Multiple zeta values of fixed weight, depth, and height

by Yasuo Ohno* and Don Zagier

Department of Mathematics, Faculty of Science and Engineering, Kinki University, Higashi-Osaka, Osaka, 577-8502 Japan
e-mail: ohno@math.kindai.ac.jp
Max-Planck-Institut für Mathematik, Vivatsgasse 7, 531Il Bonn, Germany
e-mail: zagier@mpim-bonn.mpg.de

Communicated at the meeting of September 24, 2001

ABSTRACT

We give a generating function for the sums of multiple zeta values of fixed weight, depth and height in terms of Riemann zeta values.

For any multi-index $\mathbf{k}=\left(k_{1}, k_{2}, \ldots, k_{n}\right)\left(k_{i} \in \mathbf{Z}_{>0}\right)$, the weight, depth, and height of \mathbf{k} are by definition the integers $k=k_{1}+k_{2}+\cdots+k_{n}, n$, and $s=$ $\#\left\{i \mid k_{i}>1\right\}$, respectively. We denote by $I(k, n, s)$ the set of multi-indices \mathbf{k} of weight k, depth n, and height s, and by $I_{0}(k, n, s)$ the subset of admissible indices, i.e., indices with the extra requirement that $k_{n} \geq 2$. For any admissible index $\mathbf{k}=\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in I_{0}(k, n, s)$, the multiple zeta value $\zeta(\mathbf{k})$ is defined by

$$
\zeta(\mathbf{k})=\zeta\left(k_{1}, k_{2}, \ldots, k_{n}\right)=\sum_{0<m_{1}<m_{2}<\cdots<m_{n}} \frac{1}{m_{1}^{k_{1} m_{2} k_{2} \cdots m_{n} k_{n}}} .
$$

We denote by $G_{0}(k, n, s)$ the value of the sum

$$
\begin{equation*}
G_{0}(k, n, s)=\sum_{\mathbf{k} \in I_{0}(k, n . s)} \zeta(\mathbf{k}) \tag{1}
\end{equation*}
$$

Since the set $I_{0}(k, n, s)$ is non-empty only if the indices k, n and s satisfy the in-

[^0]equalities $s \geq 1, n \geq s$, and $k \geq n+s$, we can collect all the numbers $G_{0}(k, n, s)$ into a single generating function
\[

$$
\begin{equation*}
\Phi_{0}(x, y, z)=\sum_{k, n, s} G_{0}(k, n, s) x^{k-n-s} y^{n-s} z^{s-1} \quad \in \mathbf{R}[[x, y, z]] \tag{2}
\end{equation*}
$$

\]

Our main result will then be

Theorem 1. The power series (2) is given by

$$
\begin{equation*}
\Phi_{0}(x, y, z)=\frac{1}{x y-z}\left(1-\exp \left(\sum_{n=2}^{\infty} \frac{\zeta(n)}{n} S_{n}(x, y, z)\right)\right) \tag{3}
\end{equation*}
$$

where the polynomials $S_{n}(x, y, z) \in \mathbf{Z}[x, y, z]$ are defined by the formula

$$
\begin{equation*}
S_{n}(x, y, z)=x^{n}+y^{n}-\alpha^{n}-\beta^{n} . \quad \alpha, \beta=\frac{x+y \pm \sqrt{(x+y)^{2}-4 z}}{2} \tag{4}
\end{equation*}
$$

or alternatively by the identity

$$
\begin{equation*}
\log \left(1-\frac{x y-z}{(1-x)(1-y)}\right)=\sum_{n=2}^{\infty} \frac{S_{n}(x, y, z)}{n} \tag{5}
\end{equation*}
$$

together with the requirement that $S_{n}\left(x, y, z^{2}\right)$ is a homogeneous polynomial of degree n. In particular, all of the coefficients $G_{0}(k, n, s)$ of $\Phi_{0}(x, y, z)$ can be expressed as polynomials in $\zeta(2), \zeta(3), \ldots$ with rational coefficients.

In view of (5), we can also restate (3) in the alternative form

$$
\begin{equation*}
1-(x y-z) \Phi_{0}(x, y, z)=\prod_{m=1}^{\infty}\left(1-\frac{x y-z}{(m-x)(m-y)}\right) \tag{6}
\end{equation*}
$$

which is simpler looking but does not directly give the coefficients of the power series as finite expressions in terms of Riemann zeta values.

Proof. A convenient approach to the multiple zeta value $\zeta(\mathbf{k})$ is to consider it as the limiting value at $t=1$ of the function

$$
L_{\mathbf{k}}(t)=L_{k_{1}, k_{2}, \ldots, k_{n}}(t)=\sum_{0<m_{1}<m_{2}<\cdots<m_{n}} \frac{t^{m_{n}}}{m_{1}^{k_{1} m_{2} k_{2} \cdots m_{n}^{k_{n}}}} \quad(|t|<1)
$$

(Note that we consider $L_{\mathbf{k}}(t)$ not just for $\mathbf{k} \in I_{0}$ but for all $\mathbf{k} \in I$.) For \mathbf{k} empty we define $L_{\mathbf{k}}(t)$ to be 1 . For non-negative integers k, n and s set

$$
G(k, n, s ; t)=\sum_{\mathbf{k} \in I(k, n, s)} L_{\mathbf{k}}(t)
$$

(so $G(0,0,0 ; t)=1$ and $G(k, n, s ; t)=0$ unless $k \geq n+s$ and $n \geq s \geq 0$), and let $G_{0}(k, n, s ; t)$ be the function defined by the same formula but with the summation restricted to $\mathbf{k} \in I_{0}(k, n, s)$. We denote by $\Phi=\Phi(x, y, z ; t)$ and $\Phi_{0}=$ $\Phi_{0}(x, y, z ; t)$ the corresponding generating functions

$$
\Phi=\sum_{k, n, s \geq 0} G(k, n, s ; t) x^{k-n-s} y^{n-s} z^{s}=1+L_{1}(t) y+L_{1,1}(t) y^{2}+\cdots
$$

and

$$
\Phi_{0}=\sum_{k, n, s \geq 0} G_{0}(k, n, s ; t) x^{k-n-s} y^{n-s} z^{s-1}=L_{2}(t)+L_{1,2}(t) y+L_{3}(t) x+\cdots
$$

Our object is to express the generating function $\Phi_{0}(x, y, z)=\Phi_{0}(x, y, z ; 1)$ in terms of Riemann zeta values. Using the obvious formula

$$
\frac{d}{d t} L_{k_{1}, \ldots, k_{n}}(t)=\left\{\begin{array}{lll}
t^{-1} L_{k_{1}, \ldots, k_{n-1}, k_{n}-1}(t) & \text { if } & k_{n} \geq 2 \\
(1-t)^{-1} L_{k_{1}, \ldots . k_{n-1}}(t) & \text { if } & k_{n}=1
\end{array}\right.
$$

for the derivative of $L_{\mathbf{k}}(t)$, we obtain

$$
\begin{gathered}
\frac{d}{d t} G_{0}(k, n, s ; t)=\frac{1}{t}\left(G(k-1, n, s-1 ; t)-G_{0}(k-1, n, s-1 ; t)+G_{0}(k-1, n, s ; t)\right) \\
\frac{d}{d t}\left(G(k, n, s ; t)-G_{0}(k, n, s ; t)\right)=\frac{1}{1-t} G(k-1, n-1, s ; t)
\end{gathered}
$$

or, in terms of generating functions,

$$
\frac{d \Phi_{0}}{d t}=\frac{1}{y t}\left(\Phi-1-z \Phi_{0}\right)+\frac{x}{t} \Phi_{0} . \quad \frac{d}{d t}\left(\Phi-z \Phi_{0}\right)=\frac{y}{1-t} \Phi .
$$

Eliminating Φ, we obtain the differential equation

$$
t(1-t) \frac{d^{2} \Phi_{0}}{d t^{2}}+((1-x)(1-t)-y t) \frac{d \Phi_{0}}{d t}+(x y-z) \Phi_{0}=1
$$

for the power series Φ_{0}. The unique solution of this vanishing at $t=0$ is given by

$$
\Phi_{0}(x, y, z ; t)=\frac{1}{x y-z}(1-F(\alpha-x, \beta-x ; 1-x ; t)),
$$

where $\alpha+\beta=x+y, \alpha \beta=z$ and $F(a, b ; c ; x)$ denotes the Gauss hypergeometric function. Specializing to $t=1$ and using Gauss's formula for $F(a, b ; c ; 1)$ gives
$1-(x y-z) \Phi_{0}(x, y, z ; 1)=F(\alpha-x, \beta-x ; 1-x ; 1)=\frac{\Gamma(1-x) \Gamma(1-y)}{\Gamma(1-\alpha) \Gamma(1-\beta)}$,
and now using the expansion $\Gamma(1-x)=\exp \left(\gamma x+\sum_{n \geq 2} \zeta(n) x^{n} / n\right)$ yields equation (3).

We end by mentioning several special cases of the theorem which were previously known or are of special interest.
(1) Specializing (3) to $z=x y$ corresponds to dropping all information
about s, the number of indices k_{i} greater than 1 , so the function $\Phi_{0}(x, y, x y)$ equals $\sum_{k>n>0} G_{0}(k, n) x^{k-n-1} y^{n-1}$ where $G_{0}(k, n)=\sum_{s} G_{0}(k, n, s)$ is the sum of all multiple zeta values of weight k and depth n. On the other hand, taking the limit as $z \rightarrow x y$ in (6), we find

$$
\Phi_{0}(x, y, x y)=\sum_{m=2}^{\infty} \frac{1}{(m-x)(m-y)}=\sum_{k>n>0} \zeta(k) x^{k-n-1} y^{n-1}
$$

so we obtain the sum formula $G_{0}(k, n)=\zeta(k)$ already proved in [1] and [6].
(2) If $s=1$, then the only admissible multi-index of weight k and depth n is $(1, \ldots, 1, k-n)$ (with $n-11$'s), so $G(k, n, 1)=\zeta(1, \ldots, 1, k-n)$. On the other hand, we have $S_{n}(x, y, 0)=x^{n}+y^{n}-(x+y)^{n}$, so (3) for $z=0$ reduces to

$$
\begin{aligned}
& \sum_{a, b \geq 1} \zeta(\underbrace{1, \ldots, 1}_{a-1}, b+1) x^{a} y^{b}=\Phi_{0}(x, y, 0) \\
&=\frac{1}{x y}\left(1-\exp \left(\sum_{n=2}^{\infty} \zeta(n) \frac{x^{n}+y^{n}-(x+y)^{n}}{n}\right)\right)
\end{aligned}
$$

a formula given also in [6].
(3) The well-known duality relation for multiple zeta values says that there is a bijection $\mathbf{k} \rightarrow \mathbf{k}^{\prime}$ from $I_{0}(k, n, s)$ to $I_{0}(k, k-n, s)$ such that $\zeta(\mathbf{k})=\zeta\left(\mathbf{k}^{\prime}\right)$ for all \mathbf{k}. In particular, $G_{0}(k, n, s)=G_{0}(k, k-n, s)$, so the generating function $\Phi_{0}(x, y, z)$ must be symmetric in x and y, a symmetry which is of course evident in the formula (3).
(4) Specializing (3) to $x=0$ and $y=0$ gives formulas for the sums of all multiple zeta values having all $k_{i} \geq 2$ or all $k_{i} \leq 2$, respectively. The simultaneous specialization to $x=y=0$ corresponds to the unique zeta value $\zeta(2, \ldots, 2)$ (with $k=2 n=2 s$), so from (3) we get

$$
\begin{aligned}
\sum_{s=1}^{\infty} \zeta(\underbrace{2, \ldots, 2}_{s}) z^{s-1} & =\Phi_{0}(0,0, z)=-\frac{1}{z}\left(1-\exp \left(-\sum_{n=1}^{\infty} \frac{\zeta(2 n)}{n}(-z)^{n}\right)\right) \\
& =\frac{1}{z}\left(\frac{\sinh \pi \sqrt{z}}{\pi \sqrt{z}}-1\right)=\sum_{s=1}^{\infty} \frac{\pi^{2 s}}{(2 s+1)!} z^{s-1}
\end{aligned}
$$

and hence

$$
\zeta(\underbrace{2, \ldots, 2}_{s})=\frac{\pi^{2 s}}{(2 s+1)!},
$$

a formula also already given in [6].
(5) Finally, by specializing to $y=-x$ in Theorem 1, we obtain the formula

$$
\sum_{s \leq n \leq 2 k-s}(-1)^{n} G_{0}(2 k, n, s)=\frac{(-1)^{k} \pi^{2 k}}{(2 k+1)!} \sum_{r=0}^{k-s}\binom{2 k+1}{2 r}\left(2-2^{2 r}\right) B_{2 r} \quad(k \geq s \geq 1)
$$

proved by Le and Murakami in [3]. Indeed, from equation (4) or equation (5) we have

$$
S_{n}(x,-x, z)= \begin{cases}2\left(x^{2 m}-(-z)^{m}\right) & \text { if } \quad n=2 m \\ 0 & \text { if } \quad n \equiv 1(\bmod 2)\end{cases}
$$

so (3) and the standard Taylor expansion of $\log ((x / 2) / \sinh x / 2)$ give

$$
\begin{aligned}
\Phi_{0}(x,-x, z)= & \frac{1}{x^{2}+z}\left(\exp \left(\sum_{m=1}^{\infty} \frac{x^{2 m}-(-z)^{m}}{m} \zeta(2 m)\right)-1\right) \\
= & \frac{1}{x^{2}+z}\left(\frac{\pi x}{\sin \pi x} \frac{\sinh \pi \sqrt{z}}{\pi \sqrt{z}}-1\right) \\
= & \frac{\pi x}{\sin \pi x} \frac{(\sinh \pi \sqrt{z}) / \pi \sqrt{z}-(\sin \pi x) / \pi x}{z+x^{2}} \\
= & \left(\sum_{r=0}^{\infty}(-1)^{r} \frac{B_{2 r}}{(2 r)!}\left(2-2^{2 r}\right) \pi^{2 r} x^{2 r}\right) \times \\
& \times\left(\sum_{p \geq 0, s \geq 1}(-1)^{p} \frac{\pi^{2 p+2 s} x^{2 p} z^{s-1}}{(2 p+2 s+1)!}\right) .
\end{aligned}
$$

The required identity now follows by comparing the coefficients of $x^{2 k-2 s} z^{s-1}$ on both sides.

REFERENCES

[1] Granville, A. - A decomposition of Riemann's Zeta-Function. In Analytic Number Theory. London Mathematical Society Lecture Note Series, 247, Y. Motohashi (ed.), Cambridge University Press, 95-101 (1997).
[2] Hoffman, M. and Y. Ohno - Relations of multiple zeta values and their algebraic expression Preprint.
[3] Le, T.Q.T. and J. Murakami - Kontsevich's integral for the Homfly polynomial and relations between values of multiple zeta functions. Topology and its Applications, 62, 193-206 (1995).
[4] Ohno, Y. - A generalization of the duality and sum formulas on the multiple zeta values. J. Number Theory, 74, 39-43 (1999).
[5] Zagier, D. - Values of zeta functions and their applications. In Proceedings of ECM 1992. Progress in Math., 120, 497-512 (1994).
[6] Zagier, D. - Multiple zeta values. Unpublished manuscript, Bonn (1995).
(Received September 2001)

[^0]: *Partly supported by Research Fellowship of the Japan Society for the Promotion of Science for Young Scientists.

