previously unknown fact that a significant proportion
of the maternal mRNA pool is comprised of TEs and
chimeric transcripts of TEs with host genes. Here, we

*Correspondence: bbk@jax.org
report expression of TEs in mouse full-grown oocytes,3These authors contributed equally to this work.
cleavage stage embryos, and blastocysts. We focus in4Present address: School of Molecular and Microbial Biosciences,

The University of Sydney, NSW 2006, Australia. detail on LTR class III retrotransposons, which include
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Table 1. Expression of Transposable Elements in Full-Grown Oocyte, 2-Cell Stage Embryo, and Blastocyst cDNA Libraries

Number of ESTs in the Library (% of All ESTs)

Repetitive Element Full-Grown Oocyte 2-Cell Blastocyst

MT 2403 (12.73) 280 (2) 1 (0.01)
ORR 0 108 (0.77) 6 (0.04)
MuERV-L 0 443 (3.16) 0
IAP (ERV-K) 6 (0.14) 79 (0.56) 35 (0.23)
LINE 8 (0.04) 53 (0.38) 22 (0.15)
Othera 13 (0.07) 96 (0.68) 15 (0.1)

a SINE elements were excluded from this analysis because size selection of transcripts for library construction prevented their representative
inclusion. They are estimated to comprise 3%–5% of polyadenylated mRNA in oocytes and a lower proportion in blastocysts (Bachvarova, 1988).

members of the mammalian apparent LTR retrotranspo- transcripts constitute 3% and 1.4% of the 3000 most
abundantly represented, identified gene transcripts inson (MaLR) and endogenous retrovirus L (ERV-L) fami-

lies, and we investigate the ability of TEs to act as stage- the FGO and 2-cell stage embryo cDNA libraries, respec-
tively (Supplemental Tables S2–S4 at http://www.specific alternative promoters for a number of host genes.
developmentalcell.com/cgi/content/full/7/4/597/
DC1/). The listed number of genes that have chimeric

Results mRNAs is likely conservative, given that many tran-
scripts in oligo-dT primed cDNA libraries are 5�-trun-

LTR Class III Retrotransposons Are Preferentially cated.
Expressed in Full-Grown Oocytes To address whether chimeric transcripts belong to
and Cleavage Stage Embryos genes of any particular functional category, gene ontol-
To determine the overall pattern of TE expression in ogy (GO) annotations of the genes were analyzed using
full-grown oocytes and preimplantation embryos, we the MGI GO Slim Chart Tool (http://www.spatial.maine.
analyzed the number of repetitive element ESTs in large, edu/�mdolan/MGI_GO_Slim_Chart.html). Although ap-
representative, nonnormalized cDNA libraries from full- proximately 50% of genes have yet to be annotated, no
grown oocytes and 2-cell stage embryos and blasto-
cysts (Table 1; Rothstein et al., 1992). MT (mouse tran-
script), a member of the MaLR family of nonautonomous
retrotransposons, accounted for over 12% of the total
ESTs in the full-grown oocyte cDNA library. Other TEs
contributed collectively less than 0.3% of ESTs. In con-
trast to the oocyte, the bulk of interspersed repeat ESTs
in the 2-cell stage embryo cDNA library were murine
ERV-L (MuERV-L) (Benit et al., 1997; Evsikov et al., 2004).
MT and MuERV-L were in very low abundance in the
blastocyst cDNA library (Table 1).

Expression of representatives from all three classes
of LTR retrotransposons found in FGO and/or 2-cell
cDNA libraries was analyzed in more detail, using re-
verse transcription polymerase chain reaction (RT-PCR).

Figure 1. Expression of LTR Retrotransposons in Full-Grown Oo-RLTR1B (LTR class I), IAPEz (LTR class II), and ORR1A1,
cytes and Preimplantation EmbryosMT, and MuERV-L (all LTR class III) showed different
Retrotransposons are identified to the right of each panel by symbol:patterns of expression (Figure 1). Interestingly, antisense
MuERV-L (S) and MuERV-L (AS), sense and antisense transcripts of

transcripts of MuERV-L were also coexpressed in a stage- murine endogenous retrovirus L, respectively; MT, mouse transcript
specific pattern with sense counterparts, potentially set- nonautonomous retrotransposon; ORR1, Origin-Region Repeat 1
ting the stage for formation of double-stranded RNA and nonautonomous retrotransposon (Smit, 1993); RLTR1B, subfamily

of ERV1 (Jurka, 2000); IAPEz, Intracisternal A-type Particle provirus,subsequent RNAi-dependent MuERV-L silencing.
ERV-K family (Jurka, 2000). Bottom two panels, controls: Catnb,
intronic region of �-catenin gene (control for genomic DNA contami-
nation); mt-Atp6, mitochondrial ATP synthase 6 (internal control ofTransposable Elements Provide an Alternative
cDNA quality).

5� Exon to Many Transcripts in Full-Grown Abbreviations: OO, ovulated oocyte; Zyg, zygote (1-cell embryo);
Oocytes and Cleavage Stage Embryos E2c, early 2-cell stage embryo; L2c, late 2-cell stage embryo; 8c,

early 8-cell stage embryo; Mor, morula; Bl, blastocyst; Cont, positiveIn addition to the TEs themselves, the FGO and 2-cell
control for PCR reactions (C57BL/6J genomic DNA for retrotranspo-cDNA libraries contain many chimeric gene transcripts
sons and Catnb; plasmid with mitochondrial ATP synthase 6 insertcharacterized by alternative TE-derived 5� sequence.
for mt-Atp6); H2O, water control for PCR reactions.Except for this 5� sequence, such transcripts are identi-
PCR results were the same using two different sets of primers for

cal to mRNA sequences of known host genes (i.e., ORR1 and IAPEz (Supplemental Table S5); for MT and MuERV-L,
mouse genes curated by Mouse Genome Informatics different primer sets were used to those described previously (Evsi-

kov et al., 2004). A representative PCR result is shown.[MGI] and/or NCBI Gene databases). These chimeric
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Table 2. Classification of Chimeric Transcripts in Full-Grown Oocyte and 2-Cell Stage Embryo cDNA Libraries According to the
Contributing Retrotransposon

LTR Number of Genes

Repeat Class Class Family Element or Subfamily FGO 2-Cell

DNA 1 0
LINE 3 1
SINE 11 8
LTR I ERV1 LTRIS_MM 1 0

MMURS 1 0
RMER RMER6, 15, 19A, 19B 5 1

II ERV-K RMER4b, RLTR10, IAPLTR2_MM, BGLII, RLTR9A, ETnERV2 8 1
III ERV-L MuERV-L 3 10

MT2B 3 9
MT2C 0 4

MaLR MT 49 7
ORR1 5 0
MLT 1 0

Complex 5 0

Total 96 41

TE-derived transcripts from the most abundantly represented 3000 named genes in the FGO and 2-cell embryo cDNA libraries, classified
according to the repetitive element class from which the 5� sequence was derived. Complex 5� sequences, derived from more than one TE,
all include a MaLR retrotransposon as one component.

bias toward any particular category was revealed (data found in other cDNA libraries. All matching ESTs incor-
porated the TE as the 5� terminal sequence, not as annot shown).

To determine which TEs are most frequently involved internal sequence. Moreover, all such ESTs were found
in various ovary, oocyte, or preimplantation embryoin forming chimeric transcripts, they were classified ac-

cording to the TE contributing an alternative 5� sequence cDNA libraries, but never in cDNA libraries from other
developmental stages or tissues.(Table 2). In oocytes, MaLR retrotransposons and nota-

bly MT were the primary contributors to alternative 5�
sequences. MTA, phylogenetically the youngest and
most abundant MT subfamily (Smit, 1993), contributed Conserved LTR Splice Donor Site with Gene

AT-Rich Splice Acceptor Site Characterize5� sequence to 27% of chimeric transcripts (Supplemen-
tal Tables S2 and S3). In the 2-cell stage embryo, MTA LTR-Derived Chimeric Transcripts

A neural network splice site predictor (Reese et al., 1997)MuERV-L and other rodent ERV-L elements (MT2B,
MT2C) together contributed 5� sequence to 56% of chi- was used to determine how MaLR LTRs might splice to

cellular genes. The MaLR LTR of chimeric transcriptsmeric transcripts. Therefore, TE composition of the chi-
meric transcripts correlates with the overall abundance was always found in its sense orientation. Analysis of

consensus MaLR LTR sense sequences predicted aof a given transposable element in the oocyte and 2-cell
stage embryo libraries. Interestingly, a greater variety of conserved potential splice donor site immediately up-

stream of the LTR polyadenylation site of many MaLRsTEs contribute to chimeric transcripts in the full-grown
oocyte than in the 2-cell stage embryo. (Figure 2A). Splice site analysis of ten specific MTAs

generating a chimeric transcript showed that in most
cases, the predicted site matched the actual one (Figure
2B). Despite the splicing activity of some, most MT ESTsOrigin of Chimeric Transcripts

To gain insight into the mechanism(s) of chimeric tran- in the FGO cDNA library do not form chimeric transcripts
but are clearly the transcripts of cognate unspliced full-script generation, sequences were aligned to the anno-

tated Ensembl mouse genome assembly using SSAHA length MT retrotransposons.
Bias against orientation of the TE in the sense orienta-(sequence search and alignment by Hashing algorithm)

(Ning et al., 2001). In all cases, the cognate TEs were tion, relative to the transcription unit in which it is found,
is slight for MTs, suggesting this is not an importantlocated within the cellular gene locus or upstream of it.

Chimeric transcripts were missing all the exons located factor for MTA splicing activity (Figure 2C). In contrast,
genomic analysis showed that a markedly AT-rich se-upstream of the TEs and usually lacked one or more

conventional 5� exons when the TE was located up- quence of at least 100 nt characterizes the region imme-
diately 5� of the acceptor site for actively splicing MTAsstream of the gene locus (Table 3).

BLASTN searches of the expressed sequence tag da- (Figure 2D).
Taken together, the data suggest that a conservedtabase (dbEST) (Boguski et al., 1993) with these chimeric

transcripts were used to determine (1) whether there MTA LTR-splice site functionally competes with the pre-
dicted LTR polyadenylation and cleavage site and maywas evidence that such transcripts were splice isoforms,

as opposed to transcripts arising from an alternative be preferentially used when the MTA is inserted and
expressed in a suitable genomic location. Bias againstpromoter, and (2) whether such transcripts could be
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Table 3. Intron/Exon Structure of Selected Chimeric Transcripts

Transposable element Symbol Schematic

MTA Stk3

5730494M16Rik

Speer5-pps1

Zfp277

Spin

D7Ertd445e

Dncic2

D6Ertd365e

C230040D10Rik

Abcb1b

Fert2

Ski

MTC Vdac2

Nfil3

Dnajc11

Trp53bp1

MTD D6Ertd527e

AU017455

Rnf24

RLTR10/MTE Pard3

MT-int (MTA) Calr3

MT-int (MTC) E330021D16Rik

MT2B 2610005H11Rik

Examples of chimeric transcript structure determined by alignment of the transcript to the Ensembl annotated mouse genome assembly,
release 13.30.1. The retrotransposon alternative first exon (red box) is shown in relation to the contiguous gene; white boxes – conventional
transcript exons omitted in chimeric transcript; black boxes, conventional transcript exons included in chimeric transcript.

fixation of intronically located MaLRs in the same orien- MT LTRs and Developmental Regulation
of Chimeric Transcript Expressiontation as their human or mouse host gene is not uniform

between families. Our data suggest that factors other To investigate expression of MT-derived chimeric tran-
scripts relative to their conventional nonchimeric counter-than LTR polyadenylation and cleavage sites affect ori-

entation of LTR retrotransposons within genes (Med- parts, RT-PCR analysis of specific transcript expression
in FGOs and preimplantation embryos was performed.strand et al., 2002; Smit, 1993).
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Figure 2. Structural Analyses of MTA LTRs and of MaLR Genomic Positioning

(A) Aligned consensus MaLR LTRs from RepBase (Jurka, 2000) compared with a consensus mammalian splice site (Padgett et al., 1986). Bold
shaded sequence: putative conservation of 5� splice site (donor). Red bold italics: putative polyadenylation site. S: G or C. Lower case letters:
intron sequence.
(B) Alignment of 10 MTAs that contribute 5� sequence to chimeric transcripts. Bold: predicted splice sites; blue underline: actual splice sites;
red bold italics: putative MTA LTR polyadenylation site. The upstream splice site in Spin is a result of T→G transversion, which creates a
strong predicted donor site. Splicing is processed 5�→3� (Staley and Guthrie, 1998), so this site, occurring first, is preferentially used.
(C) Orientation bias of MaLR elements within introns. The orientation of all MTs occurring within introns in the mouse genome was determined
and compared with that of other intronically located MaLRs (ORR1 and MLT). Y axis: fraction of indicated intronic MaLR elements that have
the same orientation as the surrounding transcriptional unit. X axis: number of the indicated MaLR elements occurring in introns. Black
squares, MT subfamilies; circles, ORR1 subfamilies; diamonds, MLT subfamilies. No obvious correlation between the degree of bias against
same orientation and the strength of the prediction for the splice site of the consensus sequence was found for any element (data not shown).
(D) MTA LTRs splice into acceptor sites with a high upstream AT content. The nt composition of 180 nt window flanking the intron/exon
boundary was compared between (1) MTA elements spliced to a downstream exon, (hatched columns; n � 24); (2) the acceptor site 3� of the
MTA LTR in any Ensembl gene containing an MTA LTR in the same orientation as the transcript (black columns; n � 8287); (3) a pseudo-
random sampling of acceptor sites from any Ensembl transcript (gray columns; n � 12,043). X axis: distance from the splice junction in 30
nt windows. Y axis: mean GC content in sample population. The numbers above the columns are the Z values associated with the test for
equality of GC-content between the active MTA LTR (hatched column) and the sets in the other columns. The greater the Z value, the greater
the difference between sets.

Chimeric and nonchimeric forms of Spin (spindlin), MT-Derived SPIN Protein in 2-Cell
Dnajc11 (DnaJ (Hsp40) homolog, subfamily C, member Stage Mouse Embryos
11), and Vdac2 (voltage-dependent anion channel 2) One-third of the chimeric transcripts from the FGO have
were detected in oocytes and early preimplantation em- predicted open reading frames identical to the nonchi-
bryos but exhibited different patterns of expression (Fig- meric transcript isoforms, whereas others presumably
ure 3A). In contrast, only the chimeric form of Nfil3 (nu- encode alternative polypeptides (Supplemental Tables
clear factor, interleukin 3, regulated) was expressed in S2 and S3). To determine whether chimeric transcript-
oocytes and early embryos. Interestingly, both Nfil3 chi- encoded protein isoforms are translated, we prepared
meric and conventional transcripts encode identical antibody to the N-terminal oligopeptide of the chimeric
predicted proteins. Disappearance of chimeric tran- form of Spin (Figure 3C). This antibody immunoprecipi-
scripts by the 8-cell embryo stage suggests that they tated a single band, of the correct size for chimeric
are maternal mRNAs and that MTs may act as oocyte- SPIN protein, from 35S-methionine-labeled 2-cell stage
specific promoters. Moreover, regulation of MT-derived embryos (Figure 3B). SPIN is an abundant maternal pro-
chimeric transcripts is different from conventional tran- tein that is phosphorylated in the MAP kinase pathway
scriptional control of respective host genes. (Oh et al., 1997, 1999). The predicted N termini of the

To determine whether MTA-derived chimeric tran- chimeric and conventional SPIN protein isoforms have
scripts might be regulated by another promoter, we used different potential phosphorylation sites (Figure 3C),
the Gibbs Sampler (Lawrence et al., 1993) to search for suggesting that these two isoforms may function differ-
conserved DNA patterns in the 1 kb genomic sequence ently.
immediately upstream of MTA LTRs. No patterns con-
sidered statistically significant (p � 0.1, Wilcoxon Test)

Phylogenetic Conservationwere found, adding further evidence to the notion that
To approach the question of functional significance fromthe cis regulatory element, which controls chimeric tran-

script expression, is most likely the MT LTR. a different angle, class III LTR retrotransposons that
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Figure 4. Expression of Chimeric Transcripts Driven by MT2B Ret-
rotransposons

(A) RT-PCR of chimeric (�) or conventional (�) transcripts in FGOs
and preimplantation embryos. Labeling as in Figure 3A. Control:
mouse brainstem cDNA.
(B) RT-PCR of chimeric (�) or conventional (�) transcripts of Rpl41
gene in blastocysts (Blast) and isolated trophectoderm (TE) and
inner cell mass (ICM). mt-Atp6, mitochondrial ATP synthase 6 (inter-
nal control of cDNA quality); H2O, water control for PCR reactions;
Control: mouse liver cDNA (Rpl41), plasmid (mt-Atp6).

Figure 3. Expression of Chimeric Transcripts Driven by MT Retro-
transposons

(A) RT-PCR of chimeric (�) or conventional (�) transcripts in FGOs MT2B-driven expression of Rpl41 gene is reactivated
and preimplantation embryos. Amplicon band size and sequencing at the time of embryonic genome activation and per-
confirmed the identity and structure of chimeric transcripts. Tran- sists at least into the blastocyst. Expression of the
scripts are identified by gene symbol to the right of the chimeric 2610005H11Rik chimeric isoform is undetectable afterpanel of each set. Lanes identified as in Figure 1. Control: R1 ES

the 8-cell stage, suggesting that the MT2B promotercell cDNA (except Nfil3, mouse brainstem cDNA); Pl, control plas-
of this gene is active only in oocytes (Figure 4A). Wemids with chimeric transcript inserts; mt-Atp6 typical example is in

the lowest panel, a plasmid control is not included in this example. examined whether the first differentiation event in
(B) Autoradiograph showing translation of chimeric Spin transcript. mouse embryos, formation of trophectoderm at the
Ch: immunoprecipitation using affinity-purified rabbit polyclonal an- blastocyst stage, may result in the change of transcrip-
tibody against N-terminal polypeptide of chimeric SPIN protein;

tional regulation of chimeric transcripts. We did not ob-Cont: rabbit preimmune serum. Expected protein size is 27 kDa.
serve a difference in expression of chimeric and nonchi-(C) Spin protein product schematic showing alternative N termini
meric forms of Rpl41, both of which are transcribed atwith different predicted phosphorylation sites. Black bar, MT-

encoded amino acids; gray bar, amino acids encoded by conven- this stage, in trophectoderm and inner cell mass (Figure
tional nonchimeric transcript; white bar, amino acids common to 4B). Therefore, the general mechanism of MT2B-driven
both protein isoforms; striped boxes in white bar, SSTY motifs char- transcriptional regulation may still be retained in the
acteristic of Spin-Ssty family.

cells after commitment to the trophectoderm lineage.

contribute to specific chimeric transcripts were as-
Discussionsessed for their evolutionary conservation. Alignment

of chimeric transcripts to 129X1/SvJ mouse genome
Analysis of the full-grown oocyte transcriptome revealssequence (Celera Discovery System and Celera’s asso-
the high contribution of transposable elements to theciated databases) revealed that individual TEs, including
maternal mRNA pool. Different LTR retrotransposonsmouse-specific repeats such as MTA and MuERV-L,
have specific, developmentally regulated expressionwere conserved in the respective loci of two distantly
patterns, suggesting that normal repressive chromatinrelated strains of inbred mice (C57BL/6J and 129X1/
structure for these loci is established sequentially duringSvJ). Positional conservation of older rodent TEs in a
the oocyte-to-embryo transition and preimplantationnumber of genes was determined by analyzing the syn-
stages. Moreover, LTR retrotransposons in particular,tenic rat gene locus (Ensembl rat genome assembly 2).
and occasionally other TEs, act as oocyte- and preim-For some of these genes, chimeric and conventional
plantation embryo-specific alternative promoters for atranscripts encode identical proteins (e.g., Nfil3 [MTC],
wide variety of host genes. In these alternative tran-2610005H11Rik [MT2B], Rpl41 [ribosomal protein L41,
scripts, TEs contribute an alternative 5� exon. This intro-MT2B], and Rpl17 [ribosomal protein L17, RMER6A]).
duces variation in gene expression and potentially altersHowever, some of the conserved elements give rise to
gene function either at the RNA or protein level. The listchimeric transcripts that may encode altered proteins,
of chimeric transcripts presented here greatly expandse.g., Vdac2 (MTC), Itpr5 (inositol 1,4,5-triphosphate re-
the number of known genes with alternative TE-derivedceptor 2, MTC), Eef2k (eukaryotic elongation factor-2
promoters (van de Lagemaat et al., 2003). However,kinase, RMER15).
these transcripts are found only in a very specific timeInterestingly, different MT2B elements display dissim-

ilarities in transcriptional control of different genes. period.
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TEs Modify Gene Products and Potentially Initiate Mechanisms of Differential TE Expression
in the Oocyte and Preimplantation EmbryoNew Gene Regulatory Systems in Oocytes

and Early Embryos Transcription of mobile elements within any given cell
type depends on the availability of TE-competent tran-The synchronous expression of multiple genes driven

by TEs is an example of how random insertions of regula- scription machinery and/or the epigenetic status of the
genomic locus of each element. Thus, differential ex-tory elements, such as the MT LTR, can result in coregu-

lated gene expression. Functional proteins may be pro- pression of TEs may in part be regulated by the changing
complement of transcription factors in growing oocytesduced by chimeric transcripts with the same coding

sequence as their conventional counterparts (e.g., Nfil3, compared to cleavage-stage embryos (Wang et al.,
2004). Transcriptional specificity of LTR retrotranspo-Rpl41, 2610005H11Rik). Chimeric transcripts may also

produce nonconventional proteins, as shown by the sons is conferred by multiple transcription factor binding
sites in LTR sequences and can vary considerably withinvariant SPIN protein. Direct determination of the func-

tion of these variant chimeric transcripts requires inves- and between different classes (Keshet et al., 1991). Fac-
tors relevant to transcription of MaLRs and MuERV-Ltigation of each transcript and its cognate protein as

the oocyte progresses through maturation, fertilization, are currently completely unknown.
Epigenetic changes to the TE loci may also causeand activation of the embryonic genome.

TE-driven transcription of multiple host genes de- repression/derepression of each different class of mo-
bile elements. For example, cytosine methylation, whichscribed here provides, in principle, rich grounds for se-

lection of new modes of gene regulation by introducing is associated with silencing of TEs and imprinted genes
(Yoder et al., 1997), occurs unequally between the ma-substantial variation in gene expression and possibly

function. In mammals, such selection of new variants at ternal and paternal genomes in the zygote (Arney et al.,
2002; Mayer et al., 2000; Oswald et al., 2000). Gradualthe oocyte and early embryo stages may be feasible,

since it would not affect the fitness of females (although genome-wide demethylation commences after the first
cleavage, and remethylation begins in the blastocystit may affect reproductive success). Some of the new

TE-induced modes of gene regulation may, with time, (Monk et al., 1987; Santos et al., 2002). Therefore, tran-
scription profiles of class III LTR retrotransposons doget adopted and even gain different regulatory specific-

ity, such as activation of TE-driven transcription at other not perfectly coincide with global cytosine methylation
changes. This may be reflective of their unequal methyl-times of development. For example, the MT2B promoter

of Rpl41 regulates expression of this gene in preimplan- ation in the maternal and paternal genomes and/or their
remethylation in the early, rather than late, preimplanta-tation embryos, as well as oocytes, whereas the MT2B

promoter of the 2610005H11Rik gene is active only in oo- tion embryo.
The RNA interference machinery has been docu-cytes.

mented to silence retrotransposons in both plants and
animals and is required for DNA methylation in mostOocytes, Embryos, and the Biology
eukaryotes studied (Freitag et al., 2004; Hannon, 2002).of MaLR Retrotransposons
In mouse FGOs and early embryos, components of theThe current study indicates that oocytes and cleavage
RNAi machinery are present and active (Evsikov et al.,stage embryos provide an environment particularly suit-
2004; Svoboda et al., 2000). In addition, both senseable for transcription of the MaLR and ERV-L families
and antisense transcripts of MuERV-L and other TEs areof LTR class III retrotransposons and relatively less suit-
coexpressed, which may enable formation of double-able for transcription of class I and II LTR retrotranspo-
stranded RNA and trigger RNAi. Other indirect evidencesons and LINEs. MaLRs encode no known proteins, and
also supports the notion that MuERV-L and IAP may betheir means of propagation in the genome is unknown.
regulated by this mechanism (Svoboda et al., 2004). AnWe have shown that reverse transcriptase activity is
RNAi-dependent mechanism is involved in heterochro-extremely high in the early cleavage stage embryos,
matin formation in fission yeast and Drosophila. Inwhen MuERV-L expression is maximal (Evsikov et al.,
mammalian cells, pericentromeric heterochromatin and2004). The abundance of MT and ORR mRNAs during
retrotransposons associate with similar chromatin re-the same stages (Table 1, Figure 1) prompts the sugges-
modeling factors (Hakimi et al., 2002; Kondo and Issa,tion that these retrotransposons may use MuERV-L re-
2003; Schramke and Allshire, 2003; Volpe et al., 2002).verse transcriptase to propagate.
Taken together, these facts raise the possibility thatMaLRs are the most numerous LTR family in the
serial activation and silencing of retrotransposons ob-mouse genome, with approximately 388,000 copies
served in oocytes and preimplantation embryos may(Mouse Genome Sequencing Consortium, 2002). They
reflect stage-specific, potentially RNAi-mediated, tar-have coevolved with mammalian genomes for over 150
geting of chromatin remodeling complexes to widelymillion years and, in the case of MT and ORR subfamil-
distributed regions of the embryonic genome.ies, with rodent genomes for the last 75 million years

(Smit, 1996). MTA may still be active in the mouse ge-
nome (Smit, 1993); indeed, one instance of MTA inser- Concluding Remarks

A substantial cohort of host genes described here,tional pathology that results in structural alteration of
the affected transcript has been reported (Loftus et al., whose developmentally regulated expression is con-

trolled by TE-derived 5� exons, demonstrates that retro-1997). Results of this study, when combined with those
from our previous work (Evsikov et al., 2004), suggest transposons may directly affect developmental pro-

cesses in oocytes and cleavage stage embryos. Suchthat new class III LTR retrotransposon insertions into the
host genome may occur in the cleavage stage embryo. an abundance of chimeric transcripts is not detectable
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cDNA Preparation and Analysisby microarray analysis of mRNA expression in oocytes
Bacterial clones bearing plasmids containing inserts of interest wereand early embryos. Most of the array probes used in
obtained either from the FGO library or American Type Culture Col-such analyses are 3� biased (Carter et al., 2003; Hama-
lection (I.M.A.G.E. clones). Plasmid inserts were sequenced and

tani et al., 2004; Wang et al., 2004; Affymetrix Technical verified by comparison with the cluster sequence from either FGO
Note Part No. 701405), making it impossible to discern cDNA library or GenBank. Optimal PCR conditions for each PCR

primer pair were determined empirically.the transcripts with alternative 5� ends. Even if 5� array
RNA was isolated as described (Oh et al., 2000) or using PicoPureprobes are used, the repetitive nature of these alterna-

RNA Isolation Kit (Arcturus, Mountain View, CA). DNase-treated RNAtive 5� exons would likely cause nonspecific hybridiza-
was used for cDNA first-strand synthesis (Superscript Preamplifica-tion, precluding unambiguous results for such tran-
tion System, Invitrogen). Absence of genomic DNA contamination

scripts. Microarray analysis of chimeric transcripts is was confirmed by PCR of a �-catenin (Catnb) intronic region. PCR of
technically possible, e.g., using techniques for analysis mitochondrial ATP synthase 6 (mt-Atp6) was used as a constitutive

control. PCRs analyzing chimeric transcripts were conducted twiceof alternative transcripts (Hu et al., 2001), but requires
on at least two independent sets of random hexamer- or oligo-dT-initial knowledge of TE-derived transcripts in the sam-
primed cDNA; PCRs analyzing TE expression used at least twople. Therefore, study of the transcriptome through direct
independent sets of oligo-dT-primed cDNA. The cDNA template insequence analysis is a very important tool for discovery
each PCR reaction was two oocytes or embryo equivalents. Under

in the oocyte to embryo transition. our PCR conditions, we performed between 30 and 40 cycles of
Sequential activation and silencing of MaLR and other amplification to optimize detection of rare transcripts. Primers for

chimeric and nonchimeric transcript PCRs spanned more than oneretrotransposons in oocytes and preimplantation em-
exon; primers for LTR TEs were designed to amplify the internalbryos, together with the known links between retro-
region of the element (Supplemental Table S5).transposon silencing and chromatin remodeling, lead us

to propose that genome remodeling during this period
Antibody Preparation and Immunoprecipitationcould be initiated and ordered by retrotransposon ex-
A peptide corresponding to the N terminus of protein encoded by

pression. Concurrent analysis of both transcriptional ac- Spin chimeric transcript (MASASSPASSPRK, 12 aa) was synthe-
tivation and epigenetic modifications of specific geno- sized and used in the preparation of polyclonal antiserum in rabbits
mic loci will be required to explore this idea. (Biosource International, Hopkinton, MA). Affinity-purified serum

was used to immunoprecipitate protein from 100 35S-methionine-
labeled 2-cell stage mouse embryos, as described previously (OhExperimental Procedures
et al., 1997, 2000). Eluted protein was separated by SDS-PAGE and
autoradiographs prepared. Bands were identified by comparisonAnalysis of cDNA Libraries and Chimeric Transcripts
with protein size markers separated on the same gel.mRNA from full-grown germinal vesicle stage oocytes, 2-cell stage

embryos, and blastocysts was used to construct oligo-dT-primed
cDNA libraries as described (Rothstein et al., 1992). Analysis of ESTs Computational Analyses
from the 2-cell stage embryo cDNA library (14,813 ESTs; dbEST We used neural network software, NNSPLICE (Reese et al., 1997)
library ID.862) was reported (Evsikov et al., 2004). ESTs from the FGO 0.9 version, to predict 5�-splice sites in MaLR consensus sequences
library (19,000 ESTs; I.M.A.G.E. library ID, 1182) and two blastocyst and in the specific MTA elements giving rise to chimeric transcripts.
cDNA libraries (15,454 ESTs; dbEST library ID.850 and ID.875) were Consensus MaLR sequences were from Repbase 8.4 (Jurka, 2000).
analyzed similarly. In brief, overlapping ESTs were assembled into Actual 5� splice sites of MTs were determined by chimeric transcript
consensus sequences. Each consensus sequence or single EST alignment with genomic sequence.
represented an individual transcriptional unit; the number of ESTs To analyze the base composition of 3�-splice (acceptor) sites, the
per unit indicated its relative abundance in the library. BLASTN 180 nt flanking the acceptor sites were extracted for: (1) MTA-
(Altschul et al., 1990) searches of GenBank and SSAHA (Ning et al., derived chimeric transcripts from the FGO library; (2) any Ensembl
2001) searches of the Ensembl mouse annotated genome assembly transcript whose genomic precursor contained an intronic MTA LTR
(http://www.ensembl.org), release 13.3.01, were performed, in com- in the same transcriptional orientation; the next acceptor site down-
bination with analysis by RepeatMasker version 07/07/01 (http:// stream of the MTA was chosen; (3) a pseudo-random sampling of
www.repeatmasker.org/cgi-bin/WEBRepeatMasker) using each con- acceptor sites from any Ensembl transcript. The GC-percentage
sensus sequence or single EST to identify genes and classify re- was measured in nonoverlapping 30 nt windows for each sequence
peats. For transcripts with repeat-derived alternative 5� sequences, set. Equality of the GC-content in different sequence sets in each
final repeat identity was assigned by alignment of the transcript to window was tested using a two-sided, large-sample, standard-nor-
the annotated Ensembl public mouse genome assembly, Build 30, mal approximation of the binomial distribution (Miller and Freund,
annotated using RepeatMasker based on the March 2002 Repbase 1965).
Update (Jurka, 2000). To search for potential genomic promoter patterns, 1000 nts of

To determine potential open reading frames (ORFs) encoded by genomic DNA sequence 5� upstream of the MTA for 19 MTA-derived
chimeric transcripts, we used ORF finder (http://www.ncbi.nlm.nih. chimeric transcripts were analyzed. DNA patterns common to these
gov/gorf/gorf.html). The longest ORF starting with ATG was then sequences were searched using the Gibbs Sampler (Lawrence et
aligned to GenBank protein sequences using BLASTP. Chimeric al., 1993) with default search parameters and patterns lengths 10,
transcript-derived ORFs were defined as no different from the con- 15, and 20 nt. Statistical significance of patterns was determined
ventional protein if the N-terminal and all downstream sequences with the Wilcoxon test implemented in the Gibbs Sampler.
were identical to the conventional protein.
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