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The controllability of a large scale dynamic system which depends singularly 
upon a small parameter X is considered. When X - 0, the large scale system 
degenerates into a reduced order subsystem representing its slow dynamics 
while neglecting the fast phenomena. Another subsystem, often called a 
boundary layer system, represents the fast dynamics. In this paper sufficient 
conditions are established under which the controllability of the overall large 
scale system is inferred from the same property of the two subsystems. 

1. INTRODUCTION 

Concepts of controllability and observability have been playing a central role 
in modern control theory ever since they were introduced. On the other hand, 
presently there is a definite focus on developing decentralized control methods 
for large scale systems [l]. Singular perturbation methods [2] offer tools to 
separate a system into subsystems. Thus it is important to characterize the 
controllability of a high order system of singularly perturbed type in terms of 
the controllability of its subsystems. In this paper we examine this problem. 
Previously, Kokotovid and Haddad [3] and Chow [4] considered this problem for 
linear time invariant case while Sannuti [5] considered the same for linear time 
varying case. Here, we consider a nonlinear system of the type 

i = g(x, 2, u, t> (14 

Xi = G,(x, t) + D(x, t) z + E(x, t) u & G(x, z, u, t), (lb) 

where x and z are n- and m-dimensional state vectors respectively, u is an 
r-dimensional control vector, overdbt denotes d/dt, and h is a small positive 
parameter. The system defined by (1) is called the full system. The reduced 
system of the full system is defined by setting h = 0 in (I), 

2 = g(x, z, u, t), Pa) 
0 - G(x, z, u, t). (2b) 

579 
0022-247X/78/0643-0579$02.00/0 

Copyright CI 1978 by Academic Press, Inc. 
XI1 rights of reproduction in any form reserved. 



580 P. S.WNU'rI 

Thus with the matrix D(x, t) invertible for each x and t, we can solve for z from 

P) 9 

z = -D-l(s, t) (G,(x, t) + E&Y, tj U) 2 F(s, U, t), 

and rewrite (2) as 

(3 

.f -: g(x, F(s, u, t), u, t) I- f(s, U, t). (4) 

In addition to the reduced system (4), we define an auxiliary system often called 
a boundary layer system, 

+ = D(x, t) z + E(x, t) u, 
dP 

0) 

in which x and t are fixed parameters and p is an independent time variable. 
We will say that the system (I) is completely controllable if for each to and t, 

there exists some control u(t) defined over the interval [t, , tr] such that the 
solution of (1) satisfies any prescribed boundary conditions, 

x(t”) = X” ) 

z(t,j = 20 , 

x(t,) = x, 7 

z(t,) = 21 . 
(64 

(6b) 

The aim of the paper is to find conditions in terms of the subsystems (4) and (5) 
such that the full system (1) is completely controllable. We accomplish this by 
first constructing a formal solution X(t), Z(t), and U(t) which satisfy the system 

(1) and the boundary conditions (6) within O(h), under the hypotheses that the 
reduced and boundary layer systems (4) and (5) are completely controllable. 
Then the existence of a solution of (1) and (6) is rigorously established by 
combining the successive approximation methods employed earlier by Sannuti 
[6j and Lukes [7]. 

We assume that the functions g, G and fare twice continuously differentiable 
with respect to all their arguments in an appropriately defined domain. Using 
subscripts to denote matrices of partial derivatives in the usual way, we define 
g+(t) = g,(x(t), z(t), u(t), t) with similar definitions for g,(t), g,(t), fX(t), xl(t) 
and G,(t). Whenever there is no ambiguity, the arguments of the functions will 
not be shown explicitly. The absolute value or norm of a vector or a matrix 
denotes the sum of the absolute values of its elements. 

2. CONSTRUCTION OF A FORMAL SOLUTION 

We will construct a formal solution under the following two hypotheses: 

(HI) The reduced system (4) is completely controllable, i.e., for each t,, 



PERTURBED NONLINEAR SPSTEMS 581 

and t, there exists a control u(t) defined over the interval [to , tl] such that the 
solution of (4) satisfies the boundary conditions 

x(t,) = x0 and x(t1) = x1 . 

(H2) The rank of the matrix 

[D(t), D(t) E(f),..., D”“-‘(t) E(t)] 

is m for each fixed t E [to , tr], where 

D(t) = W+>, t> and E(t) = E@(t), t). 

We note that the reduced system has no boundary conditions related to (6b), 
i.e., x(t) = F(x, u, t) will not be equal to the prescribed boundary conditions Z, 

at t, and zr at t, . Thus the system (1) is expected in general to exhibit boundary 
layer phenomena at the end points t, and t, as X tends to zero. We impose the 
hypothesis (H2) to construct formally these boundary layers. 

Consider the following two systems called the left and right boundary layer 

systems respectively: 

h/dT = ml) 22 + E(4)) U[ , 40) = 20 - Q,), (7) 

dz,/du = -D(tl) z, - E(t,) 24, , z,(O) = 21 - x(t1). (8) 

Here 7 and u are stretched time coordinates T = (t - t,)/h and (T = (tr - t)/h. 
An immediate consequence of (H2) is to guarantee the existence of matrices I., 

and L, such that D, = D(t,) + E(t,) L, and D, = -D(tl) - E(t,) L, are stable, 
i.e., each eigen value of D, and D, has a real part < -y < 0. With 

an exponentially decaying solution can be constructed for both (7) and (8) 

44 = exp[Dd (z. - 4to)), O<T<,X, 

40) = ev[W (z, - G)h O<a<oo. 

Now let us define a formal solution. 

X(f) = x(t), 

W) = 4q + d(t - to)/4 + Ml - W)7 
CT(t) = u(t) + Uz((t - top) + %@l - t)/A). 

(9) 
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1Ve intend to show that (1) along with the boundary conditions (6) has a solution 
and that S, 2, and C7 approximate x, z, and u within O(h). However we need an 
additional hypothesis on a linearized system of the reduced system. 

(H3) The linear system (IO), 

(where a: and v  are treated as state and control variables respectively) is com- 
pletely controllable. More specifically, we assume that zu(t, , to), 

t)fu(t)f’&) 3’dto , t) dt, 

is nonsingular. The prime denotes the matrix transpose and #,(t, to) is the 

fundamental matrix of f,(t) given b! 

Here and elsewhere I denotes an identity matrix of appropriate dimension. 
Note that if the reduced system (4) is linear then (Hl) implies (H3). 

3. PRELIMINARIES 

In this section we consider some preliminary results useful for the perturba- 
tion analysis to follow in the next section. We first observe as in the previous 
section that under the hypothesis (H2), there exists a matrix L(t) such that 
8 = D(t) + E(t)L(t) has all eigenvalues with negative real parts for each fixed 

t E [to 1 tJ. 

LEMMA 1. Dejine 

ix = gdt) + cc&) W) D-‘(t) G,(t), 
sz = gz@) + ‘G,(t) w 

c;‘, = G,(t) + E(t)L(t) D-‘(t) GJt). 

Then the system of equations 

(11) 
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has a bounded solution for all t E [to , tl] and for all X sufficiently small. Further M 

and N satisfy the limits 

l+-r M = --i&l, + L,? N = b-@, . + 

Proof. This is a special case of the equations dealt in [8]. Since b(t) is a 
stable matrix, application of the standard theorem of Tikhonov [2] will yield 
the result. 

LEMMA 2. Equations (11) imply the following matrix i&&ties: 

&. -- &b-l& = g, - g,D-1G, = fs, 

gu - g,fi-lE = (gU - g,D-lE) (I - L&W) = fu(I + LD-lE)-1. 

Proof. From the identity 

b-lb = &l(D + EL) = (D + EL) B-1 = I, 

we first note that 

b-1 = D-1 _ I~-IELD-~ = ~-1 _ D--~EL&~ 

Then consider 

b-1~2, = b-w, + B-GELD-IG, 

= (D-l - b-lELD-1) G, + B-MELD-IG, = D-1G, . 

(14 

(13) 

(14) 

(15) 

It is easy now to show the first half of identity (12) from (15). The second half 

of (12) follows from the definition of the function f. Similarly, 

j&1 = g,(D-1 - D-lEL&1) + g,Ld-1 

= g&l - g,D-lELb-1 + g,L&l, 

g, - &+E = g, - g,D-lE + g,D-lELB’-‘E - g,,Llj-1E 

= (g,, - gZD-lE) (I - L&‘E). 

This establishes the first part of identity (13). Using (14), it is easy to check 

I - Lb-1E = (I + LD-lE)-l. (16) 

Equation (16) and the definition of the function f  establish the second part of 
(13). We remark that identities similar to (12) and (13) were used earlier in [4]. 

40916413-6 
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LEhlMA 3. Let 

Bl B I= B,,h , [ 1 

sll(t) &2(t) w = [S,,(t) t = S,,(f) 1 s t,, YV, 4 B(s) C(s) 4 

Then the matrix S* is symmetric, positive definite and is equal to S(t,). The matrices 
4(t), C(t) and S(t) are bounded as A tends to zero. In particular, 

G(t) = ~c*,(t), Sl&) = -l(t), %t) = hP&) (17) 

JOY h su$iciently small where C*,(t), PI(t) and P2(t) are bounded as X tends to zero. 
Furthermore, S-l(t,) is of the form 

where Bi , i = 1 to 3, are bounded as A tends to zero. 

Proof. Consider the linear system 

h, = Ala1 + Blv, 

A&, = A,az + B,v. 

Lemmas 1 and 2 imply that 

(18) 
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Hypothesis (H2) implies that the rows of &(t, t,) B,(t) are linearly independent 
and (H3) implies that the rows of &(t, ts) B,(t) are linearly independent for X 

sufficiently small and for t E: [r, , tJ. This then guarantees that the rows of 
#(t, t,) B(t) are linearly independent [5] on [to, tr] and hence (18) is completely 
controllable for X sufficiently small. Then Lemmas (2.1) and (2.2) of Lukes [7] 
show that S* is symmetric positive definite and is equal to S(t,). We remark 
that Lukes proves the required results for time invariant case. However, with 
the modified definitions for $, C and S as given here, extension of Lemmas 
(L. 1) and (2.2) of Lukes for time varying case is straight forward (see Appendix). 

Since rl, is a stable matrix, the boundedness and the particular form (I 7) of the 
matrices C(t), C(t) and S(t) follow from the observation [9] that 

44tl , 4 = exp[-%(t,) (tl - s)/h] + O(X), r<t . . 1, 

and that 

I t (GJt, s) Jy ds = ---A;‘(t) r(t) + #(t,) r(t,) exp[&(Q (t - &J/h] + O(h) 
to 

for any r(t) continuous at t, , Finally, noting that S(t,) is symmetric and positive 
definite, the form of S-l(t,) is a consequence of the well-known formula [lo] for 
inverting a partitioned matrix. 

4. &IAIN RESULT 

THEOREM. Under the hypotheses (Hl)-(H3), the system (1) along with the 
boundary conditions (6) has a solution which is of the form 

x(t) = x(t) + x*, 
z(t) = Z(t) + z*, (19) 
u(t) = u(t) + u*, 

where x*, .z* and U* are all of O(h) uniformly throughout t, < t < t, for h s@- 
ciently small. 

Proof. Existence of the variables x*, .z* and u* having the required property 
is shown through a method of successive approximations. We first need to 
develop a set of differential equations for the variables x* and z* with u* as a 
control variable. Equations (l), (4) (7)--(9), and (19) imply that 

i* = gJt) x* + gz(t) 2” + gu(t) II* + g*+*, z*, u*, A, t), 

&* = G,(t) x* + D(t) z* + E(t) u* $~ G*(x*, z*, u*, A, t), 
(20) 



where the functions g* and G* are given b! 

SI * = g(.Y + x*, 2 -1 u”*, c- + u*, t) - g(s, .z, u. t) 

-g&.(t) .T” -g,(t) a* - gu(t) II”, 

G* = G&Y + x*, t) + D(X T LX*, t) (2 :- z*) + E(S + s”, t) (I’ + IL*) 

- WlJ 44 - Wll) 44 - Wt,) 44 - %) 44 

- G,(t) x* - D(t) ,a* - E(t) u* - /k. 

Here 7 and (T are stretched time variables T = (t - Q/A and ~7 = (tl - t)/h. Now 
by conveniently linearizing g* and G* along the solution of the reduced system 
and then using the mean value theorem we see that g* and G* satisfy the follow- 
ing two properties: 

Property I. 

i g*(O, O,O, A t)l < &(exp[--y(t - &J/h] + exp[-At, - Q/h] + A), 

I G*(O, 0, 0, 4 4 < &A. 

Here K0 and y  are positive constants. 

Property 2. For each 6 > 0, there exists an ~(6) > 0 such that for 1 $* 1 , 

j i* / , etc., and X < E, 

1 g*p*, o*, ti*, A, t) - g*p*, i*, zi*, A, t)1 

< 6(( A!* - .e* 1 + 1 f* - 2* 1 + / ii* - u‘* I), 

1 G*(i*, 9*, zi*, A, t) - G*(Z*, .S*, J*, h, t)j 

< S(l i* - i* 1 + 1 f* - .s* ( + I ii* - li* I). 

Boundary conditions (6), and (19) imply that 

N*(t,) = 0, X*(t,) = 0, 

~*(tcJ = -&((tl - 44~)~ Z*(h) = -4(t, - fcJl‘9 
(21) 

Since ~~(7) and Z,(U) decay exponentially to zero away from t = t, and t = t, 
respectively, we have 

Z*(t,) = Op’) and Z*(t,) = O(P), 

for any positive integer p arbitrarily large. 
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Now we consider a transformation of variables so that the linear part of (20) 
can be written in a block diagonal form, 

a =x* + AMNx* + XMz*, 

,B = Nx* + .z?, 

v  = u* - LDmlG,u* - Lz*. 

Here the matrices L, M and N are as defined in Lemma I. The inverse trans- 
formation is given by 

cc* == a - AMP, 

z* = -Nor + /‘3 + XNMj?, 

u* I= v  + LD-‘G,x* + Lz*. 

This change of variables transforms the system of equations (20) into the follow- 
ing form, 

ci = -4p + B,v + h,(a, ,‘T v, A, t), 

@ = --%B + f&v + h&, B, v, 4 t), 

where -4, and Bi are as defined in Lemma 3 and 

(22) 

h,(a, /!3, v, A, t) = (I + hMN)g* + MG*, 

h&x, /!3, v, A, t) = ANg* + G*. 
(23) 

In view of (23) and Properties 1 and 2, we see that hi satisfy analogous properties 
a and b: 

Property a. 

I h,(O, 0, 0, A, 4 < fG(exp[-y(t - h)/4 + ev-& - WI + 4, 
I h&l (IO, A, t)l < W, 

where Kl is a positive constant. 

Property b. For each 6 > 0, there exists an E > 0 such that for 1 al 1 , 1 ~5 1 , 

etc., and X < l , 

I hi@, ,‘$1, A, f) - hj@, /‘%3, A, t)l 

<s(la-aI+ I&I + I;-FI), i= 1, 2. 

Further, the boundary conditions (20) imply that 

a(tJ = O(P), a(tl) = O(h”), B(c3) = O(W, ml) = O(XP). (24) 



No\\- we are in a position to show that the variables ‘1, 8, and v  satisfying the 
set of equations (22) and the boundary conditions (24) exist and are all of O(A). 
For this purpose we first convert (22) into a system of integral equations and then 
use a successive approximation scheme. The procedure is identical to the 
method used bv Lukes [7] even though his theorems arc not directly applicable. 
As can easily be verified, the system of equations (22) with auxiliary conditions, 

a(to) =-- 3i() ( a(fl) = al , P(to) -= P,, and B(tJ z PI 7 is equivalent to the following 
system of integral equations: 

'3 - ddh . 4J so 
.fl 

I7 zy s-1(tl) [p, - a/&(tl , to) p,] - Wfl) J,” 
Ml 7 4 MS) 

i 1 

~z(t, , s) 3 (s) dsf 
h 

If(f) = C(t) I-, (25) 

where 4; , C and S are as defined in Lemma 3 and 

Successive iterates are defined by ma(t) E 0, /It’(t) E 0, “O(t) F 0 for all 
to < t < t, , and for each integer i >> 0, 

where 

h;(s) = h&‘(s), /P(s), v’(s), A, s), j= 1,2. 

Taking x0 , ,&I,, cur and fll all of O(A), noting that 

I &(t, s)l < K2 exp[-y(t - s)/A], to < s < t < t, , (26) 

for snme positive constant y  and K2 , and using Property a and the properties of 
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the matrices C(t), 5’(t) and s-l(t,), it is easy to verify that c?, p1 and 9 are all 
O(X). Then using Property b and (26), one can easily get that the estimate 

is uniformly valid throughout t, < t < t, , where K is an appropriately selected 
positive constant. Thus we find that the successive iterates are well defined for h 
sufficiently small and that there exists a 6 > 0 such that the sequence of suc- 
cessive approximations converges uniformly to a solution of (22) and (24). Also, 
the estimates that (Y, j?, v are all of O(X) follow from the iteration. This proves the 
theorem. 

5. CONCLUSIONS 

Controllability of a large scale system of singularly perturbed type is analyzed. 
Sufficient conditions are given under which the controllability of the overall 
system is inferred from the same property of its two subsystems. 

APPENDIX 

The following lemma extends some of the results of Lemmas (2.1) and (2.2) of 
Lukes [7] for linear time varying systems. 

LEMMA. Consider a completely controllable linear system, 

2 = ,4(t) x + B(t) u, (*) 

and let 

$ct, to> = -4(t) (Cl(t, tch w, 1 to> = 1, 

c(t) = I’:, 
1 0 

-t 4’(s) ds - 2 j-l 4’(s) ds, 

S(t) = St aj(t, s) B(s) C(s) ds. 
to 

Then the matrix S* is positive dejinite and is equal to S(t,). 
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Proof. It is obvious that S* is symmetric. To show that S* is positive 

definite, we compute the quadratic form, 

J 
%fl 

3 Il$'(s) r 12 ds - -L- t" (jt' I ++) r 1 ds)' 
t1 - to t,, 

.t1 
3 J t0 1 &(s)r Ii ds - -'(I do it' 

fl - fo t 0 
I t,, I 4’(s) r I2 ds 

=o 
by Schwarz inequality in which equality holds only if I d’(s) r 1 is a constant for 
all s E [to , tl]. But clearly that constant would be zero and hence we would have 
d'(s) r = 0 for to < s < t, , i.e., 

.t1 

J 
B'(s) #'(tl , s) r ds = 0 for all to < t .< t, . 

t‘+t,-t 
However, this would then contradict the complete controllability criterion of the 
linear system (*). Hence I”S*r > 0 for all r f  0. 

Now let us compute s(t,), 

WI) = j,” #(f, > 4 B(s) !)‘:, 
0 I ” 

~~ $‘(a) du ds 

1 
- ~ j ‘I #(tl , s) B(s) (s - f,) j ‘I +‘(a) do ds. 

t1 - to t, 4) 

By interchanging the order of integration, we note that 

= 
J 
;; $(s)+‘(s) ds 

and that 

(’ Ml > 4 w (s - to) ds = (9% 9 4 B(s) jtl duds tl+to-s 
t1 t1 ==s I #(tl , s) B(s) ds da = 

t, tl+t(#-o s t1 
4(u) du. 

to 

This then shows that s(tJ = S*. 
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