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ABSTRACT 

We give a generating function for the sums of multiple zeta values of fixed weight, depth and height 

in terms of Riemann zeta values, 

For any multi-index k = (ICI. kz, . : k,) (k; E Z,,), the weight, depth, and height 

of k are by definition the integers k = kl + k2 + . . + k,, n, and s = 

#{i / k; > l}, respectively. We denote by Z(k, n, s) the set of multi-indices k of 

weight k, depth n, and height s, and by Zo(k,n,s) the subset of admissible in- 

dices, i.e., indices with the extra requirement that k,, > 2. For any admissible 

index k = (kl~ k?>. . . k,) E Zo(k, n. s), the multiple zeta value c(k) is defined by 

i‘(k)=C(kl,kZ,...,k,l)= C 
1 

Q<~,, C1,,2C...Cn,,, mtktm2kz . .m,klI . 

We denote by Go(k, n: s) the value of the sum 

(‘1 G(kn,s) = C C(k). 
k E Io(k.n.s) 

Since the set Zo(k, n, s) is non-empty only if the indices k, n and s satisfy the in- 
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equalities s 2 1, n 2 s, and k 2 n + s, we can collect all the numbers Go(k,n,s) 
into a single generating function 

(2) &(x,y,z) = C Ga(k,n,s)Xk-“-Sy”-SzS-’ E R[[x,y,z]]. 
k,n,s 

Our main result will then be 

Theorem 1. Thepower series (2) is given by 

(3) @o(x,y,z) = & 1 - exp C ~z &(x,y,z) 
( ( 

M C(n) 
, 

?I=2 )> 

where thepolynomials S,,(x, y, z) E Z[x, y, z] are deBned by theformula 

(4) &(x, y, z) = xn + y” - an - /I”. f&P = 
x+y* (x+y)2-4z J 

2 

or alternatively by the identity 

(5) ( > Oc Mx, Y, z) 
log ’ - (1 -x:)(1’ y) = ’ 

n=2 
n 

together with the requirement that S,,(x, y, z2) is a homogeneous polynomial of 

degree n. In particular, all of the coeficients Go(k, n, s) of @0(x, y, z) can be ex- 
pressed as polynomials in c(2), c(3), . . . with rational coejicients. 

In view of (5), we can also restate (3) in the alternative form 

(6) 1 - (xv - Z)@oo(X,Y,Z) = fi (1 - (m _x,;m’_ )‘))> 
??I=1 

which is simpler looking but does not directly give the coefficients of the power 

series as finite expressions in terms of Riemann zeta values. 

Proof. A convenient approach to the multiple zeta value c(k) is to consider it 

as the limiting value at t = 1 of the function 

Lk(t) = Lkh.-dt) = O<ml <m2<,,,<m, m,k,m2::‘. .m,k, c (ItI < 1). 

(Note that we consider &(t) not just for k E 10 but for all k E I.) For k empty 

we define Lk( t) to be 1. For non-negative integers k, n and s set 

G(k,n,s; t) = c Lk(t) 

k t I(k.n,s) 

(so G(O,O,O; t) = 1 and G(k, n, s; t) = 0 unless k 1 n + s and n > s > 0), and let 

Go(k, n, s; t) be the function defined by the same formula but with the summa- 

tion restricted to k E Zo(k, n,s). We denote by CD = @(x, y, z; t) and @po = 

@0(x, y, z; t) the corresponding generating functions 
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@= C G(k,n,s;t)xk-"-Sy"~"z"= 1+L,(t)y+L,,,(t)y2+... 
k,n.s>O 

and 

cDo = C Go(k,n,s;t)~-"-Sy"-"z"-' = -Kg(t) + L,,z(t)y + &(t)x + . . 

k,n.s>O 

Our object is to express the generating function @0(x, y, z) = @0(x, y, z; 1) in 

terms of Riemann zeta values. Using the obvious formula 

-$k,.....k,(f) = 
t-‘Lk ,..... k,_,.k,-l(t) if kn > 2, 

(1 - f)-’ Lk ,.._.. k,_,(f) if kn = 1 

for the derivative of Lk(t), we obtain 

;Go(k,n,.v;r) =f(G(k-1, n,s-l;t)-Go(k-l.n,s-l;t)+Go(k-l;n,s;r)), 

; (G(k, n, s; t) - Go(k, n, s; 1)) = &G(k- l,n- 1,s;t) 

or, in terms of generating functions, 

dsDo 1 

dt=yt 
@- 1 -z@o 

1 

Eliminating @, we obtain the differential equation 

d2Go 
41 - 4 dt2 +((l-4(l-t)-yt)~+(xy-z)90=l 

for the power series @o. The unique solution of this vanishing at t = 0 is given 

by 

@ok Y, z; 4 = & (1 - F(a - x, P - -x; 1 - x; t,) > 

where Q + p = x + y, c@ = z and F(a, b; c; x) denotes the Gauss hypergeo- 

metric function. Specializing to t = 1 and using Gauss’s formula for F(a, b; c; 1) 

gives 

1 - (xu - z)@o(x,y, z; 1) = F(a! - x, p - x; 1 - x; 1) = r(l - x)r(l -Y) 
r(1 - Q)T(l -P)’ 

and now using the expansion r( 1 - x) = exp (yx + Cn22 c(n) x’/H) yields 

equation (3). 

We end by mentioning several special cases of the theorem which were pre- 

viously known or are of special interest. 

(1) Specializing (3) to z = xy corresponds to dropping all information 
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about s, the number of indices ki greater than 1, so the function @0(x, y, xy) 

equals Ck>n>O Go(k,n)xkpnplynp’ where Go(k,n) = C, Go(k,n,s) is thesum 

of all multiple zeta values of weight k and depth n. On the other hand, taking 

the limit as z + xy in (6), we find 

so we obtain the sum formula Go(k, n) = C(k) already proved in [I] and [6]. 

(2) Ifs = 1, then the only admissible multi-index of weight k and depth IZ is 

(l,..., l,k-n)(withn-ll’s),soG(k,n,l)=<(l,..., l,k-n).Ontheother 

hand, we have &(_x, y, 0) = x” + y” - (x + y)“, so (3) for z = 0 reduces to 

= & (1 -exp(F C(n) 7X’+‘” ,(x”‘“)). 

n=2 

a formula given also in [6]. 

(3) The well-known duality relation for multiple zeta values says that there 

is a bijection k + k’ from Zo(k,n, s) to Zo(k, k - ~1,s) such that c(k) = <(k’) for 

all k. In particular, Go(k:n,s) = Go(k, k - n,s), so the generating function 

C&(X, y, Z) must be symmetric in x and y, a symmetry which is of course evident 

in the formula (3). 

(4) Specializing (3) to x = 0 and y = 0 gives formulas for the sums of all 

multiple zeta values having all k; > 2 or all ki < 2, respectively. The simulta- 

neous specialization to x = y = 0 corresponds to the unique zeta value 

<(2!. . ,2) (with k = 2n = 2s), so from (3) we get 

$C, q>.;.>y =@O(O,O,~)=-~ l-exp -C - z 
( ( 

CC C(2n) 

n=l n (- 

n 

) )I> 
s 

1 

=-( 

sinhr&_ 1 

Z TJz > 

and hence 

a formula also already given in [6]. 

(5) Finally, by specializing to y = -x in Theorem 1, we obtain the formula 
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proved by Le and Murakami in [3]. Indeed, from equation (4) or equation (5) 

we have 

n = 2? 
n- 1 (mod2), 

so (3) and the standard Taylor expansion of log((x/2)/ sinhx/2) give 

c&)(x, -x, z) = - C(W) - 1) 

_ TX (sinh7rJ;)/TJ; - (sin7rx) /XX 

sin 7rx z + x2 

= 

The required identity now follows by comparing the coefficients of x~~-*~z~-’ 

on both sides. 
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