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Abstract The modified simple equation (MSE) method is promising for finding exact traveling
wave solutions of nonlinear evolution equations (NLEEs) in mathematical physics. In this letter,
we investigate solutions of the (2 + 1)-dimensional Zoomeron equation and the (2 + 1)-dimen-
sional Burgers equation by using the MSE method and the Exp-function method. The competence
of the methods for constructing exact solutions has been established.
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. Introduction

The study of the traveling wave solutions for nonlinear evolu-
tion equations (NLEEs) plays an important role to look into
the internal mechanism of intricate physical phenomena. Most
of the physical phenomena such as, fluid mechanics, quantum
mechanics, electricity, plasma physics, chemical kinematics,
propagation of shallow water waves, and optical fibers are
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modeled by nonlinear evolution equation and the appearance
of solitary wave solutions in nature is somewhat frequent.
But, the nonlinear processes are one of the major challenges
and not easy to control because the nonlinear characteristic
of the system abruptly changes due to some small changes in
valid parameters including time. Thus, the issue becomes more
complicated and hence ultimate solution is needed. Therefore,
the study of exact solutions of NLEEs plays a vital role to
understand the physical mechanism of nonlinear phenomena.
Advance nonlinear techniques are significant to solve inherent
nonlinear problems, particularly those are involving dynamical
systems and related areas. In recent years, there become signif-
icant improvements in finding the exact solutions of NLEE:s.
Many effective and powerful methods have been established
and improved, such as, the Hirota’s bilinear transformation
method [1,2], the tanh-function method [3.4], the (G'/G)-
expansion method [5-13], the Exp-function method [14-18],
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the homogeneous balance method [19,20], the F-expansion
method [21], the Adomian decomposition method [22], the
homotopy perturbation method [23], the extended tanh-func-
tion method [24.25], the auxiliary equation method [26], the Ja-
cobi elliptic function method [27], the Weierstrass elliptic
function method [28], the modified Exp-function method
[29], the modified simple equation method [30-33], and so on.

The objective of this article is to look for new use relating to
the MSE method and Exp-function method for solving the
(2 + 1)-dimensional Zoomeron equation and the (2 + 1)-
dimensional Burgers equation and demonstrate the advantage
and straightforwardness of these methods. Burgers equation is
a fundamental partial differential equation from fluid mechan-
ics. It occurs in various areas of applied mathematics, such as
modeling of gas dynamics and traffic flow [34,35].

The article is organized as follows: In Section 2, the MSE
method and Exp-function method are discussed. In Section 3,
we exert these methods to the nonlinear evolution equations
pointed out above, in Section 4, interpretation and graphical
representation of results, and in Section 5 conclusions are
given.

2. The methodology

In this section, we will discuss the MSE method and the Exp-
function method.

2.1. The MSE method

Suppose the nonlinear evolution equation is in the form
)=0 (2.1)

where p is a polynomial of u(x, ) and its partial derivatives
wherein the highest order derivatives and nonlinear terms are
involved. The focal steps of the MSE method are as follows
[30-33]:

@(”a Upy Uy Uxy Upgy - -

Step 1: Suppose the traveling wave transformation [13]
u(x,t) =u(f), ¢=k(x+or) (2.2)

where o is the speed of traveling wave, k is the wave num-
ber, permits us to reduce Eq. (2.1) into the following ordin-
ary differential equation (ODE):

Pl u",...) =0, (2.3)

where P is a polynomial in u(¢) and its derivatives, foras-
much «/(§) = %.
Step 2: Suppose the solution of Eq. (2.3) can be written in

the form

N / i
@ (5)}
u(&) =Ag+ > A; . 2.4
=+ [Q( 5 (2.4)
where N is a positive integer and A(i = 1, 2, 3, ..., N) are

arbitrary constants to be determined, such that 45 # 0 and
®(¢) is an unknown function to be determined afterward.
Step 3: We determine the positive integer N appearing in
Eq. (2.4) by balancing the highest order derivatives and
the highest order nonlinear terms occurring in Eq. (2.3).
Step 4: We substitute Eq. (2.4) into Eq. (2.3) and then we
account the function ®(&). As a result of this substitution,
we get a polynomial of ® (&) with the derivatives of

®(¢). We equate all the coefficients of @ to zero, where
j = 0. This procedure yields a system of equations which-
ever can be solved to find 4; and ®(£). Substituting the val-
ues of A; and ®(¢) into Eq. (2.4) completes the
determination of the solution of Eq. (2.1).

2.2. The Exp-function method

We now present the Exp-function method for solving the non-
linear partial differential equation of the form of Eq. (2.1).

Step 1: Suppose the solution of Eq. (2.3) can be expressed in
the following form [14-18]:

Zd; A, exp(né)
u(@) = Sp=r
fn:ﬂ,Bm exp(mé)
_ A_.exp(—cé) 4 + Agexp(dé)

- Bexp(—pé) + -+ Byexp(¢é)’

(2.5)

where ¢, d, p and ¢ are positive integers which are unknown
to be determined, 4, and B,, are unknown constants. Eq.
(2.5) can be rewritten in the following equivalent form:
A exp(cé) + -+ A_yexp(—dé
u(?) = p(cf) 1exp( ,) . (2.6)
By exp(p¢) + -+ + B_gexp(—¢¢<)

This equivalent presentation plays an important and funda-
mental role for finding the solitary wave solutions of
NLEEs [14-18].

Step 2: For determining the values of ¢ and p, we balance
the linear term of the highest order to the highest order
nonlinear term, and for determining the values of 4 and
q, we balance the lowest order linear term to the lowest
order nonlinear term in Eq. (2.3). This completes the deter-
mination of the values of ¢, d, p and ¢.

Step 3: Putting the values of ¢, d, p and ¢ into Eq. (2.6) and
then substituting Eq. (2.6) into Eq. (2.3) and simplifying, we
obtain

> _Crexp(jn) =0. 2.7)

Setting each coefficient C; = 0, yields a set of algebraic
equations for 4.’s and B,’s.

Step 4: Suppose the unknown A4.’s and B,’s can be obtained
by solving the set algebraic equations obtained in step 3.
Substituting these values into Eq. (2.6) we obtain the exact
traveling wave solutions of Eq. (2.1).

3. Applications

3.1. The (2 + 1)-dimensional Zoomeron equation

In this subsection, we will exert the MSE method and Exp-
function method to find the exact solutions of Zoomeron equa-
tion. Let us consider the Zoomeron equation

(£, - (5, +20, =0 o)

u u

where u(x, y, ) is the amplitude of the relative wave mode.
The traveling wave transformation

u(x, y, 1) = u(S),
reduces Eq. (3.1) into the following ODE:

E=x+y—wt (3.2)
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(0* — D’ — 201 + Ru=0 (3.3)

where R is a constant of integration.

3.1.1. Solutions for Zoomeron equation via MSE method

Balancing the highest order derivative #” and nonlinear term of
the highest order «°, yields N = 1.
Through the MSE method, for N = 1 Eq. (2.4) becomes

(&) = Ay + A, (%) (3.4)

where Ay and A, are constants such that 4; # 0, and ®(¢) is an
unidentified function to be determined.

Substituting Eq. (3.4) into Eq. (3.3) and equating the coef-
ficients of ®°, @', ® 2, &3 to zero, yields

—2wA; + R4y = 0. (3.5)
(0 = 1)®" — (6wA; — R)® = 0. (3.6)
3(w* — 1) 4 6wAgA, P =0 (3.7)
(24, — 2047 =20 4,)P" = 0. (3.8)

Solving Eq. (3.5), we obtain

R
a0 (B)

Again solving Eq. (3.8), we obtain

2
A =+ (%) since A, 0.

From Egs. (3.6) and (3.7), we obtain
@' (&) = MAexp(—LME) (3.9)

Integrating Eq. (3.9) with respect to &, yields

o(&) = % exp(—LM¢) + B (3.10)

where L = — <6wA R) M= — (2‘“;*1 ) and A4, B are constants
wAgAy

of integration. Now using Eqgs. (3.9)and (3.10); Eq. (3.4) yields
the following exact solution

( LMAexp(—LME) )

u(e) = Ao = Aexp(—LME) —

(3.11)

Case-I: When 4, = 0, Eq. (3.11) yields an absurd solution.
Hence, the case is discarded.

Case-1I: When 4, ==+ 2%, substituting the values of
Ay, A1, L, M Eq. (3.11) yield the following exact solution

u(@) =1

e )
((fZRBl + A) cosh (ﬁl‘i) ZRB ) A) sinh ( 7 )

(3.12)
Since A and B are arbitrarily constants, therefore, if we set
A= from Eq. (3.12), we obtain

(“2 l)’

R
ul.z(x,y, l) =44/—

2w
X tanh < ﬁ(x +y- wt)) . (3.13)
Again setting 4 = — 2%, Eq. (3.12) reduces to:
uza(x,p,t) =+ %
x coth ( 2(w2—R_1)(x +y-— wt)> . (3.14)

If R < 0, using hyperbolic identities Eqgs. (3.13) and (3.14)
yields

usg(x,y,1) = i\/%tan ( 2(TR_])(X +y- wt)) (3.15)

R
d X, P, 1) = £4/—
and  wuse(x,p,1) o

xcot( Z(TRI)(X_H}_W)) (3.16)

respectively.

3.1.2. Solutions for Zoomeron equation via Exp-function method

Now, we apply the Exp-function method to construct the gen-
eralized traveling wave solutions of Zoomeron Eq. (3.1).

According to Step 1 of Section 2.2, the solution of Eq. (3.3)
can be written in the form (2.6). To determine the values of ¢
and p, according to Step 2, we balance the linear term u” of the
highest order in Eq. (3.3) to the highest order nonlinear term
. With the aid of Maple, yields to the result p = c.

To determine the values of ¢ and d, we balance the linear
term u” of lowest order in Eq. (3.3) with lowest order nonlinear
term #°, which leads to the result ¢ = d.

We can arbitrarily choose the values of ¢ and d, but the final
solution does not depend upon the choices of them. We are
interested to obtain nontrivial solutions of Eq. (3.3). By a non-
trivial solution, we mean the solution except the solution
u = a, where a is an arbitrary constant.

Now suppose p = ¢ =1 and ¢ = d = 1. Since there are
some free variables, for simplicity, we suppose B; = 1. Hence,
we obtain

Ay exp(&) 4+ Ay + Ay exp(—¢)
By exp(&) + By + B_jexp(—¢)

Now, substituting Eq. (3.17) into Eq. (3.3) and by employing
the computer algebra, such as Maple, we obtain the following
seven algebraic equations.

—2wA’ | + RA_ B>, = 0.

u(®) = (3.17)

*A4yB*, — 0’4 \B_ By + A ByB_| — A\B*
+2RA 1 ByB | + RA\B,
=0.

- 6(uA0A

2RAyByB_ +2RA_B_, — o’ AyB_ By
— 40’4 \B | + 0’4 B}

— AB} + 40’4, B,
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—6wA, A%, — 6wALA | + AyB_\ By
+ RA, B>, + RA_,B; = 0.

—4A4,B* | +44_,B_,

2RA1BOB,1 + 2RA,1BO — 1260A1AOA,
+ 3w2A1B0B,1 — 6602A()B,1

1+ 6AoB,1 — 26014(3)

—34 1By — 34,B_By + 30’4 By +2RAyB_| + RA,B; = 0.

—44 | — 6wATA_ | + 40’ A — 40’ A B_ +44,B_, + RA, B}
+ (,UZA]B(Z) —+ A()B()

+2RA0By — 6wA  Aj + RA_| +2RA\B_, — A, B} —
=0.

C()onBO

7(1\)214130 + RAO -+ ZRAIBO + A]Bo
=0.

— Ay — 6wA> 4y + 0?4

RA, — 2043 =0.

Solving the above algebraic equations for A_;, 4o,
Ay, B_1, By, o, R, we get the following two valid sets.

Set] R=1-0? ow=w, A, =0, Ay= A,
wA?
A, =0, B,=———-"" By=0
1 ) 1 4((10271)7 0
1
Set 2 R_E (L)—l)
w—l 1 w?—1

B,] = O,BO = BO
w

For the values of Set 1 and Set 2, Eq. (3.17) gives the following
traveling wave solutions.

440(0?* — 1)
(40? — 4 — wA?) cosh(¢) + (4w?

1 Jw? — 11+ tanh(&) — Bysech(&)
. E) =+ =4/
and - 123() 2 o 1+ tanh(&) + Bysech(&)

respectively, where £ = x + y — wt.

Ul(Cf) =

— 4+ wA}) sinh(¢)
(3.18)

(3.19)

3.2. The (2 + 1)-dimensional Burgers equation

In this subsection, we will avail the MSE method and Exp-
function method to look for the exact solutions and then the
solitary wave solutions to the (2 + 1)-dimensional Burgers
equation

Uy — Uy — Uxx — uyy = 0 (320)
where u=u(x,p,t), E=k(x+y—owt), u(x,,1)
= u(g) (3.21)

By means of the traveling wave transformation (3.21), Eq.
(3.20) reduces to the following ODE:

—ou —u — 2ku" = 0. (3.22)

Integrating Eq. (3.22) with respect to ¢ and regarding integrat-
ing constant to zero, we obtain

20u + 1 + dal = 0. (3.23)

3.2.1. Solutions for Burgers equation via MSE method

Through the MSE method, balancing the highest order deriv-
ative ' and nonlinear term %, we obtain N = 1.
Therefore, Eq. (2.4) takes the shape

u(é) = Ap + 4, ((g((f)))

where 4g and A; are constants such that 4; # 0, and ®(¢) is an
unidentified function to be determined. It is easy to make out

(3.24)

that
1" N 2
a5 (3)] 329
@ @ 2
u' = Ay + 2404, ( )+A2((p) (3.26)

Substituting the values of u,/ and «* from Eqs. (3.24)—(3.26),
into Eq. (3.23) and then equating the coefficients of ®°, ®~!
@~ to zero, we respectively obtain

204 + A5 = 0. (3.27)

2d" + (0 + Ag) ' = 0. (3.28)

(A2 — 4kA)) (@) =0.

From Eq. (3.27), we obtain

Ay =0,—20

And from Eq. (3.29), we obtain

A, = 4k, since A;7#0

(3.29)

Solving Eq. (3.28), we obtain

(3.30)

where / = (412).

Integrating Eq. (3.30), we obtain
(&) = ¢y exp(—IE)

where ¢; is a constant of integration.
Integrating Eq. (3.31) with respect to &, we obtain

D& =c, — C—l' exp(—I¢&)

(3.31)

(3.32)

where ¢, is a constant of integration.
Substituting the values of ® and @' into Eq. (3.24), yields

_ cilexp(—1&)
u(é) 7A0+Al<—czlfcl eXp(flé) . (333)
Case-I: When 4, = 0, Eq. (3.33) becomes
_ cilexp(—I&)
u(é) = 4, (—czlf crexp(-19)) (3.34)

We can arbitrarily choose the constants ¢; and ¢,. Therefore,
setting ¢; = 5 and substituting the values of 4, and / into
Eq. (3.34), we obtaln
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(%, 9, 1) = {1 —coth ( (x+y— wz))} w>0. (335
Again if we set ¢; = =52, Eq. (3.34) reduces to:

uy(x,p,1) = — {1 — tanh <4(x+y wt))} w>0. (3.36)
If o < 0, Egs. (3.35) and (3.36) yields

uz(x,y,1) = fw{l — cot <% (x+y— wt))} (3.37)
and  wuy(x,p,1) = fco{l — tan (% (x+y— wl)) } (3.38)

Case-1I: When 4, = —2w, Eq. (3.33) becomes

us(x,y,1) = —2w
4oci (1 4 tanh(w(x 4+ y — wt)/2))

* 2¢;(1 + tanh(w(x + y — w1)/2)) + cxosec h(w(x + y — wt)/2)

(3.39)

The free parameters may imply some physical meaningful re-
sults in fluid mechanics, gas dynamics, and traffic flow.

3.2.2. Solutions for Burgers equation via Exp-function method

Now, we apply the Exp-function method to construct the gen-
eralized traveling wave solutions of Burgers Eq. (3.20).
According to the parallel course of action discussed in Sec-
tion 3.1.2, the solution of Eq. (3.23) can be written in the form
of
u(®) = Ayexp(&) + Ap + A exp(—¢)
exp(&) + Bo + By exp(~0)

(3.40)

Now, substituting Eq. (3.40) into Eq. (3.23) and by employing
the computer algebra, such as Maple, we obtain the following
seven algebraic equations.

—A*, —20wA_ B, =0,

— 4kAOB,] — 2A()A,1 — ZwAOB,l — ZCOA,lB() + 4kA,|B() = 0,
— 2A1A_1 + 8kA_1 — 2wAlB_1 - ZwA()B()

— Aj —2wA_, — 8kA,B_; =0,

— 2A1A0 + 4kA0 - ZU)AIBO - 4kAlBO - 260140 B 0,
—2wA, - A2 =0
Solving the above algebraic equations for A_;, Ao,

Aq, B_1, By, o, R, we get the following five valid sets.

Set 1 k:—%, o=w, A,=0, A4,=0, A
= —26!)7 B,] 0, BO = BO
w
Set 2 k——z, w = , A,[ZO, A():O, A1
=—-20, B,=B,, By=0
A A
Set 3 kfjl w:—jl, A =0, Ay=Ay, A
B A* 4+ A?
— A, B =B, By=-—1T%
A, A,

Set 4 k—z w =, A_l = —2(,L)B_17 AO :07 Al
=0, B1=B.,, By=0
Ao(Ay + 2B,
Set 5 k:g, o=, Ailzw7 Ay
2 [0}
Ao(Ay + 2w B,
=A,, A, =0, 371:,w7 B,
4w?
=B,

Now substituting Set 1-Set 5 into Eq. (3.40), we deduce abun-
dant traveling wave solutions of Eq. (3.20) as follows.

cosh(&) + sinh(&)

- 341
u(¢) @ (cosh(é) + sinh(&) + By G40
where ¢ = —¢(x+y — or).

cosh(&) + sinh(¢)

_ 2
ur (&) w((l + B_;)cosh(&) + (1 — B_,)sinh(¢) )’ (3.42)
where ¢ = —2(x +y — wi).

n(E) = ( (A4, (cosh(&) + sinh(¢)) + A4g) Ao 4, )
o (cosh(¢) + sinh(&)) Ao Ay + B 47 + A + (cosh(&) — sinh(&)) do41 B,
(3.43)
where ¢ =46 (x + y — o).
cosh(¢) — sinh(¢&)

= —-2wB_
uy (&) w 1((1 + B_,)cosh(é) + (1 — B_;) sinh(¢&)

(3.44)
where ¢ = (x +y — ).

_, (Ao + 2wBy)(cosh(&) — sinh(¢&)) + 2w

wAy (40? — A2 — 204 By) cosh (&) + (4w? + A3 + 2wAoBy) sinh(¢) |
(3.45)
where & =9 (x +y — o).

4. Explanations and graphical representations of the solutions

In this subsection, we will discuss the physical interpretation of
the results of the (2 + 1)-dimensional Zoomeron Equation
and the (2 + 1)-dimensional Burgers Equation.

The (2 + 1)-dimensional Zoomeron Equation:

(i) Applying the MSE method, the (2 + 1)-dimensional
Zoomeron Equation provides the traveling wave solu-
tions from Egs. (3.13)(3.16). In these equations the
arbitrary constant R # 0. The shape of Egs. (3.13) and
(3.15) are represented in Figs. 1 and 2 respectively with
wave speed o = 2, y = 0 and R = 9 within the interval
—3 < x,t < 3. Fig. 1 represents kink wave and Fig. 2
represents periodic wave.

(i1)) And applying Exp-function method, the (2 + 1)-dimen-
sional Zoomeron Equation provides the traveling wave
solutions Egs. (3.18) and (3.19). In Eq. (3.18), the con-
stant Ag# 0. Egs. (3.18) and (3.19) are hyperbolic func-
tions solutions. Fig. 3 represents the bell-shaped profile
of Eq. (3.18) with 49 =1, y =0, o = 0.75 within
=3 < x <3

The (2 + 1)-dimensional Burgers equation:

(i) Applying the MSE method, the (2 + 1)-dimensional
Burgers Equation provides the traveling wave solutions
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Figure 2 Profile of Eq. (3.15) with R =9, y = 0, ® = 2 within —3 < x,# < 3.
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NN

N

Figure 3  Profile of Eq. (3.18) with 49 = 1, y = 0, ® = 0.75 within =3 < x,7 < 3.

Figure 4  Profile of Eq. (3.36) with y = 0, @ = 2 within —3 < x,7 < 3.

from Eqgs. (3.35), (3.36), (3.37), (3.38), (3.39). The shape (ii) And applying Exp-function method, the (2 + 1)-dimen-
of Eq. (3.38) is represented in Fig. 4 is a periodic wave sional Burgers equation provides the traveling wave
solution with wave speed @ = 2, y = 0 within the inter- solutions from Eqs. (3.41), (3.42), (3.43), (3.44), (3.45)

val =3 < x,t < 3. which are expressed through hyperbolic functions. In
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=1,y=0, =2 within =3 < x,7< 3.

Figure 5  Profile of Eq. (3.42) with B_,

I,y =0, o = =2 within =3 < x,7 < 3.

Figure 6 Profile of Eq. (3.44) with B_,
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Eq. (3.41) the constant By # 0, in Eq. (3.43) the constants
Ao, A1 #0, in Eq. (3.44) the constant B_; # 0 and in Eq.
(3.45) the constant Ay # 0. Figs. 5 and 6 represent kink
profile of Egs. (3.44) and (3.45) with B_; =1, y =0,
w=2and B_; =1,y =0, ® = =2 respectively within
the interval —3 < x,7 < 3.

Furthermore, the graphical demonstrations of some ob-
tained solutions are shown in Figs. 1-6 in the following
subsection.

Some of our obtained traveling wave solutions are repre-
sented in the following figures with the aid of commercial soft-
ware Maple:

5. Conclusions

In this article, we considered the (2 + 1)-dimensional Zoomer-
on equation and the (2 + 1)-dimensional Burgers equation.
We put forth the modified simple equation (MSE) method
and Exp-function method for finding exact solutions of these
equations. It is significant to observe that comparing the
MSE method with the Exp-function method, we assert that
the MSE method is direct, easy, concise, and straightforward.
To calculate the coefficients Ay, A, A», etc. it need not use any
computer algebra when the MSE method is used. On the other
hand, the Exp-function method must needs computer algebra
to compute the coefficients Ay, 4,, 45, etc. The MSE method
can be applied to many other nonlinear evolution equations
in mathematical physics. This study shows that the MSE meth-
od is quite efficient and practically well suited to be used in
finding exact solutions of NLEEs.
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