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a b s t r a c t

This paper contains two results concerning the equivariant K -theory of toric varieties.
The first is a formula for the equivariant K -groups of an arbitrary affine toric variety,
generalizing the known formula for smooth ones. In fact, this result is established in amore
general context, involving the K -theory of graded projective modules. The second result is
a new proof of a theorem due to Vezzosi and Vistoli concerning the equivariant K -theory
of smooth (not necessarily affine) toric varieties.
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1. Introduction

Let k be a field, suppose Uσ is the affine toric k-variety associated to a strongly convex rational polyhedral cone σ in
Euclidean n-space, and let T be the n-dimensional torus that acts on Uσ . If Uσ is smooth, then there is an equivariant
isomorphism Uσ ∼= Tσ ×Ar , where r = dim(σ ) and Tσ is the unique orbit of minimal dimension (namely, dimension n− r).
Using basic properties of equivariant K -theory of smooth varieties (see, for example, [6]), one obtains natural isomorphisms

K Tq (Uσ ) ∼= K
T
q (Tσ ) ∼= Kq(k)⊗Z Z[Mσ ] (1)

whereMσ ∼= Zn−r is the group of characters of Tσ .
This paper consists of twomain results related to the isomorphism (1). The first, Theorem 4, shows that this isomorphism

holds for all affine toric varieties, not just smooth ones. In fact, this theorem establishes the more general isomorphism

K Tq (Uσ ×k Spec R) ∼= Kq(R)⊗Z Z[Mσ ], (2)

where R is any k-algebra and the action of T on Spec R is trivial. Theorem 4 is actually a consequence of our Theorem 1,
concerning the K -theory of graded projective modules.
The second main result of this paper is a new proof of a theorem due to Vezzosi and Vistoli [11, Theorem 6.2] that

calculates the equivariant K -theory of an arbitrary smooth toric variety. See our Theorem 6 for the precise statement. The
proof due to Vezzosi and Vistoli uses a more general result, one that applies to arbitrary actions by diagonalizable groups
schemes. However, in the important special case of toric varieties, we recover their result using only Eq. (1), the theory of
sheaf cohomology for fans, and Thomason’s foundational work on equivariant K -theory [9].

2. The K -theory of graded projective modules

The first main goal of this paper is to establish the isomorphism (2). The action of T on Uσ is given by a grading (by the
group of characters of T ) of the associated ring of regular functions for Uσ , and an equivariant bundle on Uσ is given by a

∗ Corresponding author.
E-mail addresses: xau@math.unl.edu (S. Au), s-mhuang2@math.unl.edu (M. Huang), mwalker5@math.unl.edu (M.E. Walker).

0022-4049/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.jpaa.2008.10.010

http://www.elsevier.com/locate/jpaa
http://www.elsevier.com/locate/jpaa
mailto:xau@math.unl.edu
mailto:s-mhuang2@math.unl.edu
mailto:mwalker5@math.unl.edu
http://dx.doi.org/10.1016/j.jpaa.2008.10.010


S. Au et al. / Journal of Pure and Applied Algebra 213 (2009) 840–845 841

graded projective module over this ring. Thus, our first theorem is really about the K -theory of graded projective modules.
In this section, we state and prove a general theorem of this form.
Let R be any commutative ring,M an abelian group (written additively), and A ⊂ M a submonoid.We form the associated

monoid-ring R[A]. As a matter of notation, an element a ∈ A is written as χ a in R[A] so that χ aχ b = χ a+b for a, b ∈ A. The
commutative ring R[A] is an M-graded R-algebra, with elements of R declared to be of degree zero and for any a ∈ A,
deg(χ a) := a ∈ A ⊂ M . Let P (R) denote the category of finitely generated projective R-modules and let PM(R[A]) denote
the category consisting of finitely generated M-graded projective R[A]-modules and with morphisms given by M-graded
R[A]-module homomorphisms. Let KM

∗
(R[A]) denote the K -theory of the exact category PM(R[A]).

Recall that if G is anM-graded R[A]-module andm ∈ M , then G[m] denotes the samemodule but with the grading shifted
so that G[m]w = Gw−m for allw ∈ M . In particular, R[A][m] is graded-free of rank one generated by an element of degreem.
Write U(A) for the subgroup of units (i.e., elements with additive inverses) in the monoid A. We fix, once and for all, a set

S(A) ⊂ M of coset representatives for the subgroup U(A) ofM .

Theorem 1. For a commutative ring R, an abelian group M, and a submonoid A of M, we have an isomorphism

Kq(R)⊗Z Z[M/U(A)] ∼= KMq (R[A]), for all q.

Under the identification of Kq(R)⊗Z Z[M/U(A)]with
⊕
S(A) Kq(R), this isomorphism is induced by the collection of exact functors

sending (P, s), with P ∈ P (R) and s ∈ S(A), to P ⊗R R[A][s].

The proof of the theorem requires the following two lemmas. Throughout the rest of this section, let U = U(A) and
S = S(A).

Lemma 2. The exact functor

ψ :
⊕
S

P (R)→ PM(R[U])

determined by

(Ps)s∈S 7→
⊕
s∈S

Ps⊗R R[U][s]

is an equivalence of categories.

Proof. For P, P ′ ∈ P (R) and s, s′ ∈ S, we have an isomorphism

HomMR[U](P ⊗R R[U][s], P
′
⊗R R[U][s′]) ∼=

{
HomR(P, P ′) if s = s′ and
0 otherwise, (3)

determined by sending a graded homomorphism from P ⊗R R[U][s] to P ′⊗R R[U][s′] to the induced map on the degree s
pieces. It follows that ψ is fully faithful.
Given F ∈ PM(R[U]), theM-grading on F gives a decomposition F =

⊕
m Fm. Ifm,m

′
∈ M belong to different cosets of

U , then (R[U] · Fm) ∩ Fm′ = 0. Thus we have an internal direct sum decomposition

F =
⊕
s∈S

Qs

as M-graded R[U]-modules, where Qs =
⊕
m∈s+U Fm. Since F is finitely generated, Qs = 0 for all but a finite number of s.

For each s ∈ S, we have Fs ∼= Qs⊗R[U] R (where R[U] → R is the augmentation map), and hence Fs is a finitely generated

and projective R-module. If m1,m2 belong to the same coset of U in M , then χm2−m1 : Fm1
∼=
−→ Fm2 is an isomorphism of

R-modules. Using this, we see that the map

Fs⊗R R[U][s] → Qs

determined by p⊗χu 7→ χu · p is a graded isomorphism of R[U]-modules. It follows that F is isomorphic toψ((Fs)s∈S), and
hence ψ is an equivalence. �

If C, C ′ are M-graded rings, φ : C → C ′ an M-graded ring homomorphism and F is an M-graded C-module, then the
module obtained from F via extension of scalars along φ, namely C ′⊗C F , acquires the structure of anM-graded C ′-module
having the property that if c ′ ∈ C ′m1 and f ∈ Fm2 then c

′
⊗ f ∈ (C ′⊗C F)m1+m2 (see [7, Section 2.4]). In particular, the module

obtained from C[m] by extension of scalars along φ is C ′[m].

Lemma 3. The exact functor

PM(R[U])→ PM(R[A])

defined by extension of scalars induces a bijection on isomorphism classes of objects. In particular, objects of PM(R[A]) are
projective in the category of all M-graded R[A]-modules.
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Proof. For a projective R-module P and an arbitraryM-graded R[A]-module G, we have

HomPM (R[A])(P ⊗R R[A][m],G) ∼= HomR(P,Gm). (4)

SinceG 7→ Gm is an exact functor, P ⊗R R[A] is a projective object in the category of allM-graded R[A]-modules. In particular,
the second assertion of the Lemma follows from the first one, using Lemma 2.
TheM-graded R-algebra map R[U] → R[A] is split by theM-graded R-algebra map R[A] → R[U] defined by

χ a 7→

{
χ a if a ∈ U and
0 if a 6∈ U .

Since the composition R[U] ↪→ R[A] � R[U] is the identity, the functor PM(R[U]) → PM(R[A]) is split injective on
isomorphism classes of objects.
The proof of the surjectivity on isomorphism classes will use the graded version of Nakayama’s Lemma. Let I ⊂ R[A]

denote the kernel of the split surjection R[A] � R[U]— it is generated as an R-module by {χ a | a 6∈ U}. Clearly I isM-graded
and, moreover, everymaximalM-graded ideal of R[A] contains I . Indeed, ifm is a maximalM-graded ideal, then R[A]/m is an
M-graded ring such that every non-zero homogeneous element is a unit (and whose inverse is, necessarily, homogeneous).
For a 6∈ U , if χ a 6= 0 in R[A]/m, then we would have χ a · rχ b = 1 for some r ∈ R and b ∈ A. But then a+ b = 0, contrary to
a 6∈ U . Thus χ a ∈ m for all a 6∈ U . Since I is contained in every maximalM-graded ideal, the graded version of Nakayama’s
Lemma (see, for example, [8, Theorem 3.6] for a proof) gives us: If G is a finitely generatedM-graded R[A]-module such that
IG = G, then G = 0.
Given E ∈ PM(R[A]), let F = E⊗R[A] R[U] ∈ PM(R[U]) (with the map R[A] → R[U] being the above split surjection) and

let F̃ = F ⊗R[U] R[A]. We prove E ∼= F̃ inPM(R[A]). As noted above, (4) and Lemma 2 show that F̃ is a projective object in the
category of allM-graded R[A]-modules. Thus the canonical map F̃ � F lifts along the surjection E � F to give a morphism
θ : F̃ → E in PM(R[A]). The map θ induces an isomorphism upon modding out by I and hence, by Nakayama’s Lemma,
coker(θ) = 0. Since E is projective as an ungraded R-module, the exact sequence

0→ ker(θ)→ F̃ → E → 0

remains exact upon application of−⊗R[A] R[U], and hence, using Nakayama’s Lemma again, ker(θ) = 0. �

Proof of Theorem 1. By Lemma 2, we have

KMq (R[U]) ∼=
⊕
S

Kq(R) ∼= Kq(R)⊗Z Z[M/U].

In order to prove the theorem, it therefore suffices to prove the exact functor

PM(R[U])→ PM(R[A]), (5)

induced by extension of scalars, induces a homotopy equivalence on K -theory spaces.
For any finite subset F ⊂ S, let PMF (R[A]) denote the full subcategory of those objects in PM(R[A]) isomorphic to one of

the form

l⊕
i=1

Pi⊗R R[A][si]

such that si ∈ F for i = 1, . . . , l. DefinePMF (R[U]) similarly. Note thatP
M
F (R[U]) andPMF (R[A]) are closed under direct sum

and hence are exact subcategories. SincePM(R[A]) = lim
−→F⊂S

PMF (R[A])where F ranges over all finite subsets of S and since
K -theory commutes with filtered colimits, it suffices to prove

PMF (R[U])→ PMF (R[A])

induces an equivalence on K -theory for all finite F ⊂ S. We proceed by induction on #F . If #F = 1, then by (3) and Lemma 3,
PMF (R[U])→ PMF (R[A]) is an equivalence of categories.
Define a partial order≤ on S by declaring s ≤ s′ if and only if s′− s ∈ A. Then for projective R-modules P, P ′ and elements

s, s′ ∈ S, we have

HomPM (R[A])(P ⊗R R[A][s], P
′
⊗R R[A][s′]) ∼=

{
HomR(P, P ′) if s ≤ s′ and
0 otherwise. (6)
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Now assume #F > 1 and let m ∈ F be a maximal element. Define F ′ = F \ {m}. We have a commutative diagram of exact
functors

PMF ′ (R[U])⊕ PM
{m}(R[U])

��

// PMF ′ (R[A])⊕ PM
{m}(R[A])

��
PMF (R[U]) // PMF (R[A])

in which the vertical maps are given by direct sum and the horizontal maps are extensions of scalars. The left-hand vertical
map and the top horizontal map induce equivalences on K -theory using Lemma 2 and induction, respectively. It therefore
suffices to prove that the right-hand vertical map induces an equivalence on K -theory. This follows from Waldhausen’s
generalization of the Quillen Additivity Theorem, as we now explain.
Let E denote the exact category consisting of short exact sequences of objects of PMF (R[A]) of the form

0→ B→ P → C → 0 (7)

with B ∈ PM
{m}(R[A]) and C ∈ PMF ′ (R[A]). By Lemma 3, for any such short exact sequence, we have that P is isomorphic to

B⊕ C . This exact sequence is isomorphic to

0→ B

(
1
0

)
−→ B⊕ C

(0,1)
−→ C → 0.

Thus E is equivalent to the full subcategory consisting of such ‘‘trivial’’ exact sequences. Moreover, by (6) there are no non-
trivial maps from B to C , and hence a morphism from one such exact sequence to another is completely determined by
the map on middle objects. That is, the functor E → PMF (R[A]) sending the exact sequence (7) to P is an equivalence of
categories. On the other hand, Waldhausen’s Additivity Theorem [13] shows that the functor

E → PM
{m}(R[A])⊕ PMF ′ (R[A])

sending (7) to (B, C) induces an equivalence on K -theory. �

3. The equivariant K -theory of affine toric varieties

In this section we provide an interpretation of Theorem 1 for toric varieties.
We adopt the notational conventions for toric varieties found in Fulton’s book [4]. An affine toric variety is defined from a

strongly convex rational polyhedral coneσ inN ⊗Z RwhereN ∼= Zn is an n-dimensional lattice. LetM := HomZ(N,Z) ∼= Zn
be the dual lattice and define the dual cone of σ by

σ∨ := {u ∈ M⊗Z R|u(v) ≥ 0 for all v ∈ σ }.

We have that σ∨ ∩ M is a finitely generated abelian monoid, by Gordan’s Lemma, and hence, for any commutative ring R,
the corresponding monoid ring R[σ∨ ∩M] is a finitely generated R-algebra. We let

Uσ ,Z = SpecZ[σ∨ ∩M],

the affine toric scheme over Z associated to σ .
Note that for any commutative ring R, we have

Uσ ,R := Uσ ,Z × Spec R = Spec R[σ∨ ∩M].

In particular, for a field k, the affine k-variety Uσ ,k = Spec k[σ∨ ∩M] is the classical toric k-variety associated to σ .
For any commutative ring R, the R-algebra R[σ∨ ∩M] is anM-graded R-algebra, and this grading amounts to an action of

the n-dimensional torus scheme T := SpecZ[M] on Uσ ,R. Viewing Uσ ,R as Uσ ,Z× Spec R, the action of T is given by the usual
action on Uσ ,Z and the trivial action Spec R. An equivariant vector bundle over Uσ ,R is identified as a projective module over
R[σ∨ ∩M] that isM-graded. We therefore obtain

KM
∗
(R[σ∨ ∩M]) ∼= K T∗ (Uσ ,R).

Finally, observe that U(σ∨ ∩ M) = σ⊥ ∩ M , and we define Mσ := M/(σ⊥ ∩ M). The following is thus an immediate
consequence of Theorem 1.

Theorem 4. For any commutative ring R and strongly convex rational cone σ , there is a natural isomorphism

K Tq (Uσ ,R) ∼= Kq(R)⊗Z Z[Mσ ].

In particular, we see that Eq. (1) holds for any affine toric variety, not only the smooth ones. Observe that Mσ , as just
defined, coincides with the group of characters on the minimal orbit of Uσ .
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Remark 5. The isomorphism of Theorem 1 is natural in R in the obvious sense and is natural in A in the following sense: If
A ⊂ A′ ⊂ M is an inclusion of submonoids ofM , then

Kq(R)⊗Z Z[M/U(A)]
∼= //

��

KMq (R[A])

��
Kq(R)⊗Z Z[M/U(A′)])

∼= // KMq (R[A
′
])

commutes,where the left-handmap is the canonical quotientmap and the right-handmap is induced by extension of scalars.
Consequently, the isomorphism of Theorem 4 is natural in R and with respect to the inclusion of a face τ into σ . In the

latter case, the map

K Tq (Uσ ,R)→ K Tq (Uτ ,R)

is induced by pullback along the equivariant open immersion Uτ ,R ⊂ Uσ ,R and the map

Kq(R)⊗Z Z[Mσ ] → Kq(R)⊗Z Z[Mτ ]

is the map induced by the canonical surjectionMσ � Mτ .

4. The Vezzosi–Vistoli theorem

In this section, we use (1) from the introduction, the theory of sheaves on fans and the foundational results of Thomason
[9] concerning equivariant K -theory to recover a result due to Vezzosi and Vistoli [11,12]: For a field k and a smooth toric
k-variety X = X(1) defined by a fan1, the sequence

0 −→ K Tq (X) −→
⊕

σ∈Max(1)

K Tq (Uσ )
∂
−→

⊕
δ,τ∈Max(1),δ<τ

K Tq (Uδ∩τ )

is exact. Here, Max(1) is the set of maximal cones in 1 and we choose, arbitrarily, a total ordering for this set. The map ∂
is given as follows. For f = (fσ )σ∈Max(1) in

⊕
σ∈Max(1) K

T
q (Uσ ), the (δ < τ)-component of its image is fτ |Uδ∩τ − fδ|Uδ∩τ ∈

K Tq (Uδ∩τ ).
In fact, we prove that the sequence

0→ K Tq (X)→
⊕
σ

K Tq (Uσ )→
⊕
δ<τ

K Tq (Uδ∩τ )→
⊕
δ<τ<ε

K Tq (Uδ∩τ∩ε)→ · · · (8)

is exact, where
⊕

σ K
T
q (Uσ ) →

⊕
δ<τ K

T
q (Uδ∩τ ) → · · · is the Čech complex of the presheaf K

T
q for the equivariant open

cover V = {Uσ | σ is a maximal cone in1}. Using Eq. (1) (or our Theorem 4), the exactness of this sequence is equivalent
to the existence of an exact sequence of the form

0→ K Tq (X)→
⊕
σ

Kq(k)⊗Z Z[Mσ ] →
⊕
δ<τ

Kq(k)⊗Z Z[Mδ∩τ ] → · · · . (9)

We define a topology on the finite set of cones comprising the fan1 by declaring the open subsets to be the subfans of
1; see [2] or [3]. In other words, we view1 as a poset via face containment,≺, andwe give1 the ‘‘poset topology’’, in which
an open subset Λ is a subset satisfying the condition what whenever x ≺ y and y ∈ Λ, we have x ∈ Λ. For a cone σ ∈ 1,
let 〈σ 〉 denote the fan consisting of σ and all its faces (i.e., the smallest open subset of 1 containing σ ). Observe that for a
sheaf F on1, we have F (〈σ 〉) = Fσ , the stalk of F at the point σ .
For this topology, sheaves are uniquely determined by their stalks and the maps between their stalks arising from

comparable elements of the poset (see [1, Section 4.1]). That is, there is an equivalence between the category of contravariant
functors from the poset1 to the category of abelian groups and the category of sheaves of abelian groups on the topological
space 1. (Recall that a poset may be viewed as a special type of category.) Given a sheaf F on the space 1, the associated
functor on the poset 1 sends σ ∈ 1 to Fσ = F (〈σ 〉) and sends a face inclusion τ ≺ σ to the map induced by 〈τ 〉 ⊂ 〈σ 〉.
Given a contravariant functor F on the poset1, the value of associated sheaf F on an open subsetΛ of1 is given by

F (Λ) = lim
←−
σ∈Λ

F(σ ).

Theorem 6. Assume that X = X(1) is a smooth toric variety defined over an arbitrary field k. Then the presheaf Λ 7→ K Tq (X(Λ))
defined on1 is a flasque sheaf. Moreover, there is an isomorphism

K Tq (X) ∼= Kq(k)⊗ K
T
0 (X).

and the sequences (8) and (9) are exact.
Proof. LetAq be the sheaf on1 associated to the functor sending a cone σ to Kq(k)⊗ Z[Mσ ] and a face inclusion τ ≺ σ to
the map induced by the canonical quotientMσ � Mτ .
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The sheaf A0 is flasque by [1]. Since A0 is a flasque sheaf of torsion free abelian groups, the presheaf Kq(k)⊗Z A0 is
actually a sheaf. Indeed, for any open subset U and open covering U = ∪i Vi of it, the map from A0(U) to the associated
Čech complex is a quasi-isomorphismby [5, III.4.3], and sinceA0 is torsion free, thismap remains a quasi-isomorphismupon
tensoring by any abelian group. It now follows from the correspondence between functors and sheaves thatAq ∼= Kq(k)⊗A0.
In particular,Aq is also flasque.
For a subfan Λ of 1, let V be the Zariski open covering {Uσ | σ is a maximal cone inΛ} of X(Λ) and letU be the open

covering {〈σ 〉 | σ ∈ Max(Λ)} of Λ. By Eq. (1) (or Theorem 4), the Čech cohomology complex of the presheaf KT
q (−) on

X(Λ) for the open covering V coincides with the Čech cohomology complex of the sheafAq for the open coveringU. Since
the higher Čech cohomology of flasque sheaves vanishes [5, III.4.3], we have

Ȟp
(
V, K Tq

)
= Ȟp

(
U,Aq

)
= 0, for all p > 0. (10)

Thomason [9] has proven thatKT coincides with equivariant G-theory (defined from equivariant coherent sheaves) and
that the latter satisfies the usual localization property relatingX , an equivariant closed subscheme, and its open complement.
From this one deduces that if X(Λ) = U ∪ V is covering by equivariant open subschemes, then

KT (X(Λ)) //

��

KT (U)

��
KT (V ) // KT (U ∩ V )

is a homotopy cartesian square. Arguing just as in [10, Section 8], one obtains a convergent spectral sequence

Ȟp
(
V, K Tq

)
=⇒ K Tq−p(X(Λ)).

Using (10), this spectral sequence collapses to give

Ȟ0
(
V, K Tq

)
∼= K Tq (X(Λ)), for all q. (11)

Combining (11) and (10) gives that the complexes

0→ K Tq (X(Λ))→
⊕
σ

K Tq (Uσ )→
⊕
δ<τ

K Tq (Uδ∩τ )→ · · ·

and

0→ Aq(Λ)→
⊕
σ

Kq(k)⊗Z Z[Mσ ] →
⊕
δ<τ

Kq(k)⊗Z Z[Mδ∩τ ] → · · ·

are exact and isomorphic to each other. In particular,Λ 7→ KT
q (X(Λ)) is isomorphic to the flasque sheafAq.

The remaining assertions of the theorem follow immediately. �
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