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Abstract

The principal result in this paper is concerned with the derivative of a vector with respect to
a block vector or matrix. This is applied to the asymptotic Fisher information matrix (FIM) of
a stationary vector autoregressive and moving average time series process (VARMA). Repre-
sentations which can be used for computing the components of the FIM are then obtained. In
a related paper [A. Klein, A generalization of Whittle’s formula for the information matrix of
vector mixed time series, Linear Algebra Appl. 321 (2000) 197–208], the derivative is taken
with respect to a vector. This is obtained by vectorizing the appropriate matrix products whereas
in this paper the corresponding matrix products are left unchanged.
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1. Introduction

Consider the n-dimensional mixed autoregressive moving average stationary time
stochastic process {y(t), t ∈ N} or VARMA process, of order (p, q) that satisfies,

p∑
j=0

Ajy(t − j) =
q∑
k=0

Bkε(t − k), t ∈ N, (1)

whereA0 ≡ B0 ≡ In, the n-dimensional identity matrix, and the white noise process
{ε(t), t ∈ N} is a n-dimensional vector random variable, such that

Eϑ {ε(t)} = 0 Eϑ

{
ε(s)ε�(t)

}
= δst�.

The symbol Eϑ is the expected value under the parameter ϑ , an appropriate represen-
tation of ϑ which consists of the VARMA parameters is given in the next section, �
denotes transposition, δst is the usual Kronecker delta and the covariance matrix � is
positive definite.
The VARMA process can also be summarized as follows:

A(L)y(t) = B(L)ε(t),

where the matrix polynomials A(·) and B(·) are given by A(L) = ∑p

j=0 AjL
j ,

B(L) = ∑q

k=0 BkL
k and L is the backward-shift operator Lky(t) = y(t − k). We

further assume that the eigenvalues of the matrix polynomials A(L) and B(L) lie
outside the unit disc so the elements of A−1(L) and B−1(L) can be written as power
series inLwith convergence radius one. These eigenvalues are obtained by solving the
scalar polynomials detA(L) = 0 and detB(L) = 0 of degree pn and qn respectively,
detX is the determinant of X.

In this paper the derivative of a vector with respect to a matrix is considered. In
[1] a different approach is used, the derivative is taken with respect to a vector, this
is obtained by vectorizing the appropriate matrix products. This is implemented by
the vec operator which transforms a matrix into a vector by stacking the columns of
the matrix one underneath the other. The approach developed in this paper leaves the
matrix products unchanged. The obtained results are applied to the Fisher informa-
tion matrix of a VARMA process and lead to representations which can be used for
computing the corresponding components of the information matrix.

2. The Fisher information matrix

Assume that time series {y(t), t ∈ N} satisfying Eq. (1) is a zero mean Gaussian
time series. Then its stationary distribution depends on parametersϑ = (ϑ1, . . . , ϑ�)

�,
where � is the number of matrix parameters of the vector autoregressive moving aver-
age model. When the entries of ϑ1, . . . , ϑ� are considered, the number of parameters
is equal to n2(p + q). The choice for the n(p + q)× n parameter matrix is
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ϑ =




A1
A2
...

Ap
B1
B2
...

Bq




or ϑ =




ϑ1
ϑ2
...

ϑp
ϑp+1
ϑp+2
...

ϑp+q



. (2)

When the representation of the parameter vector ϑ as defined in (2) is consid-
ered, the following equality holds for the n2(p + q)× n2(p + q) asymptotic Fisher
information matrix

F(ϑ) = Eϑ

{(
�ε
�ϑ

)�
�−1

(
�ε
�ϑ

)}
(3)

and for simplicity t is omitted from ε(t) in the right-hand side of (3).

3. Main result

In this section the results developed in this paper shall be presented. The derivative
of a vector with respect to a block vector or matrix is first considered and the obtained
representation of �ε/�ϑ is inserted in (3). Consequently, explicit expressions for the
entries of F(ϑ) are derived.

3.1. The derivative of a vector with respect to a block vector

In this section we introduce the derivative which is taken with respect to a block
vector or a matrix. The approach set forth in this paper will allow us to give a repre-
sentation for each element of the Fisher information matrix. We therefore rewrite the
VARMA process as

y(t) = A−1(L)B(L)ε(t) (4)

and set forth a form for �ε/�ϑ .
Consider a real, differentiable (m× n) matrix function X(ϑ) of a real (�× 1)

vector ϑ = (ϑ1, . . . , ϑ�)
�, wherem, n and � are positive integers. Let (m× n)matri-

ces �rX = (�Xij /�ϑr) with r = 1, . . . , � be the first order derivatives of X(ϑ) in
partial derivative form with Xij being the first (i, j) element of X. Write dXij =∑�
r=1(�Xij /�ϑr)dϑr , where dϑr is an arbitrary perturbation of ϑr . The (m× n)

matrix dX = (dXij ) is the differential form of the first order derivative X(ϑ). An
expression in differential form can instantaneously be put into a partial derivative
form by replacing d with �r for r = 1, . . . , �. LetX(ϑ) and Y (ϑ) be real (m× n) and
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(n× p) differentiable matrix functions of the real vector ϑ(�× 1), where m, n, p,
and � are positive integers. The usual scalar product rule of differentiation yields

d(XY) = (dX)Y +X(dY ).

The following properties are taken into account. The first property to be considered
is �y(t)/�ϑ = 0, this holds because the given realization of y(t) is independent of
variations in ϑ , and as a second property the next differential rule is used

dA−1(L) = −A−1(L)dA(L)A−1(L).

This enables us to formulate the following equation for the VARMA process given
in (4)

dε = B−1(L)dA(L)A−1(L)B(L)ε − B−1(L)dB(L)ε.

We now set forth the representation

�ε
�ϑ
�ϑ = B−1(L)

{
L�ϑ1 + L2�ϑ2 + · · · + Lp�ϑp

}
A−1(L)B(L)ε

−B−1(L)
{
L�ϑp+1 + L2�ϑp+2 + · · · + Lq�ϑp+q

}
ε,

where �ϑi is an arbitrary perturbation.
The next step consists of choosing an appropriate �ϑi . To construct the first n2

columns of the matrix �ε/�ϑ , the following approach is applied. We define the n× n

matrix Eij with the (i, j) th entry equal to 1 and 0 elsewhere. The first n columns
will be constructed by means of the n standard basis vectors e1, e2, . . . , en in Rn

belonging to Ei1, for i = 1, 2, . . . , n. The standard basis block vectors necessary for
deriving the first n columns of �ε/�ϑ and associated with ϑ1 are then



E11
0n×n
...

0n×n
0n×n
...

0n×n



,




E21
0n×n
...

0n×n
0n×n
...

0n×n



, . . . ,




En1
0n×n
...

0n×n
0n×n
...

0n×n



.

We see that �ϑ1 shall consist of the n× n upper matrices Ei1 with i = 1, 2, . . . , n,
whereas�ϑ2,�ϑ3, . . . , �ϑp,�ϑp+1,�ϑp+2, . . . , �ϑp+q are zero. Consequently,
the first n columns of �ε/�ϑ are given by

LB−1(L)E11A
−1(L)B(L)ε

LB−1(L)E21A
−1(L)B(L)ε

LB−1(L)E31A
−1(L)B(L)ε

...

LB−1(L)En1A
−1(L)B(L)ε.
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The next n columns are constructed by considering the first, second up to the nth
standard basis vector belonging to Ei2, i = 1, 2, . . . , n. The standard basis block
vectors associated with ϑ1 are then



E12
0n×n
...

0n×n
0n×n
...

0n×n



,




E22
0n×n
...

0n×n
0n×n
...

0n×n



, . . . ,




En2
0n×n
...

0n×n
0n×n
...

0n×n



.

The corresponding n columns are

LB−1(L)E12A
−1(L)B(L)ε

LB−1(L)E22A
−1(L)B(L)ε

LB−1(L)E32A
−1(L)B(L)ε

...

LB−1(L)En2A
−1(L)B(L)ε.

We proceed in this way to obtain the last n columns associated with ϑ1. The
appropriate standard basis block vectors are given by



E1n
0n×n
...

0n×n
0n×n
...

0n×n



,




E2n
0n×n
...

0n×n
0n×n
...

0n×n



, . . . ,




Enn
0n×n
...

0n×n
0n×n
...

0n×n



.

The corresponding n columns are

LB−1(L)E1nA
−1(L)B(L)ε

LB−1(L)E2nA
−1(L)B(L)ε

LB−1(L)E3nA
−1(L)B(L)ε

...

LB−1(L)EnnA
−1(L)B(L)ε.

Similarily for the next n2 columns associated with ϑ2. In this case the standard
basis block vectors have the following representation
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0n×n
Eij
...

0n×n
0n×n
...

0n×n




with i, j = 1, 2, . . . , n. The matrix Eij is associated with �ϑ2 and �ϑ1,�ϑ3, . . . ,

�ϑp,�ϑp+1,�ϑp+2, . . . , �ϑp+q are zero. The corresponding n2 columns are

L2B−1(L)EijA
−1(L)B(L)ε,

for each j = 1, 2, . . . , n we have i = 1, 2, . . . , n. A similar approach is applied for
the remaining columns associated with ϑp, the standard basis block vectors are



0n×n
...

0n×n
Eij

0n×n
...

0n×n




→ pth n× n block

with i, j = 1, 2, . . . , n. The corresponding n2 columns are given by

LpB−1(L)EijA
−1(L)B(L)ε.

The n2q columns associated with ϑp+1, ϑp+2, . . . , ϑp+q , have the representation

−LkB−1(L)Eij ε,

where k = 1, 2, . . . , q and for each k we have the same specification for the matrices
Eij as for the first n2p columns.

We shall summarize the results in a proposition. For that purpose we define

φij (L) = B−1(L)EijA
−1(L)B(L) and ψij (L) = −B−1(L)Eij .

The following representations are now introduced

�(L)= (φ11(L)ε, φ21(L)ε, . . . , φn1(L)ε, φ12(L)ε, φ22(L)ε, . . . ,

φn2(L)ε, . . . , φ1n(L)ε, φ2n(L)ε, . . . , φnn(L)ε)

and

�(L)= (ψ11(L)ε, ψ21(L)ε, . . . , ψn1(L)ε, ψ12(L)ε, ψ22(L)ε,

. . . , ψn2(L)ε, . . . , ψ1n(L)ε, ψ2n(L)ε, . . . , ψnn(L)ε) .
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Proposition 3.1. The following representation holds true

�ε
�ϑ

=
(
L�(L), L2�(L), . . . , Lp�(L), L�(L), L2�(L), . . . , Lq�(L)

)
= L

{
(1, L, . . . , Lp−1)⊗ �(L), (1, L, . . . , Lq−1)⊗ �(L)

}
= L

{
u�
p (L)⊗ �(L), u�

q (L)⊗ �(L)
}
, (5)

where u�
x (L) = (1, L, L2, . . . , Lx−1) for positive integers x and A⊗ B is the Kro-

necker product of A and B.

3.2. Representation of the entries of the Fisher information matrix

Representations which can be used for computing the entries of F(ϑ) shall now
be set forth by applying formula (3) when (5) is considered. We shall proceed with
the block representation of F(ϑ) which is given by

F(ϑ) =
(
Faa(ϑ) Fab(ϑ)

Fba(ϑ) Fbb(ϑ)

)
. (6)

In a dynamic stationary stochastic context it has long been shown useful to use
Fourier transform representations which provide alternatively circular integral repre-
sentations. For evaluating F(ϑ) the following integral representation

F(ϑ) = 1

2π i

∮
|z|=1

(
Iaa(z) Iab(z)

Iba(z) Ibb(z)

)
dz

z
(7)

is considered, the integration is counterclockwise around the unit circle. Below
appropriate representations of the blocks composing (7) are derived. We shall use
an arbitrary element of block Iaa(z) in (7) to illustate how the representations of the
remaining components are obtained. For that purpose a useful equality is introduced.
Consider the discrete-time stationary process x(t) where x(t) = H(L)u(t) and the
input process is described by u(t) = G(L)v(t). H(L) and G(L) are asymptotically
stable filters. For evaluating the cross covariance matrix of the output x(t) and the
input u(t), the following equation holds true

Eϑ

{
x(t)u�(t)

}
=

∫ π

−π
�xu(ω)dω ω ∈ [−π, π ] , (8)

where �xu(ω) is the cross spectral density of the processes x(t) and u(t). It is defined
as �xu(ω) = H(eiω)�u(ω)with �u(ω) being the spectral density of the input process
u(t) which is given by �u(ω) = G(eiω)�v(ω)G∗(eiω). Y ∗ denotes the complex
conjugate transpose of the matrix Y and �v(ω) is the spectral density of the process
v(t). When representation (5) is inserted in (3), an arbitrary element of block Faa(ϑ)

then takes the form

Eϑ

{
Tr

(
Lk+1φij (L)εε

�Lr+1φ�
lm(L)�

−1
)}
, (9)
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where Tr(M) is the trace of the square matrix M and k, r = 0, 1, . . . , p − 1 and
i, j, l, m = 1, 2, . . . , n.

We have now a similar representation to the left-hand side of (8) where

x(t) = Lk+1φij (L)ε and u(t) = �−1Lr+1φlm(L)ε.

The connection between the processes x(t) and u(t) is then given by

x(t) = Lk−rφij (L)φ−1
lm (L)�u(t).

Since the white noise process ε has a constant spectral density (independent of the
frequency ω) then it is straightforward to conclude that in view of (8) the value of
the spectral density of ε is (1/2π)�. The spectral density of the input process u(t) is
then

1

2π

{
�−1φlm(e

iω)�φ∗
lm(e

iω)�−1
}
.

Permutation of expectancy Eϑ and trace in (9) and application of (8) leads to

1

2π

∫ π

−π
Tr

{
eiω(k−r)φij (eiω)�φ∗

lm(e
iω)�−1

}
dω.

Equivalently for z = eiω we have

(Faa(ϑ))
k,r
i,j,l,m = 1

2π i

∮
|z|=1

zk−rTr
(
�φ∗

lm(z)�
−1φij (z)

) dz

z
, (10)

where k, r = 0, 1, . . . , p − 1 and i, j, l, m = 1, 2, . . . , n.
A similar approach is used for the remaining components of the Fisher information

matrix F(ϑ). Representation (7) of F(ϑ) can then be summarized accordingly, to
obtain

(Fab(ϑ))
k,f
i,j,l,m = 1

2π i

∮
|z|=1

zk−fTr
(
�φ∗

ij (z)�
−1ψlm(z)

) dz

z
, (11)

where k = 0, 1, . . . , p − 1 and f = 0, 1, . . . , q − 1 and i, j, l, m = 1, 2, . . . , n.

(Fba(ϑ))
f,k
i,j,l,m = 1

2π i

∮
|z|=1

zf−kTr
(
�ψ∗

ij (z)�
−1φlm(z)

) dz

z
, (12)

where f = 0, 1, . . . , q − 1 and k = 0, 1, . . . , p − 1 and i, j, l, m = 1, 2, . . . , n.

(Fbb(ϑ))
h,f
i,j,l,m = 1

2π i

∮
|z|=1

zh−fTr
(
�ψ∗

ij (z)�
−1ψlm(z)

) dz

z
, (13)

where f, h = 0, 1, . . . , q − 1 and i, j, l, m = 1, 2, . . . , n.
We shall now present Whittle’s formula for the VARMA process (1). It is given

by the following equality, see [4]

Fjk(ϑ) = 1

4π

∫ π

−π
Tr

(
��(ω)

�ϑj
�−1(ω)

��(ω)

�ϑk
�−1(ω)

)
dω, (14)

where the spectral density of the VARMA process (1) is
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�(ω) =
(

1

2π

)
A−1(eiω)B(eiω)�B�(e−iω)A−�(e−iω).

In [1] the equivalence between (3) and the matrix-level version of (14) is shown.
Consequently, the entries of the matrix-level version of (14) are explicitly given by
(10)–(13).

4. A numerical example

In this section a numerical example of Fisher’s information matrix is given for
a bivariate VARMA (1, 1). It is based on the expressions developed in this paper.
Consider the vector process with the following autoregressive and moving average
matrix polynomials:

A(z) =
(

1 − 0.8 z 0.2 z
−1.2 z 1 − 0.2 z

)
and B(z) =

(
1 z

−0.5 z 1 + 0.5 z

)
.

Applying Cauchy’s residue theorem to expressions (10)–(13) leads to the Fisher
information matrix



3.11081 −1.08243 1.30797 −0.09511 −1.27989 1.16848 0.47011 0.66848
−1.08243 3.78382 −1.12772 0.34058 −0.36413 −1.90217 −0.86413 1.09783
1.30797 −1.12772 5.03714 −1.86141 0.57337 −0.02717 −1.17663 0.47283

−0.09511 0.34058 −1.86141 5.25725 −0.28804 1.03261 0.21196 −1.96739
−1.27989 −0.36413 0.57337 −0.28804 1.75 −0.5 0.0 0.0
1.16848 −1.90217 −0.02717 1.03261 −0.5 3. 0.0 0.0
0.47011 −0.86413 −1.17663 0.21196 0.0 0.0 1.75 −0.5
0.66848 1.09783 0.47283 −1.96739 0.0 0.0 −0.5 3.



.

The eigenvalues of the matrix are: 8.20923, 6.85511, 4.05189, 3.51982, 2.27653,
1.37935, 0.290461, 0.106623, and the determinant is equal to 78.0513. However, it
is worth mentioning that time series analysts for computational purposes frequently
prefer to use observed information computed directly using numerical differentiation.
Using the approach developed in this paper does not require numerical differentiation
since an analytic procedure for the derivatives has been set forth. The obtained rep-
resentations (10), (11), (12) and (13) can then be computed by using e.g. the Peterka
and Vidinčev [2] algorithm implemented by Södertröm [3] for circular integrals of
the type derived in this paper.
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[2] V. Peterka, P. Vidinčev, Rational-fraction approximation of transfer functions, First IFAC Symposium
on Identification in Automatic Control Systems, Prague, 1967.

[3] T. Söderström, Description of a program for integrating rational functions around the unit circle,
Technical Report 8467R, Department of Technology, Uppsala University, 1984.

[4] P. Whittle, The analysis of multiple stationary time series, J. Royal Statist. Soc. B. 15 (1953) 125–139.


	Introduction
	The Fisher information matrix
	Main result
	The derivative of a vector with respect to a block vector
	Representation of the entries of the Fisher information matrix

	A numerical example
	References



