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KEYWORDS Abstract A boundary layer analysis is carried out to study the influences of second order slip,
Darcy-Forchheimer flow; viscous and Ohmic dissipations on steady two dimensional, incompressible flow of water based
Nanofluid; nanofluid over a stretching/stretching sheet embedded in a thermally stratified porous medium with
Ohmic dissipation; inertia effect in the presence of magnetic field. The governing boundary layer nonlinear PDEs are
Second order slip; transformed into nonlinear ODE’s using scaling transformation. The transformed equations are
Thermally stratified medium solved numerically by the fourth order Runge-Kutta method with shooting technique. Moreover,

analytical solutions are presented for a special case. A unique solution is obtained for stretching
sheet and dual solutions are found for shrinking sheet which depend on the suction parameter
and local inertia coefficient. The effects of physical parameters on the dual solutions, temperature
profile, local skin friction coefficient and the reduced Nusselt number are discussed. Comparisons
are found to be good with benchmark solution.
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1. Introduction Conventional heat transfer fluids such as water and oils have
limitation in enhancing the performance and the compactness
The improvement of heat transfer performance is very much of systems because of its low thermal conductivity. The ther-

mal conductivity of the solids is higher than liquids. An inno-
vative and new technique to augment heat transfer is to use
monding author. solic.l particles in the base fluid (i.e. nanofluids) in the range
E-mail address: abdulhakeem6(@ gmail.com (A.K. Abdul Hakeem). of sizes 10-50 nm. Abu-Nada et al. [1] analyzed the natural
convection heat transfer enhancement in horizontal concentric
annuli filled by nanofluid. Due to nanofluids wide applicability
in biomedical, optical and electronic fields, considerable inter-
est has been in the nanofluid boundary flow problems [2-22].

important in the view of energy conservation in a system.
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Numerous industrial and environmental systems including
geothermal energy systems, fibrous insulation, heat exchanger
design, geophysics, and catalytic reactors involve the convec-
tion flow through porous media. The non-Darcian porous
medium model is an extension of the classical Darcian model
which includes vorticity diffusion, tortuosity inertial drag
effects and combinations of these effects [23]. The Darcy—
Forchheimer (DF) model is probably the most popular modi-
fication to Darcian flow utilized in similarity inertia effects.
Inertia effect is accounted through the inclusion of a velocity
squared term in the momentum equation, which is known as
Forchheimer’s extension. Pal and Mondal [24,25] considered
the non-Darcy Forchheimer’s flow model over a stretching sur-
face in their publications. Recently, Anwar et al. [26] studied
the Darcy Forchheimer’s flow over a moving vertical surface
in a thermally stratified medium in ordinary fluids.

The study of magnetic field effects has important applica-
tions in physics, chemistry and engineering. Industrial equip-
ment, such as magnetohydrodynamic (MHD) generators,
pumps, bearings and boundary layer control are affected by
the interaction between the electrically conducting fluid and
a magnetic field [27,28]. Viscous dissipation is quite often a
negligible effect, but its contribution might become important
when the fluid viscosity is very high. It changes the tempera-
ture distributions by playing a role like an energy source,
which leads to affected heat transfer rates. Anjali devi and
Ganga [29] studied the effects of viscous and Joules dissipation
on MHD flow past a stretching porous surface embedded in a
porous medium for ordinary fluid. The effects of thermal radi-
ation and viscous dissipation on boundary layer flow of
nanofluids over a moving flat plate were studied in [30,31].
Very recently, Ganga et al. [32] investigated the viscous and
Ohmic dissipations on magnetohydrodynamic radiative flow
of nanofluid over a vertical plate in the presence of internal
heat generation/absorption.

v Ja

In micro-electro mechanical systems the fluid flow behavior
does not obey the no-slip boundary condition because of the
micro-scale-dimension of the devices and also when the fluid
is particulate such as emulsions, foams, polymer solutions and
suspensions the no slip condition is not-suitable. Keeping this
in view, second order slip effects on the fluid flow over a stretch-
ing/shrinking surface have been analyzed by [33-36]. Rosca and
Pop [37] investigated the effect of second order slip on boundary
layer flow of micropolar fluid over a shrinking sheet. Very
recently, Abdul Hakeem et al. [38] studied the second order slip
effects on MHD flow of water based nanofluid over stretching/
shrinking surface in the presence of thermal radiation.

As per author’s knowledge no work has been done in the
problem of second order slip flow and heat transfer of non-
Darcy radiative flow of nanofluid over a stretching/shrinking
surface with viscous and Ohmic dissipations. This fact moti-
vates us to suggest the same for the present investigation.
The governing boundary layer nonlinear partial differential
equations are transformed into nonlinear ordinary differential
equations using scaling transformation. The transformed
equations are solved numerically by the fourth order Runge—
Kutta method with shooting technique.

2. Mathematical formulation

Consider the steady, laminar, two-dimensional, radiative
incompressible viscous water based nanofluid flow over
stretching/shrinking sheet embedded in a saturated non-
Darcian porous medium with viscous and Ohmic dissipations
in the presence of internal heat generation/absorption. A uni-
form magnetic field of strength of By applied normally to the
sheet. The magnetic Reynolds number is assumed to be small
so that the induced magnetic field can be neglected. The sheet
is of temperature 7,(X) and is embedded in a thermally
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stratified medium of variable ambient temperature 7., (X)
where 7,,(X) > T (X). It is assumed that T,(X) = Ty + bx
and T, (X) = Ty + ¢x. Where T is the reference temperature,
a,b >0 and ¢ > 0 are constants. The fluid is a water based
nanofluid containing different types of spherical metallic [gold
(Au), copper (Cu), silver (Ag) and aluminum (Al)] and non-
metallic [aluminum oxide (Al,O;) and titanium oxide (TiO,)]
nanoparticles. It is assumed that the nanofluid experiences a
second order slip at the sheet surface and also it is assumed
that the base fluid and the nanoparticles are in thermal equilib-
rium and no slip occurs between them (see Fig. 1). The thermo
physical properties of the nanofluid are considered as [3§]
(Table 1). The continuity, momentum and energy equations
governing the above stated problem under usual boundary
layer approximation are written as

ou 0ov
oy (1)
ﬁ@w@;(“ﬂ)ﬁ,@f& ., _oBE .
ox ay pnf 8.? p”/k \/]; p"f
78T —aT kn/" azT Q
“wT Ve T o (T-T.)
x I (G), I (pe),
LM (6_2)2 LoBE 1 o 5
(pCp)’?f &y (pcp)nf (pCI))nf 9y

where X is the coordinate along the sheet, % is the velocity com-
ponent in the X direction, ¥ is the coordinate perpendicular to
the sheet, v is the velocity component in the y direction, k is the
permeability of the porous medium, C, is the form of drag
coefficient which is only depended on the geometry of the med-
ium and independent of other physical properties of the fluid.
The second and third terms on the right hand side of momen-
tum equation stand for the first-order (Darcy) resistance and
second-order porous inertia resistance, respectively. The con-
stant C,/ Vk is called the Forchheimer number. The momen-
tum equation is reduced to Darcy’s law if the Forchheimer
number equals to zero. In the energy equation, T is the local
temperature of the fluid, 7., is the temperature of the fluid
far away from the sheet, Q is the temperature-dependent volu-
metric rate of heat source when Q > 0 and heat sink when
0 < 0 dealing with the situations of exothermic and endother-
mic chemical reactions respectively and ¢, is the radiative flux.

Using Rosseland approximation for radiation (see Abdul
Hakeem et al. [39]) we have

R or' )
Table 1 Thermo-physical properties of water and nanoparti-
cles [40].

p (kgm’) G, (/kgK) Kk (W/mK)
Pure water 997.1 4179 0.613
Gold (Au) 19,300 132 296
Silver (Ag) 10,500 235 429
Copper (Cu) 8933 385 401
Aluminum (Al) 2710 913 201
Aluminum oxide (Al,O3) 3970 765 40
Titanium oxide (TiO,) 4250 686.2 8.9538

Here, ¢* is the Stefan-Boltzmann constant and k,, is the
absorption coefficient of the nanofluid. Further, we assume
that the temperature difference within the flow is such that
T* may be expanded in a Taylor series. Hence, expanding 7*
about T, and neglecting higher order terms we get,

T' =47 T -3T". (5)
Therefore Eq. (3) is simplified to
or 0T  ky OT
E—_+V—_:—'/T2+L(T— T.)+
ox dy (pcl’)n/' 9y (pc,,)n/. p
B 166°T, T
+ +— Eg—
(PCp)y Skrgf(pcl’)ygf 9y

where p,, is the effective density of the nanofluid, u,, is the

effective dynamic viscosity of the nanofluid, (,oC,,)}1 ; is the heat

capacitance and k,; is the thermal conductivity of the nanofluid
are given as [8,38]

Ky
= (=Dt dpy My = 5 7
Py =1 =D)pr+ dps 1y e )
(pCP)nf = (1 - d)) (pC[J)/-‘i' (,‘b(pCI,)S, (8)
[k 2k — 20k — k)
knf_ k/{ k‘ +2k/+ (Is(k/—k‘) } (9)

Here, ¢ is the solid volume fraction.
The boundary conditions of Egs. (1)—(3) are

u=dax+ Uy, v=7,(%), T=T,(x) aty=0,
u—0, T—T,asy— oo, (10)
where d = 1 denotes stretching and d = —1 denotes shrinking

sheets, respectively. a is a constant, l_]S;,-,, is the slip velocity at
the wall and v, is the wall mass transfer velocity. The Wu’s
second order slip velocity model (valid for arbitrary Knudsen
numbers, K,,) [33,34] is given by

e <) P —
Urlip = g & il - é ! ! }a_z
3 o 2 K, ay

—%[‘W%(l—ﬂ)} p 00

4 2 o
i 0u
:A3_?+Ba_)72’ (11)

where /= min[l/K,, 1], is the momentum accommodation
coefficient with 0 < « < 1 and 4 is the molecular mean free
path. Based on the definition of /, it is noticed that for any
given value of K,,, we have 0 < / < 1. The molecular mean free
path is always positive. Thus we know that B < 0 and hence
the second term in right hand side of Eq. (11) is a positive
number.
By introducing the following non-dimensional variables

¥ ¥ 7 v T— T,

X = , ) = , U=——, V=——, = =
u ! Y vV v,a VvV v,a Tw - TO

(12)

Egs. (1), (2) and (6) take the following non-dimensional
form
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with the boundary conditions

ou & u

u—dx+ya +582, v=v,, T=T,aty=0,
u—0, T—Tyasy— oo, (16)
where Pr = ’ s the Prandtl number, k| = 1s the porous med-

ium parameter, Mn = —2 1s the magnetic interaction parame-
rr// nf

1T, 18

ter, A = ([)CQ) p is the heat source/sink parameter, N =
7)),

the radiation parameter, Ec = ((p) (T —T,) is the Eckert

number, y is the first order velocity slip parameter with
0 <y = A/a/vsand ¢ is the second order velocity slip param-
eter with 0 > 6 = Ba/v,.

By introducing the stream function , which is defined as
u= g“’ and v = —2 then Egs. (14) and (15) become

W Py oy 321//

dy 9xBy  Ox O

B 1 1 Oy oy 81//
“(1-ete(2)) {(1 —o () 8y}

8 2
,r(%), (17)
o 00 0y 90
dy dx  dx dy
_ (3N+ 4) ( k ) 1 >0
3N kpPr ((1 — )+ 4)81,23;) 0y?
a2 2
N 20 Ec (%)

(( —¢)+ ¢EZ(C,3) +x2(1 —¢)* <1 —+ (28:)/)

MnEc(%)2 o ( c)

m ay Y hx

+ bx
(oCp)f,

(18)

and the corresponding boundary conditions in Eq. (16)
become

24 A )

Y s T=T aty=
o =dx+y 82+56y3’ Foiat waty=0,
g—ﬁ—m, 60— 0asy— oco. (19)

Now using the scaling group G of transformations, we get
the scaling transformations

W =xF(n), 0=0(n). (20)

Now using the scaling group transformations in Egs. (17)
and (18) we get

n=Jy

F//-"-Cz(FF/—(l-‘rF)FQ)—F(C]Mn +k1):0, (21)
0" +cs(FO' — F0) + c400 = ¢sF St — ey MnEcF?* — csEcF™, (22)

and the corresponding boundary conditions are

F=s, F=d+yF +06F", 0=1-Staty=0,

F—0 0—0asn— oo. (23)
where I’ —C’:/‘C " is the local inertia coefficient, St=c/b is the
stratification parameter, ¢; = (1—¢)*”,c,=¢, <1 —¢+¢<%)),

_ (pCp), _ 3NksPr _ _
C3= (1 7¢+¢(‘)CI’)/ , C4 _k,,/(3N+4)7CS =C3C4 and Ce —C4/C1.

3. An analytical treatment on flow field and heat transfer for a
special case

It may be noted that the closed form solutions for the momen-
tum equation can be found in the absence of local inertia coef-
ficient i.e. I' = 0.

The exact solution to the differential Eq. (21) satisfying the
boundary conditions in Eq. (23) in the absence of local inertia
coefficient is obtained as

Table 2a
sheet.

Comparison of the values of —F" (0) for stretching

y 0 Present results with ¢ = 0,
d= 1,k =0, Mn = 0 and

Turkyilmazoglu [35] with
Mn=0,k =0,¢=0

s =2 and I' =0
Analytical Numerical
0 —1 0.3894282565 0.3894282565 0.38942826
3 —3 0.1044918663 0.1044918663 0.10449187
5 =5 0.0642051113 0.0642051113 0.06420511

Table 2b Comparison of the values f for d = —1, ¢ =0,
I'=0,k =0, Mn=0and 6 = —1.

K Y Present results Turkyilmazoglu [35]
Analytical

2v 0 1.88320351 1.8832035

10Y 1 9.99909886 9.9990096

2k 0 0.531010056 0.53101006

10- 1 0.09173797 0.09173797
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Substituting Eq. (24) in Eq. (21) gives the following fourth Curves with star marker : y=1.5,  =-1.5 7
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The velocity profile for both stretching and shrinking sur- :3 -
face is obtained as A

de™ ™
Fly=—% . (26) il
(1475 - o8°)

The corresponding four roots of Eq. (24) are analytically
expressed, respectively as s
ﬁ:_fyfcz‘vé_ﬁ_vﬂzfm g 0 1 2 3 4

40 2 2 ’ S
p=- —7 — 280 — ﬁ + Y f — B , Fig. 2 Variations of F”(0) for different values of s, y and 6 when
40 2 2 I'=0.5, k=04, Mn=0.4 and ¢ = 0.05. (Dashed lines corre-
=y =56 By /Byt B spond to stretching sheet, dotted lines correspond to shrinking
p=- 45 + bR 2 ’ sheet upper branch solution and solid lines correspond to
shrinking sheet lower branch solution).
=y —asé By /Bt B £ )
Y S S S (27)

where

ﬁ_\/2(1+czs}k](3+c]Mn(5)+(yczs6)2 Be B
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36 45* 30Bs 3527
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7T 5 52
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R

It should be mentioned that a unique solution exists for
stretching sheet (d = 1) as given by the fourth of Eq. (27)
and also the dual solutions which are called lower and upper
branch solutions exist for shrinking sheet (d = —1) given by
third and fourth of Eq. (27) respectively.

Thus the non-dimensional velocity components are

de P d(1 — e hn) )
= v=—(s+——" ). 28
(+pr—of) <”$u+m—wﬁ @)

The dimension velocity components are

=X

3.5 -
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Fig. 3  Variations of F’(0) for different values of Mn, y and ¢
when I'=0.5 k =04, s=2 and ¢ =0.05. (Dashed lines
correspond to stretching sheet, dotted lines correspond to shrink-
ing sheet upper branch solution and solid lines correspond to
shrinking sheet lower branch solution).

N N
_ o de VYV . [ dl-e \/—f)
e YT - o)

(29)

The shear stress at the stretching sheet characterized by the
skin friction coefficient Cy, is given by

2y (Om
“ P/ (3))? (W);zo' (30)
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Fig.4 Variations of F'(0) for different values of k,, y and 6 when
I'=0.5 Mn = 04,s = 2and ¢ = 0.05. (Dashed lines correspond
to stretching sheet, dotted lines correspond to shrinking sheet
upper branch solution and solid lines correspond to shrinking
sheet lower branch solution).
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I'=0.5, Mn = 0.4, s = 2 and k; = 0.4. (Dashed lines correspond
to stretching sheet, dotted lines correspond to shrinking sheet
upper branch solution and solid lines correspond to shrinking
sheet lower branch solution).

Using Eqgs. (12), (20), (24) and (29), the skin friction can be
written as

2 dp

RAPC=-2r0) =2
o VT o)

(31)

where Re, = X7, (X) /v, is the local Reynolds number based on
the stretching velocity #,(X) and Refv/ 2 Cr is the local skin
friction coefficient.

Fig. 6 Variations of F’(0) for different values of I', y and é when
¢ =0.05, Mn =04, s =2 and k; = 0.4. (Dashed lines corre-
spond to stretching sheet, dotted lines correspond to shrinking
sheet upper branch solution and solid lines correspond to
shrinking sheet lower branch solution).

The solution of Eq. (22) with the corresponding boundary
conditions in Eq. (23) in terms of 5 is obtained as

ag+ by —2 — —Bn
0(n) = cio efﬁ"(OTbO) M(ao + 20 , 1+ by, 68; ) + coe P,

(32)

where the M is the hypergeometric function [29] defined as
following

22+...=

M([d,[b,2) =1+%z+ ala+1)

b” " b(b+1)2!

(@), il
— (b), it

i

(33)

and

& cs| s+ d c csd
7=2Cs 2 | 8 = <A\
B(1+ 78— p) B(1+ 78— 0p%)
‘ St cg 1 —co— St
9= 7 N
(e ")

ap = ¢7/P and by = \/a} — 4/104//32.

The quantity of practical interest, in this section the Nusselt
number Nu, which is defined as

Cio =

X qy
Ny, = ———— 34
= T =T (34)
where ¢, = _(k,lf"‘l‘ 16;,:%) (‘3—;) o is the local surface heat
flux.

Using (12) and (20) we obtain the following Nusselt
number

Re;'*Nu, = %’((3N+ 4)/3N)[-0'(0)], (35)
f

where
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Table 3a  Values of —0' (0) for stretching sheet.
Au Ag Cu Al ALO; TiO,
r 0.3 1.44271163 1.46488820 1.49680247 1.50698578 1.52653617 1.32694266
0.4 1.44262933 1.46469024 1.49656547 1.50658870 1.52616824 1.32656421
0.5 1.44254773 1.46449468 1.49633149 1.50619736 1.52580557 1.32619115
Mn 0.3 1.44429946 1.46868551 1.50138142 1.51585071 1.53437935 1.33506624
0.4 1.44340268 1.46652106 1.49876850 1.51081159 1.52991275 1.33044270
0.5 1.44254773 1.46449468 1.49633149 1.50619736 1.52580557 1.32619115
ki 0.3 1.44463391 1.46943074 1.50227954 1.51736916 1.53577715 1.33656690
0.4 1.44356048 1.46686503 1.49918127 1.51149433 1.53054443 1.33112022
0.5 1.44254773 1.46449468 1.49633149 1.50619736 1.52580557 1.32619115
103 0.05 1.66761864 1.68739051 1.70707758 1.71515508 1.72650387 1.48041289
0.1 1.44254773 1.46449468 1.49633149 1.50619736 1.52580557 1.32619115
0.15 1.26214448 1.28224178 1.32179161 1.33068551 1.35639277 1.19415909
y 0.5 1.44769216 1.47412477 1.50754227 1.52366473 1.54204685 1.34274377
1 1.44497371 1.46902067 1.50159079 1.51438486 1.53341720 1.33395143
1.5 1.44254773 1.46449468 1.49633149 1.50619736 1.52580557 1.32619115
0 —0.5 1.45888867 1.48732480 1.52155398 1.53681770 1.55585303 1.35715183
-1 1.44955086 1.47448081 1.50735389 1.51984910 1.53913611 1.33992502
—-1.5 1.44254773 1.46449468 1.49633149 1.50619736 1.52580557 1.32619115
Ec 0.3 1.44544829 1.46938042 1.50172834 1.51428529 1.53332004 1.33384440
0.4 1.44399801 1.46693755 1.49902992 1.51024133 1.52956280 1.33001778
0.5 1.44254773 1.46449468 1.49633149 1.50619736 1.52580557 1.32619115
N 0.5 0.99395756 1.01023074 1.03054467 1.04088088 1.05251148 0.91299836
1 1.44254773 1.46449468 1.49633149 1.50619736 1.52580557 1.32619115
1.5 1.72730962 1.75230020 1.79154457 1.80020426 1.82520920 1.58780126
St 0.4 1.44254773 1.46449468 1.49633149 1.50619736 1.52580557 1.57021818
0.5 1.20794372 1.23090370 1.25905729 1.27389998 1.28898773 1.32619115
0.6 0.97333970 0.99731272 1.02178309 1.04160261 1.05216989 1.08216413

Note: While studying the effect of individual parameters the following values are assumed s = 1,d = 1, I' = 0.5, k; = 0.5, Mn = 0.5, ¢ = 0.1,

y=156=-15,8t=04,1=-0.5, Ec =05, Pr = 62and N = 1.

9/(0) = ¢ [_ﬁ((l(,;bg)M<ug+g(w2 , 1 + b07 77‘“) + <:g(211(01tr[;%;2)
(s 2+ by =) o

where Re[ ' Nu, is the reduced Nusselt number.
4. Numerical simulation of the flow field and heat transfer

The nonlinear ordinary differential Eqgs. (21) and (22) along
with the boundary conditions in Eq. (23) in the presence of
local inertial coefficient and the stratification parameter form
a two point boundary value problem and are solved using
shooting method along with the fourth order Runge—Kutta
scheme by converting it into an initial value problem. In this
method we have to choose a suitable finite value of 1 — oo,
say 1... We set following first order system:

y,1 =D)as
ylzzyzv
¥y = [(14+ D)5 = p1ys) +ya 0k + o Mn),
yit:y57

Vs =51y + 128t =y, ¥5) — Ccadyy — C4M’7EC,V§ - C6ECJ’§7 (36)

with the boundary conditions

11(0) =5, 3,(0) =d+7y p;(0) + 6 ¥5(0), »,(0)=1—Sz.

(37)

To solve (36) with (37) as an initial value problem we must
need the values for y,(0) i.e. F'(0) and y5(0) i.e. 6'(0) but no
such values are given. The initial guess values for F”(0) and
'(0) are chosen and the fourth order Runge-Kutta integration
scheme is applied to obtain the solution. Then we compare the
calculated values of F'(n) and 0(n) at 5, with the given bound-
ary conditions F (1) = 0 and 6(n,,) = 0, and adjust the val-
ues of F’(0) and 0'(0) using the shooting technique to give
better approximation for the solution. The process is repeated
until we get the results correct up to the desired accuracy of
10~% level, which fulfills the convergence criterion.

5. Results and discussion

To discuss the results, the numerical computations are carried
out by employing the above numerical procedure for various
values of pertinent parameters for Au—Water. In order to val-
idate the present results, we have compared the values of
—F"(0) for stretching sheet and shrinking sheet solution f§ with
those of Turkyilmazoglu [35] for a special case. The compar-
isons are found to be excellent (Tables 2a and 2b). The effects
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Table 3b  Values of —6 (0) for shrinking sheet upper branch solution.

Au Ag Cu Al ALO; TiO,
r 0.3 1.34920452 1.29996719 1.30882448 1.22056948 1.25939214 1.05314161
0.4 1.34899188 1.29931860 1.30801735 1.21897775 1.25795268 1.05166644
0.5 1.34877634 1.29865475 1.30718947 1.21733392 1.25646730 1.05014449
Mn 0.3 1.34568432 1.28949496 1.29565590 1.19173885 1.23417257 1.02712824
0.4 1.34727671 1.29430375 1.30174066 1.20553583 1.24613989 1.03948088
0.5 1.34877634 1.29865475 1.30718947 1.21733392 1.25646730 1.05014449
ki 0.3 1.34437698 1.28534978 1.29037052 1.17889749 1.22322449 1.01593681
0.4 1.34666771 1.29246574 1.29942758 1.20024647 1.24157438 1.03480887
0.5 1.34877634 1.29865475 1.30718947 1.21733392 1.25646730 1.05014449
¢ 0.05 1.51160384 1.46859597 1.47170422 1.41625065 1.43944778 1.18594316
0.1 1.34877634 1.29865475 1.30718947 1.21733392 1.25646730 1.05014449
0.15 1.19674141 1.14719756 1.16048167 1.04873966 1.09846151 0.92927602
Y 0.5 1.33240177 1.25979948 1.26049225 1.12950866 1.17748776 0.96960810
1 1.34160583 1.28229886 1.28770086 1.18191612 1.22442715 1.01743897
1.5 1.34877634 1.29865475 1.30718947 1.21733392 1.25646730 1.05014449
0 —0.5 1.28528180 1.20273249 1.20211704 1.08340138 1.12606833 0.91472748
—1 1.32776927 1.26472770 1.26950034 1.16635463 1.20745632 0.99942585
—1.5 1.34877634 1.29865475 1.30718947 1.21733392 1.25646730 1.05014449
Ec 0.3 1.35213891 1.30479442 1.31408993 1.22827877 1.26655461 1.06040195
0.4 1.35045762 1.30172459 1.31063970 1.22280635 1.26151095 1.05527322
0.5 1.34877634 1.29865475 1.30718947 1.21733392 1.25646730 1.05014449
N 0.5 0.92899315 0.89424927 0.89790731 0.83726173 0.86270836 0.72134113
1 1.34877634 1.29865475 1.30718947 1.21733392 1.25646730 1.05014449
1.5 1.61675793 1.55748570 1.56959920 1.46173827 1.50963809 1.26157111
St 0.4 1.34877634 1.29865475 1.30718947 1.21733392 1.25646730 1.29930932
0.5 1.11442765 1.06382465 1.06794869 0.97952264 1.01480589 1.05014449
0.6 0.88007897 0.82899456 0.82870791 0.74171137 0.77314447 0.80097966

Note: While studying the effect of individual parameters the following values are assumed s = 1, d = —1, I' =0.5, k; = 0.5, Mn = 0.5,

¢=0.1,y=156=-15,8t =04, 1=-0.5, Ec = 0.5, Pr = 62and N = 1.

of various physical parameters on F'(0) and the temperature
profile are analyzed through Figs. 1-8. for both stretching
and shrinking sheets and the reduced Nusselt number is tabu-
lated for different nanofluids in Tables 3a,3b,3c.

Fig. 2 shows the variation of F’(0) with suction/injection,
first and second order slip parameters for both stretching
(d = 1) and shrinking (d = —1) sheets. It is found that a
unique solution exists for stretching sheet in both suction
and injection cases and dual solutions (upper and lower
branch) are obtained in shrinking sheet after a certain range
of suction parameter. There are no solution existing for shrink-
ing sheet in injection case. The F'(0) values increase with s in
stretching sheet and shrinking sheet lower branch solution
cases and decrease in shrinking sheet upper branch solution
case. The increasing values of first order slip parameter
increase the values of F’(0) in stretching sheet and decrease
the same in shrinking sheet. The values of F”(0) decrease as
second order slip increases in stretching and shrinking sheet
lower branch solution and increase with second order slip
parameter in shrinking sheet upper branch solution. It is also
seen that there exist critical values s.(>0) for suction. It
should be mentioned that for 0 < s < s, the ordinary differen-
tial Eq. (21) has no solutions and the full Navier—Stokes and
energy equations should be solved. The s, point decreases with
first order slip parameter and increases with second order slip
parameter.

The variations of F'(0) with magnetic and porous medium
parameters are shown in Figs. 3 and 4 respectively for both
stretching and shrinking sheets. It is clear that the increasing
values of magnetic (Fig. 3) and porous medium parameters
(Fig. 4) increase the values of F’(0) in stretching and shrinking
sheet lower branch solution cases and decrease the F”(0) values
in shrinking sheet upper branch solution. The first and second
order slip parameters have a same trend on F”(0) as discussed
in Fig. 2.

The effects of nanoparticle volume fraction and the local
inertia coefficient on F’(0) with first and second order slip
parameters are respectively displayed in Figs. 5 and 6. It is
observed that the increasing values of nanoparticle volume frac-
tion (Fig. 5) and local inertia coefficient (Fig. 6) increase the val-
ues of F’(0) in stretching and shrinking sheet lower branch
solution cases and decrease the F’(0) in shrinking sheet upper
branch solution. It is also observed from Fig. 6, the shrinking
sheet lower branch solution exists only up to certain value of
local inertia coefficient (say I'.). It should be mentioned that
the shrinking lower branch solution does not exist beyond I..
It is noted that I'. decreases as fist order slip increases and I'.
increases as second order slip parameter increases.

The combined effect of first, second order slip and stratifi-
cation parameters on the nanofluid temperature profile is elu-
cidated in Fig. 7. Stratification parameter is the ratio between
the free stream temperature and the nanofluid surface temper-
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Table 3¢ Values of —' (0) for shrinking sheet lower branch solution.
Au Ag Cu Al Al,O3 TiO,
r 0.3 184.19029260 78.65369944 67.83775717 50.04021728 48.18734832 49.83283660
0.4 188.00155986 76.84674931 65.00962094 37.48677208 40.04626007 42.29769749
0.5 189.23483317 75.24685527 6291115199 31.90975045 35.82663685 38.24080921
Mn 0.3 182.10868266 69.10575025 56.80896270 24.86351625 29.28320041 31.53418455
0.4 185.64793979 72.12815282 59.80175979 28.20087421 32.42171704 34.75819644
0.5 189.23483317 75.24685527 6291115199 31.90975045 35.82663685 38.24080921
ky 0.3 183.49751117 70.18362375 57.83089028 25.62414651 30.12358643 32.42395902
0.4 186.34834199 72.67579394 60.32189444 28.58334403 32.84973035 35.21197283
0.5 189.23483317 75.24685527 6291115199 31.90975045 35.82663685 38.24080921
103 0.05 105.15545641 58.86332022 53.16791032 37.06643755 39.54347352 40.87669637
0.1 189.23483317 75.24685527 62.91115199 31.90975045 35.82663685 38.24080921
0.15 260.26481738 85.14069153 67.86339720 27.50999293 31.81582626 34.96009046
y 0.5 197.98871135 78.81662646 65.69979944 31.54233174 36.25035748 38.88085204
1.0 193.46779465 76.94111785 64.22646543 31.70935002 36.00355205 38.52069405
1.5 189.23483317 75.24685527 62.91115199 31.90975045 35.82663685 38.24080921
o 0.5 165.00187245 66.08413699 55.97475641 34.60422318 35.85436648 37.60851173
-1.0 181.99957296 72.23958066 60.56086176 32.52160281 35.61206410 37.81575900
—-1.5 189.23483317 75.24685527 62.91115199 31.90975045 35.82663685 38.24080921
Ec 0.3 113.90158456 45.56183521 38.21471240 20.29321394 22.38040004 23.79358715
0.4 151.56820891 60.40433868 50.56293214 26.10148160 29.10351860 31.01719821
0.5 189.23483317 75.24685527 62.91115199 31.90975045 35.82663685 38.24080921
N 0.5 107.59608673 43.43898410 36.67867608 19.49282375 21.67016835 23.20943918
1 189.23483317 75.24685527 62.91115199 31.90975045 35.82663685 38.24080921
1.5 243.83256626 95.37046278 79.22204981 39.09020727 44.18188203 47.15408685
St 0.4 189.23483317 75.24685527 6291115199 31.90975045 35.82663685 38.24080921
0.5 190.37352473 76.64133524 64.43014886 33.99834951 37.76272308 40.22096365
0.6 191.51221613 78.03582816 65.94914582 36.08694893 39.69880877 42.20111801

Note: While studying the effect of individual parameters the following values are assumed s = 4, d = —1, I' = 0.5, k; = 0.5, Mn = 0.5,
¢=0.1,y=1506=-15,8t=04,.=-0.5, Pr=62,N=1and Ec = 0.5.

ature. The temperature profile of Au—Water decreases with the
increasing values of stratification parameter in stretching sheet
(Fig. 7(a)). The increase in stratification parameter indicates an
increase in free stream temperature or reduction in fluid sur-
face temperature. Thus the increase in stratification parameter
leads to thinning of the thermal boundary layer. A similar
trend has been observed in shrinking sheet upper branch solu-
tion (Fig. 7(b)). But the stratification parameter shows an
opposing trend in shrinking sheet lower branch solution. The
increasing values of first order slip parameter enhance the tem-
perature profile in stretching and shrinking sheet lower branch
solution and reduce the temperature in shrinking sheet upper
branch solution. The presence of second order slip decreases
the temperature profile in stretching sheet and shrinking sheet
lower branch solution and increases in shrinking sheet upper
branch solution.

The combined effect of magnetic, radiation and stratifica-
tion parameters on the temperature of the Au—Water is shown
in Fig. 8. It is obvious that the increasing values of magnetic
parameter lead to increase the thickness of nanothermal
boundary layer in stretching and shrinking sheet lower branch
solution (Fig. 8(a) and (c)). This is due to the fact that, when a
transverse magnetic field is applied to an electrically conduct-
ing fluid, it gives rise to a resistive force, known as the Lorentz
force. This force makes the fluid to experience a resistance by

increasing the friction between its layers and due to which
there is a decrease in velocity and concentration. The temper-
ature increases in the boundary layer due to the Ohmic dissipa-
tion effect. But the thermal boundary layer thickness reduces
in the presence of magnetic field in shrinking sheet upper
branch solution (Fig. 8(c)). It is interesting to note that the
increasing values of magnetic parameter increase the tempera-
ture profile drastically in shrinking sheet lower branch solution
case. The occurrence of radiation parameter always leads to
thinning of the nanothermal boundary layer.

The combined effect of Eckert number and nanoparticle
volume fraction parameter on the temperature profile is illus-
trated in Fig. 9. It is noted that the increasing values of Eckert
number lead to increase the temperature profile in both
stretching (Fig. 9(a)) and shrinking sheets (Fig. 9(b) and (c)).
Due to the fact that the viscous dissipation produces heat
due to drag between the nanofluid particles and this extra heat
causes an increase in the initial fluid temperature. The presence
of viscous dissipation leads to increase the nanothermal
boundary layer thickness. The temperature profile increases
with the increase in nanoparticle volume fraction in stretching
sheet and shrinking upper branch solution case and an oppo-
site trend has been noted in shrinking sheet lower branch solu-
tion case. The stratification parameter shows the same effect as
discussed in Fig. 7.
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Fig. 9 Effects of Eckert number and nanoparticle volume
fraction parameter with stratification parameter on the tempera-
ture profile withs = 1,y=1,0=1,I'=0.5,k; = 0.4, Mn = 0.4,
A=—-0.6, Ec = 0.5, N =2 and Pr = 6.2. (a) Stretching sheet
(d = 1), (b) shrinking sheet upper branch solution (d = —1), (c)
lower branch solution.

6. Conclusion

We have studied the second order slip flow of a nanofluid over
stretching/shrinking sheet embedded in a thermally stratified
porous medium in the presence of viscous and Ohmic dissipa-
tions effects. The governing equations of the problem are con-
verted into ordinary differential equations by using scaling
transformations. The transformed equations are solved numer-
ically by fourth order Runge—Kutta method with shooting
technique. Following conclusions can be derived from the pre-
sent results.

e A unique solutions exist for stretching sheet in both suction
and injection cases. Dual solutions are obtained beyond a
suction critical point. The shrinking sheet solution does
not exist in injection case. The increasing value of first order
slip parameter decreases the suction critical point and the
second order slip parameter shows an opposite effect on
suction critical point.

e The lower branch solution exists only for the certain range
of local inertia coefficient. The increasing value of first
order slip parameter decreases the local inertia critical point
and the second order slip parameter shows an opposite
effect on local inertia critical point.

e The temperature profile increases in the presence of viscous
dissipation in both stretching and shrinking sheets.

e The increasing values of stratification parameter lead to
thinning of the thermal boundary layer in stretching and
shrinking sheet upper branch solution case and an opposite
behavior is observed in shrinking sheet lower branch
solution.

e The presence of second order slip decreases the temperature
profile in stretching sheet and shrinking sheet lower branch
solution and increases in shrinking sheet upper branch
solution.

e The nanothermal boundary layer thickness increases in
stretching and shrinking sheet lower branch solution and
decreases in shrinking sheet upper branch solution in the
presence of Ohmic dissipation.

e The existence of thermal radiation decreases the thermal
boundary layer thickness in both stretching and shrinking
sheets.
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