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Abst~ct 

One definition of an interval order is as an order isomorphic to that of a family of nontrivial 
intervals of a linearly ordered set with [a,b] < [c,d] ifb ~< c. Fishburn's theorem states that an 
order is an interval order if and only if it has no four-element restriction isomorphic to the 
ordered set (shown in Fig. 1} "2 + 2". We show that an order is isomorphic to a family of 
nontrivial intervals of a weak order, ordered as above, if and only if it has no restriction to one 
of the four ordered sets (shown in Fig. 2)"3 + 2", "_2 + N", a six-element crown or a six-element 
fence. 

I.  Introduction 

An order is an  irreflexive, transitive (and thus asymmetric) relation. We use " < "  to 
stand for an  order and "~<" to s tand for the associated reflexive, antisymmetric, 

transitive relation which is the un ion  of < and = .  As is common,  when the set to 
which < applies can be determined from context, we use this same symbol to 
represent orders on two different sets. An interval order is an  order isomorphic to that 
of  a family of nontrivial  intervals (trivial intervals are empty or  have one point) of 
a linearly ordered set with [a,b] < [c,d] i f b  ~ c. 

Fishburn 's  theorem 12], proved in this form in [ l ' l ,  states that an  order is an  interval 
order if and only if it has no  four-element restriction isomorphic to the ordering of 
"2 + 2" shown in Fig. I; that is there are not  four elements a,b ,c  and d with a < b, 
c < d and no other comparisons. 

A weak order is one that has no  three-element restriction isomorphic to the order 
"1 + T '  shown in Fig. 1. Thus the d iamond ordering shown in Fig. 1 is a weak 
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Fig. 1. 
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Fig. 2. 

ordering. We show that an ordering is isomorphic to a set of nontrivial intervals of 
a weak ordering if and only if it has no restriction isomorphic to one of the orderings 
shown in Fig. 2. 

We use the phrase weak interval ordering to mean an ordering of nontrivial intervals 
chosen from a weak ordering with [a, b'l < I'c, d]  ifb ~< c (there should be little chance 
of confusing this with an interval order which is also a weak order). The order 2 + -2 is 
a weak interval order: take the intervals [a, bl] ,  [a, bz],  [bl,c'], and [b , ,c]  of the 
diamond shown in Fig. 1. 

This paper is a first step in an attempt to describe which classes of ordered sets have 
natural descriptions as sets of intervals of other classes of - presumably simpler 
- ordered sets. Weak orders are a natural place to begin this effort for two reasons: 
they are the most straightforward generalization of linear orders, and there is a rea- 
sonable likelihood for applications. Consider, for example the scheduling of meetings 
in rooms some distance apart with a discrete set of possible starting and stopping 
times, say every fifteen minutes. We can postulate that someone can travel from one 
room to another in one time period, but cannot participate in two meetings, one of 
which ends when the other s:~rts, unless they are in the same room. Then the elements 
of our weak ordering are ordered pairs of a room and a time, and (room 1, time 1) is 
less than (room 2, time 2) if time 1 is less than time 2. Thus a meeting in room i ending 
at time j can have someone in common with a meeting starting in room i' at a time j '  
wi thj '  >_-j if and only if the pair i f , j)  precedes or equals the pair (i',i'). (Note that it is 
traditional to define [a,b] < [c,d] if b < c: our definition is motivated both by the 
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Fig. 3. 

possible application and by the fact that while our definition and the traditional one 
are equivalent for intervals chosen from linear orders, they are not equivalent for 
intervals chosen from nonlinear orders, and our definition gives rise to interesting new 
classes of orders.) 

2. Four examples which are not weak interval orderings 

We return to the examples in Fig. 2. If the ordering 3 + _2 were represented by 
intervals 

l~ = [Ij, r d 

with I i  < i~ < la and 14 < Is,  then for 14 to be incomparable to la, at least one point 
of 14 would have to be incomparable to I~ or between la and rn or incomparable to rn. 
Then all points o f l s  would have to be greater than or equal to la and thus greater than 
rl (because 13 > 12 ~ rl), so that 11 < Is  as well. 

Now suppose a set 11 . . . . .  16 of intervals from a weak order contains an "N" 
with !1 < 1~, la < 12, 14, and no other comparisons among {!1 , Ie ,13, I4}  as in 
Fig. 3. 

Suppose 12 is the left-hand endpoint o f / ,  and ra is the right-hand endpoint of In. If 
le ~- ra, then r~ ~< le ~< ra ~</4 so that 11 < 14 as well. Thus le > r3. To show that the 
remaining three ordered sets in Fig. 2 do not arise from intervals of a weak order, 
assume we have Is < 16 as in Fig. 4. 

Since none of the three orders has an element covered by threo elements, I3 and 16 
must be incomparable. Then at least one point of 16 is less than r3 or incomparable to 
rn. Thus all points of In are less than or incomparable to r3 so all points of Is  are 
below 12, a contradiction. 

We summarize in Theorem 1. 

Theorem I. None o f  the orders 3_ + 2_, N -b 2, a six-element fence, or ,i ~ix-element 
crown has a representation as intervals from a weakly ordered set. 
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Fig. 4. 

3. The predecessor-successor order of a weak interval ordering 

One of the approaches to representing (linear) interval orders uses the fact that the 
predecessor sets, and predecessor-successor sets, defined by 

P(x) = Pred(x) = {YlY < x} 

and 

PS(x) = PredSuc(x) = N Pred(z), 

respectively, are linearly ordered by set inclusion. For any ordered set (V, <)  we 
define the family ;~ of predecesser sets and the family .~Sf of predecessor-successor 
sets in the same way, we refer to the ordered set :~ u / ~ / f  with the set inclusion order 
as the predecessor-successor structure of (V. < ) and we denote it by .~',ff (V. < ). it is 
straightforward [1] to show that the map that associates the interval 

[Pred(x), PredSuc(x)] 

to each element x of X is an isomorphism from (V, <)  to a set of nontrivial intervals of 
the predecessor-successor structure with [a,b] < [c,d] if b ~< c. For this reason and 
by analogy with (linear) interval orders, it is natural to expect that the prede- 
cessor-successor structure of a weak interval order is a weak order. This is the case, 
and it means that given a weak interval order as a relation on a set of points rather 
than the usual relation on a set of intervals, we may discover from the ordered set itself 
a weak order from which we may choose intervals to represent the ordered set. 

In order to prove this, we begin with a lemma which restricts the number of cases we 
must consider in order to demonstrate that .~,Y(V, <)  is (or is not) a weak order. 

Lemma 2. l f  /~,Y(V, <)  contains sets X,  Y and Z with Z c Y, Y ~ Z,  and X incom- 
parable to both, then we may assume X = P(x), Y = P(y), Z = PS(z). 

Proof. If X = PS(x), then for each w > x, P(w) is not a subset of Y or Z (for then 
PS(x) would be). If X = PS(x), then for some w > x, P(w) does not contain Y or Z as 
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a subset, for otherwise PS(x) would. Thus there is a set X'  = P(x') such that X' is 
incomparable with both Y and Z. Similarly there is a set Y' = P(y') such that Z c Y', 
Z # Y' and X' is incomparable with both Y' and Z. If Z = P(z), then Z cannot be 
empty (for then it would be a subset of X')  so there must be a z ' c Z  such that z ' ¢ X '  
and therefore PS(z'), which contains z', cannot be a subset of X'  but is a subset of 
Z and therefore Y'. Thus there is a Z' = PS(z') which is a subset of Y', not equal to Y' 
and incomparable with X'. Replacing X, Y, and Z by the sets X', Y' and Z'  proves the 
lemma. [ ]  

Theorem 3. I f  (V, <) is isomorphic to a set of  nontrivial intervals of  a weak order 
ordered by [a,b] < ['c,d'[ i fb  <<. c, then ~ ' ( V ,  <)  is a weakly ordered set. 

Proof. Suppose, to the contrary, that there are three predecessor or prede- 
cessor-successor sets X, Y and Z such that Z c Y, Y # Z, and X is incomparable 
(relative to the subset relation) to both. By- Lemma 2 we may assume X = P(x), 
Y = P(y) and Z = PS(z) for some x, 3' and ,-. Recall that x, y and z may be represented 
by intervals in a weak ordering. Since x and 3' have incomparable predecessor sets, 
they must have incomparable left-hand endpoints. Thus for z to be a predecessor of 
y but not x, the right-hand endpoint of z must equal the left-hand endpoint ly of 3'. 
Thus for any successor t of z, either it = l~. or it > I~.. Thus PS(z) = P(y), a contradic- 
tion. Therefore the subset ordering on PS(V, <)  must be a weak ordering. [ ]  

4. The forbidden restrictions 

Our  next theorem completes the characterization of weak interval orders. 

Theorem 4. I f (V ,  <) is an ordered set that is not isomorphic to a set of  intervals of  
a weak ordering with [a,b] < [c,d] i fand only i f b  <~c, then there is a subset U of  
V such that the restriction of( V, <) to U is isomorphic to one oftheJbur ordered sets in 
Fig. 2. 

Proof. By the remarks before Lemma 2 (that any order can be represented by 
intervals in its predecessor-successor structure), ~ ( V ,  <)  is not weakly ordered and 
so by Lemma 2, there are elements x, y and z such that PS(z) ~ P(y), PS(z) ~ P(y) and 
P(x) is incomparable (relative to the subset order) to both P$(z) and PCY). Since P(x) is 
not a subset of P(y), there must be an element x ° < x such that x'~.P(y). It is 
straightforward to check that x' is then incomparable with y and z. Further, since 
PS(:) = P(y), z must be less than y, and since PS(z) ~ P(y), there must be a y' < y 
such that y'¢. PS(z). In particular, y '  cannot be le~s than z; however, it might be either 
incomparable with or greater than z. This means that the restriction of iV, <)  to 
{x,.V,z,y,y'} is one of the orders pictured in Fig. 5. In case 1, the set {x,x ' ,y ,y ' ,z}  is 
the desired set U, since case 1 is the diagram of 3 + 2. In cases 2, 3 and 4, sirge 
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Fig. 5. 

Case 4 

y' ¢ PS(z) we have a z ° > z with y',~ z'. If z' were a predecessor of either y or y°, then 
{x,x',y,z,z'} would form a 3 + 2. Thus we may assume that z' is incomparable with 
y and with y'. In case 3, the set {x, x', y', z, z' } is the desired set U since the restriction of 
(V, <)  to this set must be isomorphic to 3 + 2. 

In case 2, :~.' could be above x' but not x, giving the six-element fence, z' could be 
above x in which case the restriction of(V, <)  to {x°,x,z',y,y ' } would be isomorphic 
to 3 + 2, or z ° could be incomparable to both x and x', giving the ordering 2 + N. 

In case 4, z' could be incomparable to x and x', giving the six-element fence; z ° could 
be over x °, giving the six-element crown, but if z' were above x, it would be above y°, 
and we have assumed z' and y' are incomparable. 

Thus in all cases, one of the four orderings shown in Fig. 2 must be a restriction of 
(v, <). [] 

This completes the characterization of weak interval orders. Note that with the 
more traditional relation of < for intervals, namely I'a,bl < [c,d] if and only ifb < c 
(an equivalent definition for intervals chosen from linearly ordered sets), the family of 
interval orders based on weak orders will be identical to the family of interval orders 
based on linear orders because the first family can have no restriction isomorphic to 
2 + 2. Even the interval orders based on interval orders will. themselves be interval 
orders. This leaves us with two natural questions. First, with the less than relation 
used in this paper, what other families of orders give rise to families of interva! orders 
with similar forbidden restriction characterizations? Second, with the more traditiona~ 
definition of the less than relation, are there other natural families of interval orders 
with similar characterizations? 
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