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Abstract

In this paper, we investigate the multiple and infinitely solvability of positive solutions for non-
linear fractional differential equatioPu(t) =" f (u), 0 <t < 1, whereD = t*ﬁ‘ng_‘s"s, B >0,
y>20,0<é<1,v>—B(y +1). Our main work is to deal with limit case of(s)/s ass — 0 or
s —> oo and®(s)/s, ¥(s)/s ass — 0 ors — oo, where® (s), ¥ (s) are functions connected with
function f. In J. Math. Appl. 252 (2000) 804—812, we consider the existence of a positive solution for
the particular case of Eq. (1.1), i.e., the Riemann—Liouville type-(1, y = 0) nonlinear fractional
differential equation, using the super-lower solutions method. Here, we devote to the existence of
positive solution and multi-positive solutions for Eq. (1.1) by means of the fixed point theorems for
the cone.

0 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

In this paper, we will consider the nonlinear generalized fractional differential equation

Du(t) =g(t,u), O<t<l1, (1.2)

whereD = t—/f“sD;*‘S"S, B>0,y >0,0<§ <1, is the generalized operator of fractional

differentiation, corresponding to a generalized R—-L (Riemann—-Liouville) fractional inte-

gralR:tﬁ‘sIg"s, y>0,0<8<1.
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Many papers and books on fractional calculus, fractional differential equations have
appeared recently (see [1-16]). Most of them are devoted to the solvability of the linear
fractional equation in terms of a special function (see [9,10]) and to problems of analyticity
in the complex domain (see [16]). Moreover, some have been devoted to the solvability
and the existence for positive solutions of Riemann—Liouville type nonlinear fractional
differential equations (see [11-15]). No contribution exists, as far as we know, concerning
the existence of positive solution and multi-positive solutions for the generalized nonlinear
fractional differential equation

Du(t)=g(t,u), O<t<l1.

2. Preliminaries

For convenience, we give the definitions of the generalized fractional integral and de-
rivative.

Letw be a arbitrary real numbeér,a nonnegative integer.

Denote bycg‘) the linear space of functions

C‘g‘) = {f(x):xpf(x); p>a, fEC[O,oo)}.

Definition 2.1 [3, Definition 1.1.1]. Letm > 1 be an integerg > 0, y1,..., ¥, and
81>0,...,8, > 0 be arbitrary real numbers. Consider the get (y1,...,y,) as a
multiweight ands = (81, ..., d,,) as a positive multiorder of integration. For functions
f € Cq,a>=max[—B(x + 1)], we define the multiple Erdélyi—-Kober (multi-E—K) oper-
ators in the following way:

1
0 + 87
I;f’,’;,) ( k>f(x)=/G:Z:’9, [G (Vk(ak)l{l;)l }f(xal/ﬁ)da’
0

WhereGiZjB, is a special case of the Meijér-functions.

Then, each operators of the form
Rf (x) = xPo % f (), with arbitraryso > 0,

is said to be a generalized operators of fractional integration of Riemann—Liouville type,
or briefly, a generalized R—L fractional integral.

Remark 2.1. The multiple Erdélyi—Kober operators are well defined in the sgacwith
a = max [—Byx + D] from Lemma 1.2.1in [3].

Remark 2.2. The generalized fractional integraig’is coincides with the well-known
Erdélyi—Kober fractional integral, i.e.,

x—By+d

Y0 —
1/3 fx)= )

/ (f =P LB f () d () = 12 ().
0
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Remark 2.3. The Riemann—Liouville fractional integral is a particular case of the
generalized R—-L (Riemann-Liouville) fractional integral, i.e.,

P = m)/(x—r)‘* Lr@ydr =x° 1) f(x) = 2100 f (x).

Example 2.1. The kernel functions of the generalized fractional integrals are the simple
elementary function (see [3])

_o) 157
y+36 U=o) 0" " g <1,
Gll[ ‘ } ! e

0, o>1.
Example 2.2.
r 1
Iﬁs/"sx”= v+p/ptl) xP, p>-—By+1).
'y+dé6+p/B+1)

Definition 2.2 [3, Definition 1.5.3]. Lety, 8y > 0,k =1, ..., m, be arbitrary real numbers
and

_ ) [&]+1, fornonintegedy,
| &, forintegersy, k=1,...,m.

The differential operator
df m
) e +6 ) 43 )
Y00 8y 00 =) [l—[ l—[( x—+yk+])]1/§”,’;, 0. 0=0)
k=1 j=1

defined for functions oCé"lJ“"'J””"), is said to be a generalized Erdélyi—-Kober fractional
derivative.
More generally, the generalized operators of fractional differentiation, corresponding to

the generalized fractional mtegra‘ls_xﬂ%lé”“ @) 50> 0 are defined as
— —480), (6 ) —
Df (x) =x~PRDA 0 f () = DI PO f(x), 8020,

We introduce the following definition which we will use in this paper.

Definition 2.3 [3, Definition 1.5.4]. By the Erdélyi—-Kober fractional derivative, we mean
the differential operator

U 1 d

defined in space€{” with « > —g(y + 1) and

__ | [81+1, fornoninteges,
4, for integers.
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More generally, the generalized operators of fractional differentiation, corresponding to
the generalized fractional integrats= x#3 1 Iy 1, 8 >0, are defined as

— —68),(8 — —8),(8
Df () =x P DY £y = x P DY f )
=D x P fx), 50,

Remark 2.4. The Erdélyi—Kober fractional derivative is also written as

y,0 y,0
Dy’ =Dy

Remark 2.5. The Riemann—Liouville fractional derivative of ordex®$ < 1 is a particular
case of the generalized operator of fractional differentiation, i.e.,

D? _ N8 _ 75 b
fx)= F(l 5) dx /(x ) f(r)dt=x" f(x).
Example 2.3.
. I'y+d8+p/B+1
Dy,(sxp — xp’ > — + 1 ,
’ rotpprn o PTTPUEY
particuIarly,Dg"sx*ﬂ(VH) =0.
We have

0 7Y,
D1yt f =1,

forevery f € Cy, o > —B(y + 1) from the above Definition 2.3, Remark 2.2, and Theo-
rem 1.5.5in [3].
We have the following lemma from Definition 2.3, Remark 2.1, and Example 2.3.

Lemma 2.1. Let0 < § < 1. If we assume: € C,, @ > —B(y + 1), then the fractional
differential equation
DZ’SM =0

hasu = cx =P+ ¢ e RY, as unique solutions.
From this lemma and Remark 2.1, we deduce the following law of composition.

Proposition 2.1. Assume thaff is in C,, @ > —B(y + 1), with a fractional derivative
D}’ f €Cara > —B(y +1). Then
17°DE° f ) = f(x) +ex PO,

for somec € R1. When then functiorf is in C[0, co), thenc = 0.

The following lemma plays major role in our analysis.
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Lemma 2.2 (see [17])Let X be a Banach space, and I€tC X be a cone inX. Assume
£21, £2, are open subsets of with 0 € 21 C 21 C 22, and letS: P — P be a completely
continuous operator such that either

(1) ISwll < lwll, w e PNos2y, and|[Sw]l > [lwll, w € P N 3$22, or
(2) ISwll = lwll, w e PN3g2g, and|[[Sw]| < [lwll, w € PNILe.

Thens has a fixed pointirP N (22 \ £21).

3. Main results

Let X = C[0, 1] be the Banach space endowed with the sup norm.
We will introduce a concept gi-positive homogeneous function & 0).
A real function is calleds-positive homogeneous function if

fs)=A"f(s), forallx>0, seR.
Define the cone

. 1
K:{ueX; u(At) =xu(), 0<ir <1, min u(t)}—llull}.
1/2<1<1 4

The positive solution which we consider in this paper is suchi#if@t= 0, u(z) > 0,
O<r<lueX.
Through this paper, we assume that

(1) g(t,u) =t'f(u), wherev > —B(y + 1), f:[0, +00) — [0, +00) is a continuous
function;
(2) fispu (u#0) positive homogeneous function, i.e.,

fOu)=2"f@w), forallA>0, u>0,
hold, whereu satisfyu +v+ 6 =1

According to Proposition 2.1, Eq. (1.1) is equivalent to the integral equation

t
u(t) =171} g (t,u(0)) =”%ﬂ/(fﬂ =P gz u(@) d()
p ’ (%) ’
0
t
—B(y+9)
= tﬁétFW /(tﬁ — PP f(u(e)) d(P). (3.1)

0
Let7T: K — K be the operator defined by

5; Bly+

— B
Tu(t)=t 7o)

/(tﬂ PP f(u(o)) d(2P). (3.2)

We have the following Iemma.
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Lemma 3.1. Assume the assumptio(® and (2) hold. Then the operatof : K — K is

completely continuous.

Proof. We first prove that": K — K.
Foru € K, we have

t —B(y+9)
) =1 ——

Tu(t
')

/(rﬁ YIBY f (u(0)) d (o)

t*ﬁ()’+5) 1
=tﬂ‘swtﬂy+“+ﬁ8+”/(l—sﬁ)57 sﬂys”f(u(s))d(sﬁ)

1
t
i) /(1— sPY LBV Y £ (u(s)) d(sP).
0
Thus, forO<A <1,0<r <1,

1
Tu(rt) = % /(1 — 5Py LBV sV £ (u(s)) d(sP) = ATu(r).
0

On the other hand, we have

~
‘Ua

st —B(y+9)
ITul| = max

B _ 1By=1yBy v 8
e . /(t ) YT f(u(r))d(P)

0<r<1

_ b [ 1By v B
= max G /(1 sPY T 5P s f(u(s))d(s )
0
1 1
_ = _ BYS=1 By v B
_m)/(l sPY LBV 5 £ (u(s)) d(sP),
0

min Tu(f)= min —/(
1/2<1<1 1/2<1<1 I (8)
0

sPY ISPV Y f (u(s)) d(sP)
= /(1 Fyd= 1sﬁ)’s"f(u(s)) d(sP)

}i/(l sPyS LBy gV f(u(s))d(sﬁ)



142 S. Zhang / J. Math. Anal. Appl. 278 (2003) 136-148

1
1 t
_ = _ BYS-1 By v B
= — max NG, /(1 sPY TPV g f(u(s))d(s )
0

4011

1 t*ﬂ()’+5)
== max|t#®
4 0<r<1 (%)

—1||T ||

t
/(tﬂ — PP e f(u(v)) d(zP)
0

SoT:K — K.
Thus, we can prove this lemma by the Arzela—Ascoli theorem as proving Lemma 2.1
in[15]. O

We let
E A< rd+y+s+v/B) 4dell+y+65+v/B) <

<A< <
e 'l+y+v/B) 'l+y+v/B)
wheree > 1 is a suitable constant,

@(s) =max{ f(r) | 0< 7 <5},
1
W (s) = min{f(t) ‘ <t gs}.
Obviously,® (s) and¥ (s) are also continuous functions by the assumption (1).

We also let

f0—|lm&, fm_lm&

s—>00 8

We obtain the following lemma.

Lemma 3.2. Assume the conditiorf4¢) and (2) hold. If there exists two positive constants
a,b, a # b such thatd (a) < aA, ¥ (b) > bB, then Eq.(1.1) has one positive solution
u e K,andmin{a, b} < |lu|| < maXa, b}.

Proof. We only need to prove the operatbrhas one fixed point itk by the equivalence
between Eqg. (1.1) and the integral equation (3.1). OperBtok — K is completely
continuous by Lemma 3.¥u € K, |u| =a, thus 0< u(t) <a,r €0, 1],and

max{f(s) |0<s <a} =®(a) <daA.
Then we have the following equalities by Example 2.2:

85 178 st P B_ _B\o—1_B B
Tu(t)=t Iﬁ’ g(t,u(t)) 1"(5) /(t ) T Vg(r,u(t))d(r )

Bt [
= ([ e (o) e
0
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'

—B(y+9)

< ﬂ%% (/(tﬁ _ tﬁ)ts—lrﬁlfrv d(r’s))
0

r'y+v/B+1)
ry+s+v/B+1)
Yu € K, ||lul| = b, thus(1/4)b < u(t) <b,t €[1/2,1],and

P <a=ul.

min{f(t) ‘ %b <r< b} —w(b)>bB,

1
Tu(l) = tﬁ‘slg’ag(l, u(l) = %5) (/(1— tﬁ)‘s_lrﬁ”r”f(u(t))d(rﬁ)>
0

1

1

- _ By By v g B

>bBF(8)(/(1 ) PV eV d (T ))
0

'y +v/p+1)
r'y+s6+v/B+1)

By Lemma 2.2, operatdf has a fixed poink € K and mir{a, b} < |lu|| < maxXa, b}.
So Eq. (1.1) has a positive solution

Zb=ul.

Theorem 3.1. Assume the condition€l) and (2) hold, and fo = 00, foo = 0. Then
Eqg. (1.1) has one positive solutione K.

Proof. We only need to prove the operatbrhas one fixed point itk by the equivalence
between Eq. (1.1) and the integral equation (3.1). And opeffatéf — K is completely
continuous by Lemma 3.1.

By fo = oo, for arbitraryM > 0, there exists one positive constarguch that

fGs)=sM, forallO<s <a.

Similarly, by fo = 0 for Ve > 0, there exists one positive constarsuch that
f(s)<es, foralls>d.

Let
c= max f(s)+ 1.

I

Taking

b {a,ZC 2 (y +v/B+ e }’

"T'(y+8+v/B+1)

then by means of Lemma 2.2, operaihas a fixed pointz € K anda < |u| <b. So
Eqg. (1.1) has a positive solution.O
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Lemma3.3. (1) If fo < A, then there existg > 0 such that
d(a) <aA, forall0<d.
2 If fxo > (1/e)B, wheree > 1 is a suitable constant, then there exigts> 0 such
that

1
v (b) > EbB’ forall b > dj.

Proof. (1) By fo < A, then there existd > 0, such that
fs)<sA, 0<s<d.
Soforall0<a <d,

D(a)= max f(s) < max sA=aA.

<s<a 0<s<a
(2) By foo > (1/e) B, then there existgd; > 0, such that

1
f(s)>=sB, s>du.
e

So forallb > dj,

. ) 1 1
¥ (b) = min s) > min  —-sB=—>bB. O
) (1/4)b<s<bf( ) (1/8b<s<b es 4e

We obtain the following existence result.

Theorem 3.2. Assume the conditiongl) and (2) hold. If sup.q(@(s)/s) < A and
infs~o(¥(s)/s) > B, then Eq.(1.1) has one positive soluticn

Proof. We only need to prove the operatBrhas one fixed point ik by the equivalence
between Eqg. (1.1) and the integral equation (3.1). OperBtok — K is completely
continuous by Lemma 3.1.

By the assumptions of the theorem, there exist two positive constant 0, such that

@(a) <aA, W (b) > bB.
Noticing that O< A < B, thena # b, so by Lemma 3.2, operatdr has a fixed point
u € K, and mira, b} < |lu|| < maxXa, b}, which completes the proof.0

Theorem 3.3. Assume the conditiond) and (2) hold, and fo < A. If there exist$ > 0
such that? (b) > bB, then Eq.(1.1) has one positive solution

Proof. We only need to prove the operatBbrhas one fixed point itk by the equivalence
between Eqg. (1.1) and the integral equation (3.1). OperBtok — K is completely
continuous by Lemma 3.1.

By (1) of Lemma 3.3, there exists> 0 such that

D(a) <aA, forall0<a<d.
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Thus, operatofl” has a fixed point: € K satisfying miffa, b} < ||u|| < min{a, b} via
Lemma3.2. O

Theorem 3.4. Assume the conditiond) and (2) hold, and f, > (1/¢)B, wheree > 1
is a suitable constant. If there exists> 0 such that® (a) < aA, then Eq.(1.1) has one
positive solution:.

Proof. We only need to prove the operatbrhas one fixed point itk by the equivalence
between Eq. (1.1) and the integral equation (3.1). Operitack — K is completely
continuous by Lemma 3.1.

By (2) of Lemma 3.3, there exist > 0 such that

1
v (b) > EbB’ forall b > di.

Thus, operatof” has a fixed point € K satisfying mira, b} < |u| < maxa, b} via
Lemma3.2. O

Theorem 3.5. Assume the conditiond) and (2) hold. If fop < A, fsx > (1/e)B, where
e > lis a suitable constant, then E@L.1) has one positive solution.

Proof. We only need to prove the operatbrhas one fixed point itk by the equivalence
between Eq. (1.1) and the integral equation (3.1). Operitak — K is completely
continuous by Lemma 3.1.
By fo < A, foo > (1/¢)B and Lemma 3.3, there exist two positive numbeb such
that
1
®(a) < aA, W (b) > —bB.
e

We may assume that < b. Thus, operatoil’ has a fixed poinu € K satisfying
a<|lul| <bviaLemma3.2. O

The following are existence results of multiple solutions.
Theorem 3.6. Assume the conditiond) and (2) hold, and f > (1/¢) B, wheree > 1is
a suitable constant. If there exist
O<bpyr<am<by, <---<ax<br<al <+o00,
suchthatd (a;) <a;A (i=1,2,...,m),¥(b;)) >2b;B (i=2,...,m+ 1), then Eq.(1.1)
has2m positive solutions.
Theorem 3.7. Assume the condition), (2) and fo < A hold. If there exist
O<bri<ap<by<---<ay<by <apt1 <—+00,

suchthat® (a;)) <a;A (i=2,....m+1),¥b;) >b;B (i=12...,m),then Eq.(1.1)
has2m positive solutions.
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Since the proofs of Theorems 3.6 and 3.7 are analogous, we only prove Theorem 3.6.

Proof of Theorem 3.6. We only need to prove the operatfrhas fixed point inK by
the equivalence between Eq. (1.1) and the integral equation (3.1). OpErator> K is
completely continuous by Lemma 3.1.

By the continuity of@ andy, it is easy to know that there exist

ap >ag>ay >by > b1 > b > ap > a1 > a) g,
such that

cD(a,L)éa,LA, q)(a,’(’)ga,’(’A k=12, ...,m),

U(by) 2 b B, Ww(b)=2b{B (k=2,....m+1).

On the other hand, by > (1/e)B and Lemma 3.3, we may takg > a}, b7 > af
such that

w(by)=byB,  ¥(b})>Db|B.

Now, for every{a;,b;}, {a/, b} (k =1,2,...,m), there existuy,u; € K (k,i =
1,2,...,m) such that

Tur = uy, Tu; =u;
and
ar < llukll < by, a < |lu;|| < bj.

So we can draw our conclusion
We have the following results of infinitely solvability for Eq. (1.1).

Theorem 3.8. Assume the conditionél) and (2) hold. If lims_o®(s)/s < A and
lim,—o¥(s)/s > B, then Eq.(1.1) has a sequence of positive solutidng}?? ;.

Theorem 3.9. Assume the condition€l) and (2) hold. If lim;_ . @(s)/s < A and
lims— oo ¥ (s)/s > B, then Eq.(1.1) has a sequence of positive solutidag} ;2 ;.

Since the proofs of Theorems 3.8 and 3.9 are analogous, we only prove Theorem 3.9.

Proof of Theorem 3.9. We only need to prove the operatfrhas fixed point inK by
the equivalence between Eq. (1.1) and the integral equation (3.1). OpErator> K is
completely continuous by Lemma 3.1.

By the assumptions of the theorem, there exist sequence of positive comgtans
by >0(k=1,2,...) suchthat

D (ax) < aiA, W (br) = b B.
Without loss of the generality, we may assume that

air>b1>ax>by>--->ap>by>---.
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Forevery{by,ar}, k=1,2, ..., operatoT has fixed pointy, € K, andby < |Jug|l < ak

by Lemma 3.2.
So we can draw our conclusionO

Example 3.1. Consider the following fractional differential equation:

'y +1/2p)+1) (1/2-5,,1/2
A'(y =6+1/2B)+ 1) ’

whereg(y —8+1)+1/2> 0.
We easily see that

Jo=o0, foo=0.

Then by Theorem 3.1, this equation has one positive solutiork .

Du(t) = O<t<1,

Example 3.2. Consider the following fractional differential equation:

5ra 1)
A+y+ )tfﬁg

Du(t) = u, O<t<1

r'd+vy)
We takee =5,
_6I'(1+y+9) _20r(1+y +96)
T I'A+y) - T'(+y)
Then
4F(1+y+3)_§< _6F(1+y+8)< rl+y+98)
Fl+y) e - T'(l+y) rad+y)
We see that
_5F(1+y+8)<A_6F(1+J/+8)
T I'A+y)  I'A+y)
p _5F(1+y+3)>§_4r(1+y+3)
T A+y) e T'A+y)

So by Theorem 3.5, this equation has one positive solutierk .

Remark 3.1. The generalized R—L (Riemann—Liouville) fractional calculus (fractional
integration and fractional derivative) used in this paper may be extend to half-axis;
it is apparent from their definitions. And the (Riemann—Liouville) fractional calculus
(fractional integration and fractional derivative) used in [14,15] is a case of generalized
R-L (Riemann-Liouville) fractional calculus, so it can also be extend to half-axis; for
the detailed case, see [1-3]. The fractional calculus can be applied in various fields
of science, it covers the widely known classical fields, such as Abel integral equation
and viscoelasticity, and also less-known fields, including analysis of feedback amplifiers,

capacitor theory, fractances, generalized voltage dividers, and other.
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Remark 3.2. There are another kinds of fractional calculus: Riemann—Liouville integral
and derivative of fractional order on the finite interyal b], where—oo < a < b < 00,
which are called Riemann—Liouville left-sided and right-sided fractional calculus. In this
caseqa, b must be finite numbers; when b are infinite numbers, there is another definition
which differs from the definition for the function in the finite interval; for the detailed case,
please see [2]. From [4], we see that the notions of left and right fractional derivatives
can be considered from the physical and the mathematical viewpoints. Sometimes the
following physical interpretation of the left and right derivative can be helpful.

Suppose that is time and functionf (t) describes a certain dynamical process devel-
oping in time. If we taker < ¢, wheret is the present moment, then the stgte) of
the process belongs to the past of this process; if wetake, then f (r) belongs to the
future of the procesg. From such a point of view, the left derivative is an operation
performed on the past states of the procgsand the right derivative is an operation
performed on the future states of the procgsOn the other hand, from the viewpoint
of mathematics the right derivatives remind us of the operators conjugate to the operators
of the left differentiation.
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