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We give a common generalization of P. Seymour’s “Integer sum of circuits” 
theorem and the tirst author’s theorem on decomposition of planar Eulerian graphs 
into circuits without forbidden transitions. “,I 1990 Academic Press. Inc. 

1. INTRODUCTION 

It is well known that a non-negative integer-valued circulation can 
always be expressed as a non-negative integer combination of (incidence 
vectors of) directed circuits. Thus Hoffman’s circulation theorem (See, e.g., 
[2]) can be interpreted as one giving a necessary and sufficient condition 
for the existence of a list of directed circuits of a digraph so that the 
number of circuits from the list containing any edge is between two integer 
bounds given in advance. 

P. Seymour [3] proved the undirected counterpart of Hoffman’s result. 

THEOREM 1.1. Let G = (V, E) be an undirected graph endowed with two 
functions f, g: E + R + for which f < g. There are non-negative variables 
x(C) assigned to the circuits C of G for which f  (e) < .X(x(C) : C a circuit and 
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e E C) < g(e) holds for every edge e tf and only if f (e) < g(B - e) for every 
cut B and edge e E B. 

(Where S is a finite set, X E S and h : S + R is a function, we use the 
notation h(X) := C,,,h(x).) 

An important difference between the directed and undirected case is that 
the special case f = g is trivial for directed graphs while this is the crucial 
part in Seymour’s proof of the undirected case. This is why we formulate 
here this special case and why we are concerned with it henceforth. 

THEOREM 1.2 (Sum-of-Circuits Theorem [3]). Let G = (V, E) be an 
undirected graph endowed with a function f: E --+ R + . There are non-negative 
variables x(C) assigned to the circuits C of G for which f(e) = 2I(x( C) : C a 
circuit and e E C) holds for every edge e if and only if 

2f(e) <f(B) (1.1) 

for every cut B and edge e E B. 

Another essential difference between the directed and undirected case is 
that in the directed case, if f and g are integer-valued, then x can be chosen 
integer-valued. This is not so in the undirected case as is shown by K4 
(complete graph on 4 nodes) with f = 1. 

In order to have hope to get an integer packing of circuits it is obviously 
necessary for f that 2(f(e) : e incident to v) is even for every v E I/. Such an 
f is called Eulerian. 

Unfortunately (1.1) is not sufficient even if f is Eulerian: let G be the 
Petersen graph and let f be 2 on the edges of a specified perfect matching 
of G and 1 otherwise. However, for planar graphs the situation is much 
better: 

THEOREM 1.3A (Integer Sum-of-Circuits Theorem [ 33). Let G = ( V, E) 
be a planar graph and f: E + Z + Eulerian. There are non-negative integer 
variables x(C) assigned to the circuits C of G for which f(e) = C(x(C) : C a 
circuit and e E C) holds for every edge e tf and only tf (1.1) holds for every 
cut B and edge e E B. 

Let us formulate this theorem in an equivalent form. 

THEOREM 1.3. The edge set of a planar Eulerian graph can be partitioned 
into circuits of length at least three tf and only if there is no cut in which 
more than half of the edges are parallel edges connecting the same pair of 
nodes. 
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This result is one of the starting points of our investigations. The other 
one is due to H. Fleischner [ 11. Let G = ( V, E) be a planar Eulerian graph. 
For every node u we are given disjoint pairs of edges incident to u. Such 
a pair is called a forbidden transition. Let us call a circuit of G a good circuit 
if it includes no forbidden transition. 

THEOREM 1.4 (H. Fleischner [ 1 I). The edge set of a planar Eulerian 
graph G can be partitioned into good circuits if and only if no forbidden 
transition forms a (2-element) cut. 

The main purpose of this paper is to show a common generalization of 
Theorems 1.3 and 1.4. Before doing that let us mention one more theorem 
belonging to this topic. 

THEOREM 1.5 (P. Seymour [4]). The edge set of a planar Euleriun graph 
G can be partitioned into circuits of even length if and only if every block of 
G contains an even number of edges. 

Remark. The proof of each of Theorems 1.3, 1.4, 1.5 consists of two 
parts. In the first part the problem is reduced to the special case when every 
degree is at most 4. In Theorem 1.4 Fleischner proves this special case by 
carrying out a complicated case analysis. His proof does not rely on any 
other results. In Theorem 1.3 Seymour invokes the Four-color theorem. 
This however can be avoided because in this special case Theorem 1.4 
includes Theorem 1.3. 

As far as Theorem 1.5 is concerned Seymour settles the “degree <4” case 
by invoking Theorem 1.4 along with a rather complicated argument. Let us 
show here that this latter can also be avoided and the “degree ~4” case of 
Theorem 1.5 follows from Theorem 1.4 by an easy trick: let G be a 
2-connected planar graph with an even number of edges such that the 
degree of each node is either 2 or 4. It is possible to color the edges with 
red and blue so that for each node the number of red and blue edges 
incident to that node is equal. Indeed, color alternatingly the edges red and 
blue along an Eulerian circuit of G. Since the number of edges is even this 
coloration will do. Define the forbidden transitions at every vertex of 
degree 4 to be the red-red and the blue-blue pairs. By Theorem 1.4 there 
is a decomposition of the edge set into good circuits. In this case a good 
circuit is an alternating red-blue circuit. Consequently, this decomposition 
consists of circuits of even length. 

Notation. Let G = (V, E) be an undirected graph. The degree of a 
node v E V is denoted by d(u). For a set XZ V of nodes the set of edges 
with exacty one end in X is denoted by V(X) and is called a cut. X and 
V-X are called the two sides of the cut. If IX/ = 1, V(X) is called a star. 
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A minimal cut is called a bond. (It is well known that in a connected graph 
a cut V(X) is a bond if and only if both X and V-X induce a connected 
subgraph.) The set of edges induced by X is denoted by E(X). In particular, 
E( {u, v>) is the set of parallel edges connecting u and u. 

2. COMMON GENERALIZATION 

Let G = (I’, E) be an Eulerian graph. At every node v E V a partition 
9(v) of the edges incident to v is specified. A member of 9(v) is called a 
forbidden part and a subset of a forbidden part with at least two elements 
is called a forbidden set. Let S := u (Y(v): u E V) denote the set of 
forbidden parts. 

A circuit of G is called good if it includes no forbidden sets. Let us call 
a cut S critical at PES (with respect to 9) if it contains precisely ISI/ 
elements from P. If S contains more than IS(/2 elements from P, then S is 
called bad (with respect to 9). (Note that one-element forbidden parts do 
not play any role.) The main result of the paper is as follows. 

THEOREM 2.1. The edge set of a planar Eulerian graph can be partitioned 
into good circuits of and only if there are no bad cuts. 

Remarks. This theorem immediately implies Theorem 1.4 when each 
forbidden part has at most two elements. Theorem 1.3 follows if the 
forbidden parts are the sets of parallel edges. 

In the theorem every forbidden part consists of edges incident to a node. 
What if we drop this property and the forbidden parts are arbitrary? The 
cut condition (namely, that no cut includes a forbidden part bigger than its 
half) is necessary to have a partition into good circuits. If we have just one 
forbidden part then the cut condition is sufficient: this is a theorem of 
P. Seymour [S] on planar multicommodity flows. However, it can be 
shown that the cut condition is not sufficient, in general, if there are two 
forbidden parts. 

Proof of the Theorem, The necessity of the condition is obvious. The 
proof of sufficiency goes along a similar line as Seymour’s proof of 
Theorem 1.3. The main difference occurs in Claim 6 which is trivial in 
Seymour’s proof and rather complicated here. 

First observe that if there is a bad cut, there is a bad bond. Indeed, any 
cut C is a partition of bonds and if none of these bonds is bad, then neither 
is C. 

Let G = (I’, E) be a counterexample with respect to B such that 
IEl + I VI is minimal and the number of one-element members of 9 is 
maximal. 
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Claim 1. G is 2-connected. 

Proof Every block of an Eulerian graph is an Eulerian graph. Let us 
consider any block B of G along with the restriction of 9 to B. Clearly, 
there is no bad cut so, if B# G, B can be partitioned into good circuits. 
The circuit-partitions of the blocks of G form a circuit-partition of G, a 
contradiction. 1 

Claim 2. Every critical cut is either a star or contracting one of its two 
sides results in a non-planar graph. 

Proof: Let S=V(X) be a critical cut which is not a star, that is, 1 < 
1 XI < [1/l - 1 and let T E S be a forbidden set for which 2 1 TI = ( SI. Assume 
that the node u incident to the elements of T is in X. Suppose furthermore 
that contracting either X or V- X results in a planar graph. First contract 
X into one node and delete the resulting loops. The new graph is smaller 
than G. It is Eulerian, planar and includes no bad cuts so it has a good 
circuit-partition. The same is true if we contract V- X instead of X. 

A circuit in the circuit-partition of the contracted graph G/X corresponds 
to either a good circuit of G lying entirely in V-X or a good path (i.e., 
a path not using forbidden parts) of G that lies in V- X apart from its two 
(possibly not distinct) endpoints so that one of its end-edges is in T while 
the other one is in S- T. Therefore we have a set of I TI good paths each 
of which has v as an endpoint. An analogous statement holds for the other 
contracted graph G/( V-X) except that u is the last node of these paths 
preceding the endnode. By leaving out the last edge of these JTI paths 
occurring in T we make u the endpoint. 

One can easily see that the two sets of paths can be paired together so 
as to form ITJ good circuits of G which, along with the other circuits 
arising from the circuit-partitions of G/X and G/( V- X), form a good 
circuit partition of G, a contradiction. (Observe that we have exploited at 
this point that each forbidden part is incident to a node.) 1 

Let us call a node u trivial if 9(u) consists of one-element parts. 
Let eiE E(v, ui) (i= 1,2) be two edges of G so that u, ui, u2 are distinct 

and lie on the same face of G. By splitting off e, and e2 we mean the 
following operation. Replace e, and e, by a new edge e = uluz and if 
e, E Pie P(ui), then in Pi replace ei by e (i = 1,2). Denote the new graph by 
G’ and the new set of forbidden parts by 9”. Clearly G’ is planar and 
Eulerian. 

Claim 3. If v is trivial, there is a bond in G’ which is bad with respect 
to 9’. Furthermore, every bad bond in G’ is a star, namely, either V’(u), 
V’(u,), or V’(u,). 

Proof: First we show that there is a bad cut in G’. For otherwise, since 
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G’ is smaller than G, there is a good circuit-partition of G’. The circuits in 
this partition not using e are good circuits in G. Replacing e by e, and e2 
in the circuit C of the partition containing e we obtain either a good circuit 
of G (if C does not go through u) or two edge-disjoint circuits. Since by the 
assumption v is trivial these two circuits are good as well, contradicting the 
fact that G is a counter-example. We have already seen that if there is a bad 
cut, there is a bad bond as well. 

Suppose now that a bond S’ =V’(X) is bad with respect to 9”. 
Obviously V(X) is critical (in G) with respect to 9 and e,EV(X), i = 1, 2. 

Since u1 and u2 lie on one face of G, G + e is a planar graph. Since S’ 
is a bond of G’, both A’ and V- X induce a connected subgraph of G + e. 
Therefore contracting either X or V-X into one node we obtain a planar 
graph from G. By Claim 2 V(X) is a star. Clearly the only stars that may 
become bad while splitting off e, and e, are the stars of u, u,, u2, as 
required. 1 

(Note that in the proof V-X does not necessarily induce a connected 
subgraph of G. This is why Claim 2 is stated in the present form.) 

Call V(u, ) dangerous at P E 9( u2) if V( U, ) is critical in G at P and 
P n E(u, u2) # @5. Obviously, V’(u, ) is bad at P' if and only if V( uI ) is 
dangerous at P and e2 E P n E(u, u?). 

Claim 4. If V(u,) is dangerous at PEL!?(u~), then d(u,) < d(u,). 

Proof We have d(u,)=2 lPnV(u,)l=2 IPnE(u,,u,)1<2 lPnV(u,)j 
Gd(d. I 

The following claim is obvious. 

Claim 5. If, for some node x, V(x) is critical both at PEP(S) and 
T E P(t) (where P # T, s # x # t), then s # r and x has s and t as the only 
neighbours. 

Claim 6. There is no trivial node. 

Proof We are going to show that if u is trivial, then splitting off two 
appropriate edges at u yields no bad star and this will contradict Claim 3. 

Case 1. u has exactly two neighbours. 

Let U, and u2 be the two neighbours of u and d(u,) 2 d(uz). By Claim 4 
V(u, ) is not dangerous at any member of 9(u,). 

Suppose that V(u,) is critical at PEG. Then E(u, ul)- P#@, 
for otherwise, V{ (u,, u} ) would be a bad cut at P. Furthermore, V(u) 
cannot be critical at P since otherwise IV((u,, u})l <d(u) + d(u,)= 
2 jPnE(u, ui)l +2 (PnE(u*, ur)\ =2 IPn {uz, u>l; i.e., V({u,, u>) would 
be bad again. 
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Therefore, irrespective of V(u,) being critical or not, the following choice 
of e, and e2 is possible. 

Let us choose ei E E(u, ui) so that e, E Pi if u is critical at a certain 
Pill!? (i= 1,2) and, moreover, e, $ P if V(u,) is critical at PEG'. 
Now splitting off e, and e2 cannot make either of the stars of u, uI, uz bad, 
contradicting Claim 3. 

Case 2. u has at least three distinct neighbours. 

By Claim 5 (applied to x = u) V(o) cannot be critical at more than one 
forbidden part. If V(v) is critical at a certain TE 9(t), let us choose u2 := t. 

If V(u) is not critical, let uz be a neighbour of u of minimum degree. Let 
ui and u; be two other distinct neighbours of u such that both {u, ui, u*} 
are on one face of G and {u, u; , u2} are on one face of G. Applying Claim 5 
to x = u2 we see that V(u,) cannot be critical both at a member of $Y(ui) 
and at a member of 9(u;). By symmetry let us assume that V(u,) is not 
critical at any member of P(u,). 

Assume first that V(u) is not critical. Then the choice of u2 and Claim 4 
show that V(u,) is not dangerous at any member of P(uz). Let us choose 
eiEE(u, ui) (i= 1, 2). Now splitting off e, and e2 cannot make either of the 
stars of u, u,, u2 bad, contradicting Claim 3. 

Second, assume that V(u) is critical at TEE’. Let e, EE(u, u,) and 
e2 E Tn E(u, u2). By the choice of u,, e,, and e2, splitting off e, and e2 does 
not make the stars of u and u2 bad. We claim that the star of ui cannot 
become bad either. Indeed, if V’( u, ) is bad (in G’), then (since e, E T) it 
must be bad at T’, so V(u,) is critical at T (in G). But then IV( { ui, u})l < 
d(u) + d(u,) = 2 ITn E(u, u2)I + 2 [Tn E(u,, uz)I = 2 ITn (u,, u}l; i.e., 
V{U,> u}) would be bad at T (in G) and the claim follows. 1 

Since G is a counterexample there is a forbidden part P with 1 PI > 2. Let 
P have a minimum number of elements and assume that P E 9(r) (r E V). 
Let eE P. Modify P(r) in such a way that Y’(r) :=9(r)- (P> u 
{P-e} u {e}, that is we replace {P} by {P-e} and {e}. Since G is a 
counterexample, where the number of one-element forbidden parts is maxi- 
mal, G is not a counterexample with respect to 9”. Therefore there is a 
partition V of the edge set of G into circuits which are good with respect 
to 9”. 

V is almost good with respect to 9 except that circuit Co containing e 
contains another element f of P - e. (CO may consist only of e and J) 

Let us construct an auxiliary digraph D = (I’, A) as follows. A directed 
edge uu belongs to A if there is a circuit C E $’ - {C,} going through u and 
u SO that either C does not use P or else if it contains an element r,rE p, 
then r, s, u, u follows each other on C in this order. (Note that C cannot 
use more than one edge of P since C is good with respect to 9.) 
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Claim 7. In D there is a directed path from Y to the set V( C,) - r. 

ProoJ It there is no such path, let X denote the set of nodes in D 
reachable from r along a directed path. The only node of CO belonging to 
X is r. 

We are going to show that V(X) is bad at P (with respect to 9). Indeed, 
let g= UVEV(X)- P where UE V-X, VEX and let C be the circuit in % 
going through g. Since no edge of D leaves X, C must contain an edge h = 
rs E P, where s$ X. Furthermore the segment of C between s and u is 
entirely in V-X while the segment of C between r and v is in X. 

In other words, to every edge g E V(X) - P an edge h from P n V(X) can 
be uniquely assigned. Furthermore, e, f~ P also belong to V(X), and hence 
V(X) is bad at P. 1 

Let S be a shortest path in D from r to V(C,) - r. Let r = oO, v,, . . . . vk 
(VIE V(C,)-r) be the nodes of S (in this order). Suppose that an edge 
vi-, vi of S belongs to D because of circuit Ci E w  - (C,} (i = 1, 2, . . . . k). 

Let G’ denote the subgraph formed by the union of circuits C, 
(i = 0, 1, . . . . k). Let 9’ be the restriction of 9 onto G’. 

Claim 8. In G’ there is no bad cut with respect to 9”. 

Proof Since G’ is the union of circuits all of which are good except CO, 
a cut can be bad only at P’ (where P’ denotes the restriction of P). Since 
Ci cannot contain an element of P, C, contains exactly two of them and 
C 2, . . . . Ck each contains at most one element of P, no cut can be bad 
at P’. 1 

Claim 9. G’= G. 

Proof. If G’ is a proper subgraph of G, then G’ is not a counterexample 
with respect to 9’. By Claim 8 the edge set of G’ partitions into circuits 
that are good with respect to 9’. This partition along with the circuits in 
g-0 ({Ci):i=O, l,..., k) would form a good circuit-partition of G (with 
respect to 9). 1 

Let L,={CE%?:E(C)~P=@} and Lz=(C~%?:IE(C)nPJ=l}. 
Because of the minimal choice of S every node of S belongs to at most two 
members of L, while r is in exactly one member of L, . By Claim 9 G’ = G 
so we have d(r)=2jLzJ+4=2 IPI and d(v,)d21LzI+4 (=2 IPI) 
(i= 1, . . . . k). By Claim 6 and by the minimal choice of P, for every i 
(i= 1, ,.,, k) there is a forbidden part Qi~ 9(vi) for which lQil > IP(. Since 
there is no bad cut, d(vi) > 2 lQil and so d(ui) > 2 lQil 2 2 IPI. 

Consequently, the inequalities above are equalities and every node vi 
(i= 1, 2, . . . . k - 1) occurs in exactly two circuits from LI . Both vO and vk 
occur in one circuit of L, and each is contained in C,. C, belongs to L,. 
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Since ui (i= 1, . . . . k - 1) is contained in two circuits of L, the minimality of 
S shows that the circuit Ci+ I defining edge uiui+ 1 of D cannot belong to 
Lz. Thus L, must be empty. 

Therefore we have proved that no node of G is contained in more than 
two circuits of %. Consequently, the degree of every node is at most four. 
By Theorem 1.4 such a graph cannot be a counterexample, a contra- 
diction. 1 

Remarks. If the forbidden parts at every node u partitions the edge set 
incident to u in such a way that each part is continuous in the cyclic order, 
then the main theorem can be easily reduced to Theorem 1.3A by applying 
a natural node-splitting technique. In the general case however this techni- 
que gives rise to a non-planar graph so Theorem 1.3A does not apply and 
this is why we needed the above refinement of Seymour’s proof of 
Theorem 3.1 A. 

Finally let us call attention to a recent paper of B. Alspach, L. Goddyn, 
and Cun-Quan Zhang in which they prove an integer sum-of-circuit 
theorem for graphs not containing a subdivision of the Petersen graph. 
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