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ABSTRACT Understanding mechanisms of information processing in cellular signaling networks requires quantitative mea-
surements of protein activities in living cells. Biosensors are molecular probes that have been developed to directly track the
activity of specific signaling proteins and their use is revolutionizing our understanding of signal transduction. The use of biosen-
sors relies on the assumption that their activity is linearly proportional to the activity of the signaling protein they have been
engineered to track. We use mechanistic mathematical models of common biosensor architectures (single-chain FRET-based
biosensors), which include both intramolecular and intermolecular reactions, to study the validity of the linearity assumption. As a
result of the classic mechanism of zero-order ultrasensitivity, we find that biosensor activity can be highly nonlinear so that small
changes in signaling protein activity can give rise to large changes in biosensor activity and vice versa. This nonlinearity is abol-
ished in architectures that favor the formation of biosensor oligomers, but oligomeric biosensors produce complicated FRET
states. Based on this finding, we show that high-fidelity reporting is possible when a single-chain intermolecular biosensor is
used that cannot undergo intramolecular reactions and is restricted to forming dimers. We provide phase diagrams that compare
various trade-offs, including observer effects, which further highlight the utility of biosensor architectures that favor intermolec-
ular over intramolecular binding. We discuss challenges in calibrating and constructing biosensors and highlight the utility of
mathematical models in designing novel probes for cellular signaling.
INTRODUCTION
The major challenge in studying cellular signaling is no
longer to identify new signaling proteins but to understand
the interaction networks that the identified signaling pro-
teins form. This is particularly important in various pathol-
ogies, such as cancer, where mutations to specific signaling
proteins perturb the cellular signaling network, resulting in
dysregulated cell proliferation. The development of mecha-
nistic models of cellular signaling relies on quantitative data
of the activity of specific signaling proteins in living cells.
Fluorescent biosensors, either genetically encodable or syn-
thetic peptide/protein molecular probes, are emerging as
important tools for the direct study of signaling protein
activity in both healthy and disease cells (1–5). In contrast
to conventional tools that are destructive or provide indirect
measures of protein activity (e.g., protein localization or
phosphorylation state), biosensors provide direct, real-time
and -space measurements of signaling protein activity.

Several biosensor architectures have been developed to
study the activity of signaling proteins such as proteases,
small GTPases, and protein kinases (1–5). A widely em-
ployed architecture is a single-chain intramolecular Förster
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resonance energy transfer (FRET)-based probe, which is
exemplified by biosensors developed to study the activity
of protein tyrosine kinases ((Fig. 1 A), and see, for example,
the literature (6–9), the referenced database maintained by
Okumoto et al. (4), and the list of kinase probes described
in Nhu Ngoc Van and Morris (5)). These biosensors contain
donor and acceptor fluorescent proteins connected by a
flexible peptide element that links an amino-acid sequence
containing a tyrosine residue to a recognition domain,
such as a Src homology 2 (SH2) domain, which recognizes
the tyrosine residue when phosphorylated.

The sequence flanking the tyrosine residue is designed so
that it is specifically phosphorylated by the tyrosine kinase
of interest (signaling protein). Phosphorylation of this resi-
due allows for intramolecular binding with the SH2 domain,
but also possible is intermolecular binding leading to the
formation of oligomeric biosensor chains (Fig. 1 A). Both
intramolecular and intermolecular interactions are expected
to change the relative proximity and/or orientation of
the acceptor and donor fluorescent proteins, leading to
alteration in FRET efficiency. In this way, measurements
of the biosensor FRET efficiency are expected to provide
direct information on the activity of the signaling protein
of interest (10).

Biosensor activity (FRET efficiency) is routinely used as
a quantitative proxy for the activity of a signaling protein. It
has been used to determine the activity of a signaling protein
http://dx.doi.org/10.1016/j.bpj.2014.06.021
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FIGURE 1 Canonical biosensor architectures. (A) Architecture of a sin-

gle-chain FRET-based biosensor with acceptor/donor fluorescent proteins

(cyan, yellow), a recognition domain (gray circle), and a modification

site that is able to bind the recognition domain when modified (orange)

by the signaling protein of interest (E). For clarity, we use the specific

example of a biosensor designed to track the activity of a tyrosine kinase

and therefore the modification site is a tyrosine residue and the binding

domain an SH2 domain. When phosphorylated, the biosensor is capable

of undergoing intramolecular and intermolecular binding reactions, form-

ing a closed monomeric state and oligomeric chain states, respectively.

Note that only a small subset of all possible intermolecular reactions are

shown. (B) Hypothetical biosensor response curves showing the relation-

ship between the concentration of active signaling protein (E) and the

biosensor activity for an optimal and suboptimal biosensor. The suboptimal

biosensor will not reliably report the activity of the signaling protein

because it exhibits a threshold (or switchlike response) that saturates at

low concentrations of the signaling protein. To see this figure in color, go

online.
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in different regions of a cell (6–8,11,12), in response to
different stimulating conditions (13), and it is expected
to be of great benefit for clinical diagnostics and high
throughput drug screening (9,14).

The use of biosensors in quantitative studies relies on the
assumption that the biosensor activity is approximately
linearly proportional to the activity of the signaling protein.
Biophysical Journal 107(3) 773–782
It is reasonable to assume that the activity of the biosensor
and signaling protein will be related by a saturating
sigmoidal curve and in Fig. 1 B, we show two hypothetical
biosensor response curves. It is clear that an optimal
biosensor is one that responds gradually to changes in the
signaling protein over relevant signaling protein concen-
trations, ultimately reaching a large maximum, whereas a
suboptimal biosensor is one whose activity does not reflect
changes in the activity of the signaling protein.

We note that a switchlike biosensor response curve may
be desirable if the only information required is whether
the signaling protein exceeds a defined threshold. These
intuitive observations can be quantified by three key param-
eters of sigmoidal curves: the dynamic range (Emax–Emin,
which is the total change in biosensor signal); the potency
(EC50, which is the concentration of signaling protein
producing half-maximal biosensor activity); and the Hill
number (n, which quantifies the sensitivity of the biosensor
to the signaling protein). Ideal biosensors should exhibit Hill
numbers close to unity (n z 1.0) to avoid highly nonlinear
(or sublinear) response curves, EC50 values comparable to
the physiological signaling protein concentration to avoid
biosensor activity saturation at low concentrations of active
signaling protein, and a large dynamic range to increase the
experimental signal/noise. Furthermore, it is important that
the biosensor response curve is independent of the biosensor
concentration so that results can be compared despite differ-
ential expression of the biosensor between different cells
or between cellular compartments within a single cell.
Biosensors with these properties are expected to provide
high-fidelity reporting. To the best of our knowledge, the
response curve of biosensors has not been quantitatively
determined in vivo, and therefore the degree of reporting
errors in existing biosensors is unknown.

In this study, we use mechanistic models of single-chain
biosensors to study how the biosensor architecture and
various reaction parameters determine the biosensor
response curve. We find that the canonical biosensor archi-
tecture, which works primarily through intramolecular reac-
tions, produces biosensor response curves that depend on
the biosensor concentration and that can be highly ultrasen-
sitive (with large Hill numbers), and therefore canonical
biosensors may be providing highly nonlinear reporting.
The mechanism underlying this nonlinearity is the classic
mechanism of zero-order ultrasensitivity (15). In contrast,
we find that biosensors operating primarily through intermo-
lecular reactions produce response curves that exhibit small
Hill numbers and are concentration-independent. Based on
these results, we propose that a single-chain biosensor that
permits intermolecular but not intramolecular reactions is
likely to provide high-fidelity reporting. The work high-
lights the importance of calibrating biosensors before use
and demonstrates the utility of this mechanistic framework
in the design of future novel probes for the study of cellular
signaling.
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METHODS

Mathematical model

The mathematical model consists of a system of coupled nonlinear ordinary

differential equations (ODEs) that are generated in BIONETGEN (16) and

integrated in the software MATLAB (The MathWorks, Natick, MA). The

complete model consists of 35 distinct chemical species, 330 reactions,

and 10 reaction parameters (Table 1). A BIONETGEN file used to generate

the ODE system can be found in the Supporting Material.

We model the interactions among the kinase (E), the phosphatase (F),

and the biosensor (B) using classical biochemical binding and catalysis

reactions. The modification module includes the ability of the kinase to

phosphorylate and the phosphatase to dephosphorylate the biosensor when-

ever it is free and the phosphorylation site accessible (i.e., not bound by an

SH2 domain). These enzymatic reactions are as follows:

Eþ B#
keon

ke
off

C.
kecat

Eþ B�;

� k
f
on � kfcat
Fþ B #
k
f
off

C .Fþ B;

where C and C* represent the kinase-biosensor and phosphatase-biosensor

complex, respectively, and B* represents the phosphorylated biosensor

state.

Upon biosensor phosphorylation, the biosensor SH2 domain or SH2 do-

mains on other biosensors can bind the phosphorylated tyrosine. We

describe these two reaction types as two modules (Fig. 1). The intramolec-

ular module includes only the interaction between an SH2 domain and a

phosphorylated tyrosine on a single biosensor, and is modeled by the

following first-order reaction:

B� #
k1on

k1
off

B�
c ;

where Bc* represents the closed biosensor conformation where the SH2

domain is bound to the phosphorylated tyrosine. The intramolecular bind-
ing rates (k1on, k
1
off) are both first-order and have units of s

�1. The intermo-

lecular module includes bimolecular reactions between biosensors that

allow the aggregation of biosensors into oligomeric chains. The number

of possible chemical states and reactions are large and therefore the model

is described using the following representative reactions:
TABLE 1 Parameter definitions

Parameter Description Units

BT Biosensor concentration mM

ET Kinase concentration mM

FT Phosphatase concentration mM

keon Kinase-biosensor on-rate mM�1 s�1

keoff Kinase-biosensor off-rate s�1

kecat Kinase-biosensor catalytic-rate s�1

kfon Phosphatase-biosensor on-rate mM�1 s�1

kfoff Phosphatase-biosensor off-rate s�1

kfcat Phosphatase-biosensor catalytic-rate s�1

K1
on Biosensor intramolecular on-rate s�1

K1
off Biosensor intramolecular off-rate s�1

KD
1 Intramolecular dissociation constant (¼ k1off/k

1
on)

k2on Biosensor intermolecular on-rate mM�1 s�1

k1off Biosensor intermolecular off-rate S�1

KD
2 Intermolecular dissociation constant (¼ k2off/k

2
on) mM
B� þ B� #
k2on

k2
off

B�
2;

2k2on

B� þ B�

i #
ik2
off

B�
iþ1;

� k2on

Bþ Bi #

ik2
off

Biþ1;

where B2* is a biosensor of oligomer size 2, k2on is the bimolecular on-rate

in units of mM�1 s�1, and k2off is a first-order off-rate in units of s�1. Bi*

and Bi are biosensors of oligomer size i with the free tyrosine phosphor-

ylated or dephosphorylated, respectively. Biosensor chains have the poten-

tial to grow at both ends. At the end with an SH2 domain, only

phosphorylated biosensors (B*, Bi*, either free or already in an oligomer)

can bind while at the end with a phosphorylated tyrosine, both phosphor-

ylated (B*, Bi*, either free or in an oligomer) and unphosphorylated

(B, only free) biosensors can bind. Note that the binding of an unphos-

phorylated biosensor caps the biosensor oligomer, allowing it to grow

only at the SH2 domain end (i.e., binding of B to Bi* forms Biþ1). The

use of BIONETGEN to model these reactions is crucial in allowing all

possible reaction routes so that, for example, biosensor oligomers can

dissociate (and associate) in every possible combination without making

any model simplifications.

To keep the mathematical model computationally tractable, we make

simplifying assumptions to the intermolecular reaction module:

1. We limit the number of biosensors in a single oligomer to 15, but find

that the fraction of biosensors in oligomers of size 15 is very small

(<1%) for the majority of the parameter space, indicating that the intro-

duced error is small (see Fig. S2 in the Supporting Material).

2. We do not include any chain closure reactions, which are intraoligomer

reactions that convert biosensor oligomeric chains into a biosensor olig-

omeric rings. We omit these reactions because there is no information

on how these chain closure reactions depend on the biosensor oligomer

size. Calculations with a chain closure reaction that is independent of

the oligomer size do not alter the qualitative conclusions (data not

shown).

3. We prevent enzymes from catalyzing reactions on oligomeric biosen-

sors, but including such reactions does not change the qualitative results

(data not shown).

4. We have assumed that the binding (k2on) and unbinding (k2off) rate con-

stants depend only on the stoichiometry of the oligomer, but are other-

wise independent of the oligomer size (e.g., we do not include

cooperativity, so that the on-rate constant increases with the size of

the oligomer).
Biosensor activity

We define three major biosensor states on the basis that these three states

will exhibit different activities or FRET properties, as follows:

State 1 we define as the free biosensor state, where the SH2 domain and

the tyrosine are unbound (B þ B* þ C þ C*).

State 2 we define as the intramolecular biosensor state, where the SH2

domain is bound to the phosphorylated tyrosine on the same bio-

sensor (Bc*).

State 3 we define as all remaining states, namely the intermolecular

biosensor state, where the biosensor is in an oligomer.

Determining the biosensor activity in State 3 is made complicated by

the possibility that the FRET properties of the biosensor depend on the
Biophysical Journal 107(3) 773–782
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oligomeric state of the biosensor. We define the biosensor activity in

State 3 as

XN

i¼ 2

f ðiÞ�B�
i þ Bi

�
;

where f(i) is the FRET kernel. In the main text, we use the parsimonious

assumption that f(i) ¼ i � 1 but explore three alternate FRET kernels in

Fig. S4.
RESULTS

Generalized mechanistic model for canonical
biosensors

To study canonical biosensors, we constructed a generalized
mechanistic mathematical model that includes the essential
features common to single-chain biosensors (Fig. 1 A).
These features include a biosensor (B) that, upon phosphor-
ylation (B*), is able to undergo an intramolecular conforma-
tional change (Bc*) and/or form biosensor oligomers of size
i by intermolecular binding (Bi*). The on-rates and off-rates
are k1on and k1off (intramolecular) and k2on and k2off (inter-
molecular). The biosensor phosphorylation site is modified
by a specific signaling protein of interest, which in this
A

C D

FIGURE 2 Canonical intramolecular biosensors may exhibit highly nonlin

response curves for three biosensors concentrations when the intramolecular on-r

at large biosensor concentrations, which are readily observed in the normalized c

(EC50), and Hill number (n) of biosensor response curves for different values

this architecture the response curves depend on the biosensor concentration an

k2on ¼ 0 mM�1 s�1, k2off ¼ 1 s�1, keon ¼ kfon ¼ 10 mM�1 s�1, keoff ¼ keoff ¼ 1

Biophysical Journal 107(3) 773–782
example is a kinase (E), and it is assumed that it is dephos-
phorylated by a constitutively active phosphatase. The
coupled system of ODEs describing these reactions were
generated in BIONETGEN (16), a rule-based modeling
tool, and consists of 35 chemical species, 330 reactions,
and 10 rate constants (see Methods). The model parameters
are summarized in Table 1.
Canonical intramolecular biosensors may exhibit
highly nonlinear reporting

Canonical biosensors are often designed with the intention
that only intramolecular reactions are possible. This is the
case when the intramolecular on-rate is much larger than
the effective intermolecular binding rate (i.e., k1on >>
k2onBT, where BT is the biosensor concentration). To study
biosensors in this limit, we set k2on ¼ 0 mM�1 s�1.

Using this reduced model, we compute the biosensor
activity as a function of the active kinase concentration at
steady state for small (Fig. 2 A) and large (Fig. 2 B) intramo-
lecular on-rates. In this model, the biosensor activity is
defined as the concentration of biosensor in the intramolec-
ular closed conformation (Bc*). In the case of a small intra-
molecular on-rate, the model predicts a highly nonlinear
B

E

ear (biosensor concentration-dependent) reporting. (A and B) Biosensor

ate is (A) small and (B) large. Highly nonlinear response curves are predicted

urves (inset). (C–E) Heat maps of the dynamic range (Emax–Emin), potency

of the biosensor concentration and intramolecular on-rate highlight that in

d, in general, are highly nonlinear. Parameters: FT ¼ 1 mM, k1off ¼ 1 s�1,

s�1, and kecat ¼ kfcat ¼ 1 s�1. To see this figure in color, go online.
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switchlike (ultrasensitive) relationship between the kinase
and biosensor activity, as characterized by large Hill
numbers (n >> 1). This means that the biosensor activity
will remain constant despite large changes in the kinase
activity (e.g., when E< 1 mM and E> 1 mM) and moreover,
the biosensor activity may also change dramatically despite
only small changes in kinase activity (e.g., E z 1 mM). In
the case of a large intramolecular on-rate, the Hill numbers
are reduced but the potency now exhibits a dependence on
the biosensor concentration.

These observations are illustrated in heat maps of the
dynamic range, potency, and Hill number as a function of
k1on and BT (Fig. 2, C–E). We find that the potency remains
constant and the dynamic range remains large in the major-
ity of parameter space, which is desirable. However, we find
that large Hill numbers are also prevalent in these regions,
indicating that canonical biosensors may be providing high-
ly nonlinear reporting. Note that desirable Hill numbers
(n z 1) are possible at low biosensor concentrations or
when the intramolecular on-rate is large. However, in the
former, the biosensor signal will be undesirably low and
in the latter, we observe large changes in potency. Taken
together, high-fidelity reporting that is independent of
biosensor concentration is not possible in this architecture.

The origin of the observed nonlinearity is zero-order
ultrasensitivity, and it operates when opposing enzymes
act on a substrate that is in excess of the modifying enzymes
(15). Given that the biosensor (substrate) concentration
cannot be controlled in vivo, it is likely that it can exceed
the concentration of the signaling proteins (modifying en-
zymes), whose concentration range from 10 nM to 10 mM
(17). Because only a fraction of these proteins are catalyti-
cally active, biosensor concentrations in excess of these
values can result in zero-order ultrasensitivity. It follows
that it is experimentally infeasible to avoid zero-order ultra-
sensitivity. We note that even if the biosensor concentration
could be controlled in vivo, it would need to be lower than
the enzyme concentrations (~10 nM), making detection
difficult. Consistent with the mechanism of zero-order
ultrasensitivity, we observe reduction in Hill numbers
when the Michaelis-constant (KM) is large (see Fig. S1).

Attempts to improve biosensors that produce poor report-
ing (e.g., low signal, no change in signal upon increase in
kinase activity, etc.) often involve various modifications to
the intramolecular reaction rates (4,18). The intramolecular
off-rate (k1off) can be modified by altering amino acids in
the SH2 domain or those that flank the phosphorylated tyro-
sine. The intramolecular on-rate (k1on) can be manipulated
by altering the length of the linker between the SH2 domain
and the tyrosine residue. Using our model, we find that
increasing the intramolecular affinity reduces Hill numbers
(the mechanism of which is discussed below), but comes at
a cost to large changes in potency (see Fig. S2). It follows
that increasing the fidelity of biosensor reporting cannot be
achieved by simply altering the intramolecular reaction rates.
Biosensor oligomerization by intermolecular
reactions reduces nonlinear reporting

Before examining the generalized model that allows for
both intramolecular and intermolecular reactions, we sought
to understand the biosensor response when only intermolec-
ular reactions are possible. Such biosensors can be gener-
ated by, for example, placing the phosphorylation site in
close proximity to the SH2 domain so that intramolecular
reactions are physically not possible but intermolecular
reactions are unaffected (e.g., placing the phosphorylation
site on the SH2 domain distal from the phosphotyrosine
binding pocket). Note that intermolecular reactions allow
for the formation of biosensor oligomeric chains, but it
is unclear how the FRET properties of the oligomer will
depend on chain size. We discuss this issue below, but for
now make the parsimonious assumption that the biosensor
activity (FRET signal) is linearly proportional to the number
of biosensors in the oligomer.

To examine the effects of intermolecular binding alone, we
set k1on ¼ 0 s�1. Using this reduced model, we compute the
biosensor response curve at steady state for small (Fig. 2 A)
and large (Fig. 2 B) intermolecular on-rates. In both cases
we find the biosensor response curves are independent of
the biosensor concentration and, in the case of a large inter-
molecular on-rate, we find small Hill numbers. This is further
illustrated in heat maps of the dynamic range, potency, and
Hill numbers as a function of k2on and BT (Fig. 3, C–E). It is
clear that the potency and Hill numbers are independent of
the biosensor concentration and the Hill numbers are small
when k2on¼ 10 mM s�1. As in the case of a purely intramole-
cular biosensor, large Hill numbers are a direct result of zero-
order ultrasensitivity and can be avoided with a sufficiently
large KM (see Fig. S3). Therefore, high-fidelity reporting
is possible by biosensor architectures that exhibit intermole-
cular but not intramolecular reactions.
Intermolecular and intramolecular reactions
reduce ultrasensitivity by sequestering
free biosensor

We next examine the biosensor response curves in the most
general case when both intramolecular and intermolecular
reactions are possible. We note that in this case there are
at least three distinct FRET states: all states where the
biosensor tyrosine residue and SH2 domain are free (State
1), the single intramolecular binding state (State 2), and
all oligomeric states (State 3). To examine the interplay
between both reactions, we examined the Hill number
of the biosensor response curve as a function of k1on and
k2onBT with a fixed biosensor concentration of 100 mM,
and find little synergy in reducing the Hill number between
the two reaction modes (see Fig. S4).

To gain insight into the mechanism of how intermolecular
and intramolecular reactions reduce ultrasensitivity, we
Biophysical Journal 107(3) 773–782
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FIGURE 3 Canonical intermolecular biosensors provide improved reporting. (A and B) Biosensor response curves for three biosensor concentrations when

the intermolecular on-rate is (A) small or (B) large. Observe that a large intermolecular on-rate produces concentration-independent response curves that

exhibit reduced Hill numbers. (C–E) Heat maps of the dynamic range (Emax–Emin), potency (EC50), and Hill number (n) of biosensor response curves

for different values of the biosensor concentration and intermolecular on-rate highlight that when the intermolecular reaction is >1 mM�1 s�1, the biosensor

response curve is independent of the biosensor concentration and exhibits Hill numbers <2. Biosensor activity is assumed to be linearly proportional to

the number of biosensors in an oligomer (see Methods for details). Parameters: FT ¼ 1 mM, k1off ¼ 1 s�1, k2on ¼ 0 mM�1 s�1, k2off ¼ 1 s�1, keon ¼ kfon ¼
10 mM�1 s�1, keoff ¼ keoff ¼ 1 s�1, and kecat ¼ kfcat ¼ 1 s�1. To see this figure in color, go online.
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have used the graphical approach pioneered by Ferrell (19)
(see the Supporting Material). We observe that both inter-
molecular and intramolecular reactions reduce the ability
of the two enzymes to enter the zero-order regime, resulting
in lower Hill numbers (see Fig. S5). The reduced ability
to enter the zero-order regime is a result of sequestra-
tion of free biosensors into states that are shielded from
further enzymatic action effectively preventing enzyme
saturation, a requirement for zero-order ultrasensitivity
(15). For example, the intramolecular reaction that forms
Bc* prevents the phosphatase from dephosphorylating the
biosensor. This assumption is reasonable because intra-
molecular and intermolecular reactions are expected to ste-
rically shield the modification sites from catalytic domains
(e.g., SH2 domain binding to phosphorylated tyrosines
shields them from dephosphorylation (20)).
Canonical biosensors may exhibit complex
FRET states

Canonical biosensors that undergo both intramolecular
and intermolecular reactions may introduce many distinct
Biophysical Journal 107(3) 773–782
FRET states, making it difficult to relate experimental
measurements to the concentration of biosensor in
specific states and ultimately to the activity of the signaling
protein.

As already mentioned, it is presently unknown how the
FRET efficiency will depend on the number of biosensors
in an oligomeric chain and in addition, the formation of
such oligomeric chains may actually alter the absorption
and emission spectra of both the donor and acceptor
(21,22). Without this information, we have so far assumed
that the FRET efficiency will increase linearly with the
number of biosensors in an oligomer and this assumption
has important consequences for the shape of the biosensor
response curve. We highlight this by showing biosensor
response curves when alternate (e.g., nonlinear) relation-
ships are assumed, finding that the response curves can
exhibit increased Hill numbers or nonmonotonic response
curves (see Fig. S6). We note that even if a complete
description of the oligomeric FRET states was available,
the existences of at least two other distinct FRET states
(free and intramolecularly bound) means that relating FRET
measurements to specific biosensor states, and ultimately
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to the activity of the signaling protein, is not possible
without additional information.
A

B

FIGURE 4 High-fidelity regimes (green) for the intramolecular and

intermolecular biosensor architectures. Architectures represented are (A)

exclusively intramolecular and (B) exclusively intermolecular, with a

maximum oligomer of size 2 (dimer). In both cases, the y axis shows the

ratio of biosensor concentration to the Michaelis-Menten constant and the

x axis shows the strength of the intramolecular or intermolecular reaction.

To the left of the high-fidelity region the biosensor will provide only a weak
Improved biosensor architecture for high-fidelity
reporting

Taken together, the results so far suggest that high-fidelity
reporting can be accomplished by a biosensor architecture
that allows for intermolecular binding. Moreover, to relate
the FRET signal to a specific biosensor state, we propose
that the biosensor should be restricted to form only dimers
and prevented from forming intramolecular reactions. This
architecture may be realized by placing the tyrosine residue
near the SH2 domain-binding pocket so that intramolecular
reactions are physically not possible. Moreover, the forma-
tion of biosensor dimers may then sterically occlude other
biosensors from interacting with the free SH2 domain or
free tyrosine in a dimer, preventing the formation of larger
biosensor oligomers.

We next directly compared this biosensor architecture
(exclusively intermolecular where the maximum oligomer
is a dimer) to the canonical intramolecular architecture
(exclusively intramolecular). A mathematical analysis of
these simpler architectures (see the Supporting Material)
allowed us to identify the ratio of biosensor concentration
to the Michaelis-Menten constant (BT/KM) and the relative
strength of the SH2 domain binding (1/KD

1 for the intra-
molecular biosensor and BT/KD

2 for the intermolecular
biosensor) as the two critical nondimensional parameters
determining the fidelity of reporting (see the Supporting
Material). Phase diagrams comparing the high-fidelity report-
ing regimes for the two biosensor architectures reveal that
high-fidelity reporting, which is independent of biosensor
concentration, can only be achieved for the intermolecular
architecture (Fig. 4). In this calculation, the ratio of phospha-
tase to biosensor concentration is fixed at 0.01 and this ratio
must be <1 to observe zero-order ultrasensitivity. Although
large values of KM allow the intramolecular biosensor to
enter the high-fidelity regime, changes in the biosensor con-
centration can lead to departures from the regime (black
line). This is not the case for the intermolecular architecture,
which sustains high-fidelity reporting when KM z KD

2,
independent of biosensor concentration (black line).
signal (dynamic range <5%), to the right of the high-fidelity region the

biosensor will saturate at low concentration of the signaling protein

(EC50 < 0.1), and above the high-fidelity region the biosensor response

curve will be highly nonlinear (n > 2). Observer effect, defined by the

biosensor sequestering>75% of the signaling enzyme at the EC50, is appre-

ciable over most of parameter space (gray). Note that high-fidelity reporting

is possible for the intermolecular architecture despite changes in biosensor

concentration (indicated by black lines), because the biosensor concentra-

tion appears in both nondimensional parameters for the intermolecular

but not the intramolecular architecture. This result is consistent with heat

maps shown in Figs. 2 and 3. See Fig. S7 in the Supporting Material for

heat maps of individual biosensor response curve parameters. Generation

of these nondimensional panels is described in the Supporting Material.

To see this figure in color, go online.
Observer effects

Introducing biosensors, or other exogenous protein, into
cells is expected to perturb endogenous signaling. Given
that the signaling enzyme is explicitly included in our
mathematical model, we are able to directly calculate the
fraction of the signaling protein that is bound (in an
enzyme-substrate complex), and therefore sequestered by
the biosensor (not able to act on endogenous substrates).
We find that > 75% of the signaling protein is sequestered
by the biosensor in nearly all of parameter space for both
architectures (Fig. 4). As expected, the observer effect is
lower at higher values of KM (see also Fig. S7, D and H).
DISCUSSION

Biosensors are emerging as important tools for the quantita-
tive study of cellular signaling. Their utility is predicated on
Biophysical Journal 107(3) 773–782
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high-fidelity reporting, which requires that biosensor
response curves exhibit large dynamic ranges, relevant
potencies, and gradual (non-switch-like) sensitivities. More-
over, it is important that high-fidelity reporting is main-
tained despite fluctuations in the biosensor concentration.
We have shown that high-fidelity reporting that is indepen-
dent of the biosensor concentration can be achieved by an
intermolecular but not by an intramolecular architecture.

The general model we considered revealed that biosen-
sors may exhibit response curves that are highly nonlinear,
as a result of zero-order ultrasensitivity (15), but that both
intramolecular and intermolecular interactions can reduce
ultrasensitivity by sequestering the biosensor, which is
consistent with previous work (23–25). Only intermolecular
interactions produced high-fidelity reporting that is indepen-
dent of the biosensor concentration (Fig. 3); but these inter-
actions nonetheless highlighted the problem that oligomeric
biosensors may have complex FRET states (see Fig. S4).
Large oligomeric states may also affect the diffusion co-
efficient and accessibility of phosphorylation sites, thereby
affecting performance of the biosensor. A solution to this
is a biosensor architecture that allows for intermolecular,
but not intramolecular, interactions and is limited to forming
dimers so that only two well-defined FRET states are
possible.

In the case of tyrosine kinase biosensors, such an archi-
tecture may be achieved by placing the tyrosine residue
(with relevant flanking amino acids) on the SH2 domain.
Changes in FRET status would result from the intermolec-
ular reaction facilitated by the head-to-tail orientation
imposed by the SH2 to substrate interaction. By virtue of
the importance of SH2 domains in both receptor tyrosine
kinases (26) (e.g., growth factor receptors) and noncatalytic
tyrosine-phosphorylated receptors (27) (e.g., immune recep-
tors) signal transduction events, a vast amount of structural
data exists for these domains, making them attractive for
biosensor engineering (28). The optimal architecture will
limit intermolecular interactions to the formation of dimers,
which will facilitate interpretation of the FRET signal.
Despite recent improvements in fluorescent proteins and
high-throughput cloning strategies, biosensor development
remains a largely empirical process, and thus specific strate-
gies for achieving dimers will have to be developed for each
structure (10). Note that in contrast to other FRET-based
intermolecular biosensors, the proposed novel biosensor
contains only a single chain maintaining genetic simplicity
and fluorescence parity, so that contemporary analytical
methods may still be applied.

The mechanism by which many single-chain FRET-based
biosensors functions is not completely known. Early tyro-
sine kinase biosensor work centered on the Abl kinase phos-
phorylation of the Crk adaptor protein, which was known
from extensive structural studies to undergo an intramolec-
ular SH2-phosphotyrosine interaction (6,29,30). However,
few biosensors designed since have demonstrated that their
Biophysical Journal 107(3) 773–782
constructs function via an intramolecular binding mecha-
nism. Structure-function studies, such as those recently
reported for the calcium biosensor TN-XXL (31), in
which techniques such as small-angle x-ray scattering and
NMR were used to demonstrate the intramolecular nature
of the structural changes leading to FRET, would greatly
improve future biosensor engineering and validate any
alternate architectures, such as the proposed intermolecular
biosensor.

Experimental studies aimed at investigating the fidelity
of biosensor reporting are presently missing. A theoretical
study by Haugh (32) has highlighted several factors that
may contribute to low-fidelity reporting by using reac-
tion-diffusion models to explore the limits on measure-
ments of kinetics and spatial gradients during live-cell
imaging. We go beyond this study by explicitly modeling
the modifying enzymes showing that their dynamics can
result in low-fidelity reporting, and we provide an alternate
architecture that resolves this issue. This work highlights
the need to experimentally calibrate biosensors, which
can be performed by measuring the biosensor activity
at different concentrations of a chemical inhibitor to the
signaling protein. By explicitly including the modifying
enzymes, our model is also able to quantify the fraction
of signaling protein that is sequestered by the biosensor
(Fig. 4). We note that this observer effect is different
from the observer effect from a previous report that did
not explicitly model the modifying enzymes (32). These
observer effects, which likely plague many studies that
rely on introducing exogenous proteins into living cells,
can be reduced by increasing KM in both the intramolecular
and intermolecular architectures (Fig. 4). Although we
have focused on biosensor response curves in steady state,
our results are directly applicable to kinetics if the sig-
naling protein changes on timescales that are slower than
reaction rates. A detailed analysis of kinetics was provided
in Haugh (32).

A recent theoretical study focusing on crosstalk provides
relevant insights into biosensor design (33). The authors
show that a set of phosphorylated substrates that share
kinases and phosphatases will have transitive zero-order
ultrasensitivity, meaning that if one of the substrates satu-
rates the enzymes then all substrates will exhibit ultrasensi-
tivity. This implies that a biosensor that is operating in
the ultrasensitive regime not only produces poor reporting
but may also perturb the dose-response of endogenous sub-
strates. Therefore, our proposed-novel design has the addi-
tional benefit of reducing crosstalk with the endogenous
system. On the other hand, if the kinase under study is satu-
rated by its endogenous substrates, then the biosensor will
produce nonlinear reporting regardless of its design or
operating regime. Furthermore, Rowland et al. (33) show
that substrate modification can be coupled through shared
phosphatases, even if the substrates talk to different kinases.
In theory, a solution to these complications is to design the
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biosensor so that it does not share a phosphatase with the
endogenous substrate but in practice, this would be difficult
to implement. A possible workaround would be to include a
dominant functional phosphatase domain directly on the
biosensor. This would have the added advantage of ensuring
that dephosphorylation cannot be saturated and therefore
zero-order ultrasensitivity can be avoided.

There is considerable interest in developing biosensors
for clinical diagnostics and for drug screens (14). In chronic
myeloid leukemia (CML), a mutant fusion gene, Bcr-abl,
codes for a constitutively active tyrosine kinase, BCR-
ABL, whose inhibition by the drug imatinib mesylate
(IM) dramatically reduces the cancer burden (34). However,
a subset of patients or patients in later stages of CML do not
respond to IM, motivating the development of second-gen-
eration drugs. Recently, a biosensor aimed at quantifying
the activity of BCR-ABL has been developed (9) based on
the canonical biosensor architecture (Fig. 2). It is proposed
that this biosensor can be used as a diagnostic tool to inves-
tigate the activity of BCR-ABL between CML patients and
also for high-throughput drug screens for novel BCR-ABL
inhibitors.

This work has highlighted the possibility that the BCR-
ABL canonical biosensor may exhibit no change in the ac-
tivity despite large changes in the activity of BCR-ABL,
and, vice versa, large changes in the BCR-ABL biosensor
may correspond to only modest changes in the activity of
BCR-ABL (Fig. 2). It follows that drugs screened based
on the activity of the biosensor in this regime may not
have the desired functional inhibitory effects. Given the
availability of a specific inhibitor for BCR-ABL (e.g.,
IM), a detailed dose-response should reveal whether the ac-
tivity of the biosensor is ultrasensitive (highly nonlinear) to
the activity of BCR-ABL. Observing an ultrasensitive
response is likely and may mean that an improved biosensor
architecture, like the one proposed in this work, may be an
important step to ensure high-fidelity reporting. These types
of validations will also be critical in screening techniques or
cellular imaging studies aiming to use multiple biosensors
simultaneously or studies aimed at establishing hierarchy
in signaling events (2).

Mathematical modeling is commonly used to study infor-
mation processing in biochemical networks (19,35–38).
Predictive modeling and systematic engineering approaches
also have contributed significantly to the recent progress in
synthetic biology (39–41). Biosensor dynamics and its inter-
action with the signaling systems are complex and intuition
alone may not suffice to assess their behavior and reliability.
For example, there can be nontrivial effects due to spatial
clustering of large biosensor oligomers (42) or nonmono-
tonic dose-response in the presence of multiple phosphory-
lation sites (43). This study highlights the utility of
mechanistic mathematical models in the calibration of to-
day’s biosensors and also in the design and validation of
future novel probes of cellular signaling.
SUPPORTING MATERIAL

Nondimensional analysis, approximate analytical solutions, BioNetGen

code used to generate the full model, and seven figures are available at

http://www.biophysj.org/biophysj/supplemental/S0006-3495(14)00661-4.
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