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In this paper, we study the stochastic Ramsey problem related to an economic growth
model with the CES production function in a finite time horizon. By changing variables,
the Hamilton–Jacobi–Bellman equation associated with this optimization problem is
transformed. By the viscosity solution technique, we show the existence of a classical
solution of the transformed Hamilton–Jacobi–Bellman equation, and then give an optimal
consumption policy of the original problem.
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1. Introduction

We are concerned with the stochastic Ramsey problem with a finite time horizon T > 0 in order to choose a consumption
rate processes c = {c(t)} ∈ AT maximizing the discounted expected utilities with a constant discount rate α � 0:

J T (c : x) = E

[ τ x,c∧T∫
0

e−αt U
(
c(t)

)
dt + e−α(τ x,c∧T ) g

(
Xx,c

τ x,c∧T

)]
, (1.1)

where a controlled process Xx,c is governed by the stochastic differential equation (SDE, for short)

dXt = [
f (Xt) − ct

]
dt + σ Xt dWt, t � 0, X0 = x � 0; (1.2)

{Wt}t�0 is a standard one-dimensional Brownian motion on a complete probability space (Ω, F ,P), endowed with a filtra-
tion F = {Ft}t�0 which is the P-augmentation of the filtration generated by the Brownian motion W ; σ > 0 is a diffusion
constant; f ∈ C1(R+) is a concave function with f (0) = 0 and f ′(∞) > −∞; AT denotes the collection of all consumption
policies c(·) which are R+-valued, F-progressively measurable processes satisfying

∫ T
0 c(t)dt < ∞ a.s.;

τ x,c = inf
{

t � 0: Xx,c(t) = 0
}
.

We assume that the utility function U has the following properties:

U ∈ C(R+) ∩ C2(0,∞), U ′′(c) < 0 < U ′(c), U ′(∞) = U (0) = 0, (1.3)

and g ∈ C(R+) is a non-decreasing concave function with g(0) = 0.
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The economic growth model in connection with the Ramsey problem has been studied by [4] and [9]. Recently,
[10] treats this problem for the constant elasticity of substitution (CES) production function F (z, y) with ∂ F (0+, y)/∂z < ∞
producing the commodity for the capital stock z � 0 and the labor force y > 0 in the infinite time horizon case. The capital
stock z(t) and the labor supply y(t) at time t are governed by

dy(t) = μy(t)dt − σ y(t)dWt , y(0) = y > 0, μ �= 0,

dz(t) = [
F
(
z(t), y(t)

) − νz(t) − c(t)y(t)
]

dt, z(0) = z � 0.

Changing the variables by X(t) = z(t)/y(t) and f (x) = F (x,1) − (μ + ν − σ 2)x for x = z/y, we observe that the optimal
consumption in the growth model can be obtained by a reduction to the stochastic Ramsey problem (1.1)–(1.2) with g ≡ 0.
However, [10] contains some incomplete proofs, which will be made correct later, for the existence results on viscosity
solutions of the associated Hamilton–Jacobi–Bellman (HJB, for short) equations of elliptic type.

The purpose of this paper is to present a synthesis of optimal consumption policy c∗ ∈ AT for the stochastic Ramsey
problem (1.1)–(1.2). The associated HJB equation is given by the parabolic PDE

αu = ut + σ 2

2
x2uxx + f (x)ux + Ũ (ux), t ∈ (0, T ), x > 0,

u(t,0) = 0, u(T , x) = g(x), t ∈ [0, T ], x � 0, (1.4)

where the subscripts denote the partial derivatives and Ũ (x) is the Legendre transform of −U (−x), i.e. Ũ (x) =
maxc�0[U (c) − cx], x > 0. The difficulty in solving the problem lies in the fact that (1.4) is degenerate and Ũ is non-
Lipschitz. Changing variables by

V (t, x) = u(T − t, x), t ∈ [0, T ], x � 0,

we have

αV = −Vt + σ 2

2
x2 V xx + f (x)V x + Ũ (V x), t ∈ (0, T ), x > 0,

V (t,0) = 0, V (0, x) = g(x), t ∈ [0, T ], x � 0. (1.5)

Our method consists in finding a smooth solution V using the comparison results for solutions of one-dimensional SDEs.
By the viscosity solution technique, we show that the transformed HJB equation (1.5) admits a unique solution V , and the
restrictive conditions for the existence of u are relaxed. The optimal consumption rate c∗ ∈ AT can be represented in a
feedback form.

The remainder of this paper is organized in the following way: In the next section, we show the existence of viscosity
solutions V of (1.5) with T = ∞. In Section 3, we derive the C1,2-regularity of u, and we give a synthesis of the optimal
consumption c∗ ∈ AT in terms of u. Section 4 is devoted to an application of our results to the infinite time horizon
problem.

2. The transformed HJB equations

2.1. Stochastic control problems

Let us consider the stochastic control problem

V (t, x) := sup
c∈C

Jt(c : x) = sup
c∈C

E

[ τ x,c∧t∫
0

e−αsU (cs)ds + e−αt g
(

Xx,c
t

)
1{τ x,c>t}

]
, t, x � 0,

where C = ⋂
T >0 AT and 1 is the indicator function. Clearly, V (t,0) = 0 and V (0, x) = g(x). By the comparison results for

solutions of one-dimensional SDEs, see e.g. Proposition 5.2.18 of [5], we see that the mappings x 
→ X x,c
t (ω) and x 
→ τ x,c(ω)

are non-decreasing for a.e. (t,ω). Since U � 0 and g is non-decreasing, we note that

the function x 
→ V (t, x) is non-decreasing for each t � 0. (2.1)

For each γ ∈ R, we denote by Eγ (·) the exponential martingale

Eγ (t) = exp

[
γ Wt − γ 2

t

]
, t � 0.
2
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For t, x � 0, c ∈ C and β ∈ R, by Itô’s formula, we then have

x + (γ + σ)

t∧τ x,c∫
0

e−(α+β)s Eγ (s)Xs dW s =
t∧τ x,c∫

0

e−(α+β)s Eγ (s)cs ds + e−(α+β)(t∧τ x,c)Eγ

(
t ∧ τ x,c)Xt∧τ x,c

+
t∧τ x,c∫

0

e−(α+β)s Eγ (s)
[
(α + β − σγ )Xs − f (Xs)

]
ds. (2.2)

Since the function x 
→ f (x)/x is non-increasing and f (0) = 0, we note that

l := f ′(∞) � f (x)

x
� f ′(0+), x > 0. (2.3)

Thus, if β � f ′(0+) − α + σγ , then the local martingale in the left-hand side of (2.2) is super-martingale, and thereby

E

[ t∧τ x,c∫
0

e−(α+β)s Eγ (s)cs ds

]
� x, t, x � 0, c ∈ C. (2.4)

In this section and the next section, we set

γ := 0 and β := (
f ′(0+) − α

)+
,

and thus (2.4) holds with Eγ (·) ≡ 1. Further, by (2.2) and Jensen’s inequality, we have

E
[
e−αt g

(
Xx,c

t

)
1{τ x,c>t}

]
� e−αt g

(
E

[
Xx,c

τ x,c∧t

])
� e−αt g

(
xe(α+β)t), t, x � 0, c ∈ C. (2.5)

Proposition 2.1. For all t, x, z � 0 and y > 0,

V (t, x) � E

[ t∫
0

e−αsU
(
xze(l−z)s Eσ (s)

)
ds + e−αt g

(
xe(l−z)t Eσ (t)

)]
, (2.6)

V (t, x) � Ũ (y)

t∫
0

e−αs ds + xyeβt + e−αt g
(
xe(α+β)t). (2.7)

Proof. Clearly, the above inequalities with x = 0 hold true because V (t,0) = U (0) = g(0) = 0. Let c̃(s) := z X̃(s) =
zxe(l−z)s Eσ (s) for x > 0. Then, by (2.3),

dX̃(s) = (l − z) X̃(s)ds + σ X̃(s)dW s �
[

f
(

X̃(s)
) − c̃s

]
ds + σ X̃(s)dW s.

Thus the comparison results show 0 < X̃ � Xx,̃c a.e. and τ x,̃c ∧ t = t a.s. which gives (2.6).
Since Eγ (·) ≡ 1, by (2.4) and (2.5), we also have

V (t, x) � sup
c∈C

E

[ τ x,c∧t∫
0

e−αs[U
(
c(s)

) − yc(s)
]

ds

]
+ y sup

c∈C
E

[ τ x,c∧t∫
0

e−αsc(s)ds

]
+ e−αt g

(
xe(α+β)t)

� Ũ (y)

t∫
0

e−αs ds + xyeβt + e−αt g
(
xe(α+β)t), y > 0. �

Remark 2.2. We recall that the decreasing convex function Ũ on (0,∞) has the properties

Ũ (0+) = U (∞), Ũ (∞) = U (0) = 0, U (x) = inf
y>0

[
Ũ (y) + xy

]
, x � 0.

Thus we know from (2.6)–(2.7) that

V (t,0+) = 0, V (0+, x) = g(x), t, x � 0,

V (t,∞) = U (∞)

t∫
0

e−αs ds + e−αt g(∞), t > 0.
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2.2. Auxiliary control problems and a dynamic programming principle

Let us next introduce the auxiliary control problems:

Vn(t, x) := sup
c∈Cn

Jt(c : x), t, x � 0, n � 1, (2.8)

where Cn = {c ∈ C : 0 � c � n a.e.}.

Proposition 2.3. For each t, x � 0, Vn(t, x) ↗ V (t, x) as n → ∞.

Proof. Fix an arbitrary c ∈ C , and set cn := n ∧ c ∈ Cn . Since Xx,c � Xx,cn a.e. and τ x,c � τ x,cn a.s., Fatou’s lemma shows

lim
n→∞ Vn(t, x) � lim

n→∞ Jt(cn : x) � lim
n→∞ E

[ τ x,c∧t∫
0

e−αsU
(
cn(s)

)
ds + e−αt g

(
Xx,c

t

)
1{τ x,c>t}

]
� Jt(c : x)

which means limn→∞ Vn(t, x) � V (t, x). Since Vn � V , we have the assertion. �
Let us define

w(t) := E
[(

e f ′(0+)t Eσ (t) − 1
)+] + E

[(
e(σ 2− f ′(∞))t Eσ (t) − 1

)+]
, t � 0.

Then we see w(t) → 0 as t ↓ 0.

Lemma 2.4. For 0 � s � t, 0 < x � y and ξ > 0, Vn satisfies the following properties:

0 � Vn(t, y) − Vn(t, x) � t

[
U (ξ) + y − x

y
U ′

(
ξ

x

y

)
n

]
+ e−αt y − x

x
g
(
xe(α+β)t), (2.9)

Vn(s, x) − Vn(t, x) � g
(
xe(α+β)s)[αe−αs(t − s) + e−αt w(t − s)

]
, (2.10)

Vn(t, x) − Vn(s, x) � U (n)(t − s) + e−αs g
(
xe(α+β)s)w(t − s). (2.11)

Proof. 1. Let c ∈ Cn be arbitrary, and set z := x/y ∈ (0,1), ĉ := zc and X̂ := zX y,c . Since x 
→ f (x)/x is non-increasing,

dX̂s = [
zf ( X̂s/z) − ĉ(s)

]
ds + σ X̂s dW s �

[
f ( X̂s) − ĉ(s)

]
ds + σ X̂s dW s.

By the comparison results we have zX y,c � Xx,̂c a.e. and τ y,c � τ x,̂c a.s. Let g′+ be the right-hand derivative of the concave
function g . Since xg′+(x) � g(x), x > 0, we obtain

Jt(c : y) − Vn(t, x) � E

[ τ y,c∧t∫
0

e−αs{U
(
c(s)

) − U
(

ĉ(s)
)}

ds + e−αt{g
(

X y,c
t

)
1{τ y,c>t} − g

(
Xx,̂c

t

)
1{τ x,̂c>t}

}]

� U (ξ)

t∫
0

e−αs ds + E

[ τ y,c∧t∫
0

e−αs{U
(
c(s)

) − U
(
zc(s)

)}
1{c(s)�ξ } ds

]

+ e−αt
E

[{
g
(

X y,c
t

) − g
(
zX y,c

t

)}
1{τ y,c>t}

]
� tU (ξ) + (1 − z) · E

[ τ y,c∧t∫
0

e−αs · c(s)U ′(zc(s)
)
1{c(s)�ξ } ds

]

+ e−αt(1 − z)E
[

X y,c
t g′+

(
zX y,c

t

)
1{τ y,c>t}

]
� tU (ξ) + t(1 − z)nU ′(zξ) + e−αt 1 − z

z
E

[
g
(
zX y,c

τ y,c∧t

)]
.

Thus (2.9) follows from the above estimate and (2.5).
2. Let c ∈ Cn be arbitrary, and set c̃(v) := c(v)1{v�τ x,c∧s} ∈ Cn . Since f (x) � xf ′(∞) for x � 0, the comparison results

show

Xx,̃c
v � Xx,c

s e f ′(∞)(v−s)+σ (W v−W s)−(σ 2/2)(v−s) =: Xx,c
s H0

s,v on
{
τ x,c > s

}
for all v � s. This means {τ x,̃c > t} = {τ x,c > s} a.s. Since U � 0, we get
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J s(c : x) − Vn(t, x) � J s(c : x) − Jt( c̃ : x) � E
[
e−αs g

(
Xx,c

s

)
1{τ x,c>s} − e−αt g

(
Xx,̃c

t

)
1{τ x,̃c>t}

]
�

(
e−αs − e−αt)

E
[

g
(

Xx,c
τ x,c∧s

)] + e−αt
E

[{
g
(

Xx,c
s

) − g
(

Xx,c
s H0

s,v

)}
1{τ x,c>s}

]
� αe−αs(t − s)g

(
xe(α+β)s) + e−αt

E
[

g′+
(

Xx,c
s H0

s,v

)
Xx,c

s

(
1 − H0

s,v

)+
1{τ x,c>s}

]
� 1st term + e−αt

E

[
g
(

Xx,c
s H0

s,t

)( 1

H0
s,t

− 1

)+
1{τ x,c>s}

]

� 1st term + e−αt
E

[
g
(

Xx,c
τ x,c∧s

)]
E

[(
1

H0
s,t

− 1

)+]
� g

(
xe(α+β)s)[αe−αs(t − s) + e−αt w(t − s)

]
(2.12)

where we used the fact that H0
s,t is independent of Fs . Hence we have (2.10).

3. Let c ∈ Cn be arbitrary, and set c̃(v) := c(v)1{v�τ x,c} and Y c
t := Xx,̃c

t /x for x > 0. Since f (x) � xf ′(0+) for x � 0,
Y c

t � e f ′(0+)t Eσ (t) a.s. by the comparison results. This implies

Xx,̃c
t

Xx,c
s

� e f ′(0+)(t−s)+σ (Wt−W s)−(σ 2/2)(t−s) =: H1
s,t on

{
τ x,c > s

}
.

Thus

Jt(c : x) − Vn(s, x) � Jt(c : x) − J s(c : x)

� U (n)(t − s) + e−αs
E

[{
g
(

Xx,c
t

) − g
(

Xx,c
s

)}
1{τ x,c>t}

]
� U (n)(t − s) + e−αs

E
[

g′+
(

Xx,c
s

)(
Xx,c

t − Xx,c
s

)+
1{τ x,c>t}

]
� U (n)(t − s) + e−αs

E
[

g
(

Xx,c
s

)(
H1

s,t − 1
)+

1{τ x,c>s}
]

= U (n)(t − s) + e−αs
E

[
g
(

Xx,c
τ x,c∧s

)]
E

[(
H1

s,t − 1
)+]

,

which yields (2.11). �
Next we will establish a dynamic programming principle for Vn .

Theorem 2.5. The following property holds:
For all t, x � 0 and an F-stopping time θ with θ � t a.s.,

Vn(t, x) = sup
c∈Cn

E

[ θ∧τ x,c∫
0

e−αsU
(
c(s)

)
ds + e−α(θ∧τ x,c)Vn

(
t − θ ∧ τ x,c, Xx,c(θ ∧ τ x,c))]. (2.13)

This property holds true even if θ depends on a control c ∈ Cn.

Proof. Since Vn(t,0) = 0, Vn(0, x) = g(x) and τ 0,c = 0 a.s., the assertion is trivial if t = 0 or x = 0. Fix arbitrary t, x > 0 and
an F-stopping time θ with θ � t a.s. Denote τ x,c

s := s ∧ τ x,c . Then we observe

Vn(t, x) = sup
c∈Cn

E

[ τ x,c
θ∫

0

e−αv U
(
c(v)

)
dv + E

[ τ x,c
t∫

θ

e−αv U
(
c(v)

)
dv + e−αt g

(
Xx,c

t

)
1{τ x,c>t}|Fθ

]
· 1{θ<τ x,c}

]

= sup
c∈Cn

E

[ τ x,c
θ∫

0

e−αv U
(
c(v)

)
dv + 1{θ<τ x,c} · e−αθ Jt−θ

(
ĉ : Xx,c

θ

)]

� sup
c∈Cn

E

[ τ x,c
θ∫

0

e−αv U
(
c(v)

)
dv + 1{θ<τ x,c} · e−αθ Vn

(
t − θ, Xx,c(θ)

)]

= sup
c∈Cn

E

[ τ x,c
θ∫

0

e−αv U
(
c(v)

)
dv + e−ατ x,c

θ Vn
(
t − τ x,c

θ , Xx,c(τ x,c
θ

))]
, (2.14)

where ĉ is the shifted process of c by θ , i.e. ĉ(s) = c(s + θ).
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Let x1, ε > 0 and c ∈ Cn be arbitrary. To prove the reverse inequality, we take sequences

t j := t

M
j, x j+1 := x1 + N − x1

M
j, j = 0, . . . , M,

for large numbers M, N � t . Let us define the Fθ -measurable sets {Aij} as

Aij = {
ω ∈ Ω: θ ∈ [ti−1, ti), X(θ) ∈ [x j, x j+1)

}
, i, j = 1, . . . , M.

By means of (2.8), there is a {ci j} ⊂ Cn such that

Vn(t − ti, x j) − ε � Jt−ti (ci j : x j), i, j = 1, . . . , M.

We may assume that ci j(v) = 0 on {v � τ
x j ,ci j
t−ti

}. Define ĉ ∈ Cn as

ĉ(s) = c(s)1{s�θ} +
M∑

i, j=1

ci j(s − θ)1Aij 1{s>θ}.

Then we have

K M,N := Jt( ĉ : x) − E

[ τ x,c
θ∫

0

e−αv U
(
c(v)

)
dv

]

= E
[
e−αt g

(
Xx,c

t

)
1{θ=t<τ x,c}

] + E
[
1{θ<τ x,c

t }e
−αθ Jt−θ

(
ĉ(θ + ·) : Xx,c

θ

)]
� E

[
e−αθ Vn

(
t − θ, Xx,c

θ

)
1{θ=t<τ x,c}

] +
M∑

i, j=1

E
[
1{θ<τ x,c

t }1Aij e
−αθ Jt−θ (ci j : x j)

]

� 1st term +
M∑

i, j=1

E
[
1{θ<τ x,c

t }1Aij e
−αθ

{
Vn(t − ti, x j) − ε

}]

−
M∑

i, j=1

E
[
1{θ<τ x,c

t }1Aij e
−αθ

{
Jt−ti (ci j : x j) − Jt−θ (ci j : x j)

}]
� −ε + E

[
e−αθ Vn

(
t − θ, Xx,c

θ

)
1{θ<τ x,c}

]
−

M∑
i, j=1

E
[
e−αθ

{
Vn

(
t − θ, Xx,c

θ

) − Vn(t − ti, x j)
}
1Aij 1{θ<τ x,c

t }
]

− E
[
e−αθ Vn

(
t − θ, Xx,c

θ

) · 1{0�X(θ)<x1}
] − E

[
e−αθ Vn

(
t − θ, Xx,c

θ

) · 1{X(θ)�N}
]

−
M∑

i, j=1

E
[
e−αθ

{
Jt−ti (ci j : x j) − Jt−θ (ci j : x j)

}
1{θ<τ x,c

t }1Aij

]

=: −ε + 2nd term −
M∑

i, j=1

E
[
e−αθ Kij

] − K0 − KN −
M∑

i, j=1

E
[
e−αθ Li j

]
.

Moreover, Lemma 2.4 and (2.12) yield

Kij �
[{

Vn(t − θ, x j+1) − Vn(t − θ, x j)
} + {

Vn(t − θ, x j) − Vn(t − ti, x j)
}]

1Aij 1{θ<τ x,c}

� tU (x1)1Aij +
[

tn

x1
U ′

(
x2

1

N

)
+ g(Ne(α+β)t)

x1

]
N

M
1Aij +

[
U (n)

N

M
+ g

(
Ne(α+β)t)w

(
N

M

)]
1Aij ,

Li j � g
(
Ne(α+β)t)[α

N

M
+ w

(
N

M

)]
1Aij .
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By (2.7) and the standard results on solutions of SDEs with random coefficients, we also have

K0 � E
[
Vn(t − θ, x1)

]
� tŨ

(
1√
x1

)
+ eβt√x1 + g

(
x1e(α+β)t),

KN � E

[
1{sup0�s�t |Xx,c(s)|�N}

(
tŨ (1) + g(1) + eβt(1 + g′+(1)

)
sup

0�s�t

∣∣Xx,c(s)
∣∣)]

� c0(t)
{

1 + E

[
sup

0�s�t
Xx,c(s)2

]1/2}
P

{
sup

0�s�t

∣∣Xx,c(s)
∣∣ � N

}1/2

� c1(t, x,n)

N

for positive constants c0 and c1, where we used the inequality g(x) � g(1) + g′+(1)x. Combining the above estimates, we
obtain

lim
M→∞ K M,N � −ε + E

[
e−αθ Vn

(
t − θ, Xx,c(θ)

) · 1{θ<τ x,c}
]

−
[

tU (x1) + tŨ

(
1√
x1

)
+ eβt√x1 + g

(
x1e(α+β)t) + c1

N

]
.

Letting ε, x1 ↓ 0 and N → ∞, we have the part “�” of the equality (2.13). �
2.3. Viscosity solutions

Given a real-valued function w on R2+ , we shall denote by w∗ (resp. w∗) its upper (resp. lower) semi-continuous enve-
lope, i.e.

w∗(t, x) = lim
ε↓0

sup
{

w(s, y): |t − s| + |x − y| � ε, s, y > 0
}
, t, x � 0, (2.15)

and w∗ = −(−w)∗ .

Definition 2.6. Let G be an R-valued continuous function on R+ × R × (0,∞) × R, and consider the non-linear PDE

wt(t, x) + G
(
x, w(t, x), wx(t, x), wxx(t, x)

) = 0, t, x > 0. (2.16)

Assume further that a 
→ G(x, r,q,a) is non-increasing. Let w be a locally bounded R-valued function on (0,∞)2 and ϕ be
a smooth R-valued function on (0,∞)2.

(i) w is called a viscosity super-solution to (2.16) if

ϕt(t0, x0) + G
(
x0, w∗(t0, x0),ϕx(t0, x0),ϕxx(t0, x0)

)
� 0

for any local minimizer (t0, x0) ∈ (0,∞)2 of (w∗ − ϕ) on (0,∞)2.
(ii) w is called a viscosity sub-solution to (2.16) if

ϕt(t0, x0) + G
(
x0, w∗(t0, x0),ϕx(t0, x0),ϕxx(t0, x0)

)
� 0

for any local maximizer (t0, x0) ∈ (0,∞)2 of (w∗ − ϕ) on (0,∞)2.
(iii) w is called a viscosity solution to (2.16) if it satisfies the above requirements (i) and (ii).

Let us define the differential operator L as

Lϕ = σ 2

2
x2ϕxx + f (x)ϕx − αϕ.

Lemma 2.7. Vn is a continuous viscosity solution to the corresponding HJB equation

(Vn)t(t, x) − LVn(t, x) − Ũn
(
(Vn)x(t, x)

) = 0, t, x > 0,

where Ũn(x) = max0�c�n[U (c) − cx].
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Proof. By (2.7) and Lemma 2.4 we first know that Vn is continuous on R2+ . Let (t0, x0) ∈ (0,∞)2 and ϕ be an R-valued
smooth test function on R2+ .

1. Assume that 0 = (Vn − ϕ)(t0, x0) = minR2+ (Vn − ϕ). Fix an arbitrary c ∈ [0,n]. For a large number m, let us define

θm = 1

m
∧ inf

{
s � 0:

∣∣Xx0,c(s) − x0
∣∣ � x0

2

}
<

t0

2
∧ τ x0,c.

Since ϕ � Vn , it follows from Theorem 2.5 that

0 = Vn(t0, x0) − ϕ(t0, x0)

� E

[ θm∫
0

e−αsU (c)ds + e−αθm Vn
(
t0 − θm, Xx0,c(θm)

)] − ϕ(t0, x0)

� E

[ θm∫
0

e−αsU (c)ds + e−αθmϕ
(
t0 − θm, Xx0,c(θm)

)] − ϕ(t0, x0)

= E

[ θm∫
0

e−αs[U (c) − c · ϕx
(
t0 − s, Xx0,c(s)

) + Lϕ
(
t0 − s, Xx0,c(s)

) − ϕt
(
t0 − s, Xx0,c(s)

)]
ds

]

= 1

m
E

[ 1∫
0

1{s/m�θm}e−α(s/m)

[
U (c) − c · ϕx

(
t0 − s

m
, Xx0,c

(
s

m

))

+ Lϕ

(
t0 − s

m
, Xx0,c

(
s

m

))
− ϕt

(
t0 − s

m
, Xx0,c

(
s

m

))]
ds

]

=: 1

m
Lm.

The standard results about solutions of the SDEs give

0 � E[1 − mθm] � P
{
θm < m−1} � P

{
sup

0�s�m−1

∣∣Xx0,c(s) − x0
∣∣ � x0

2

}
� c0

m
,

where c0 = c0(x0,n) is a positive constant. Therefore, after passing to a subsequence, mθm
m→∞−−−−→ 1 a.s. Hence the domi-

nated convergence theorem shows

0 � lim
m→∞ Lm = [

U (c) − cϕx(t0, x0)
] + Lϕ(t0, x0) − ϕt(t0, x0).

This implies the super-viscosity property of Vn .
2. Suppose that 0 = (Vn − ϕ)(t0, x0) = maxR2+ (Vn − ϕ). To prove the sub-viscosity property of Vn , we assume to the

contrary that −2ε := −ϕt(t0, x0) + Lϕ(t0, x0) + Ũn(ϕx(t0, x0)) < 0. Then there exists a δ > 0 such that

−ϕt(t, x) + Lϕ(t, x) + Ũn
(
ϕx(t, x)

)
� −ε

for all (t, x) ∈ [t0 − δ, t0 + δ] × [x0 − δ, x0 + δ] ⊂ (0,∞)2. Let c ∈ Cn be arbitrary, and define

θ c = δ ∧ inf
{

s � 0:
∣∣Xx0,c(s) − x0

∣∣ � δ
}
,

θ0 = min
[
inf

{
s � 0: Xx0,0(s) � x0 + δ

}
, inf

{
s � 0: Xx0,n(s) � x0 − δ

}]
.

By the comparison results, we note 0 < δ ∧ θ0 � θ c a.s. Since ϕ � Vn , by Itô’s formula, we obtain

ϕ(t0, x0) = E

[ θc∫
0

e−αsU
(
c(s)

)
ds + e−αθc

ϕ
(
t0 − θ c, Xx0,c(θ c))]

− E

[ θc∫
e−αs[U

(
c(s)

) − c(s)ϕx
(
t0 − s, Xx0,c(s)

)]
ds

]

0
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− E

[ θc∫
0

e−αs[Lϕ
(
t0 − s, Xx0,c(s)

) − ϕt
(
t0 − s, Xx0,c(s)

)]
ds

]

� E

[ θc∫
0

e−αsU
(
c(s)

)
ds + e−αθc

Vn
(
t0 − θ c, Xx0,c(θ c))] + εE

[ θc∫
0

e−αs ds

]

� E

[ θc∫
0

e−αsU
(
c(s)

)
ds + e−αθc

Vn
(
t0 − θ c, Xx0,c(θ c))] + εe−δ

E[δ ∧ θ0].

By the arbitrariness of c ∈ Cn and Theorem 2.5, we see that the above inequality provides the contradiction:
εe−δ

E[δ ∧ θ0] � 0. �
Theorem 2.8. V is a viscosity solution to the associated HJB equation

Vt(t, x) − LV (t, x) − Ũ
(

V x(t, x)
) = 0, t, x > 0 (2.17a)

with the boundary conditions

V ∗(t,0) = V∗(t,0) = 0, V ∗(0, x) = V∗(0, x) = g(x), t, x � 0. (2.17b)

Proof. Thanks to Proposition 2.3, it is easy to check

V∗(t, x) = lim
m→∞ inf

{
Vn(s, y): n � m, |t − s| + |x − y| � m−1, s, y > 0

}
,

V ∗(t, x) = lim
m→∞ sup

{
Vn(s, y): n � m, |t − s| + |x − y| � m−1, s, y > 0

}
.

In view of Lemma 2.7, the viscosity properties follow from the arguments in §6 of [1] because Ũn ↗ Ũ as n → ∞.
Taking (2.7) into account, we see

V ∗(t,0) � lim
(t0,x)→(t,0)

[
t0Ũ (y) + xyeβt0 + g

(
xe(α+β)t0

)] = tŨ (y)
y→∞−−−→ 0,

V ∗(0, x) � lim
(t,x0)→(0,x)

[
tŨ (y) + x0 yeβt + g

(
x0e(α+β)t)] = xy + g(x)

y↓0−−→ g(x),

V∗(0, x) � lim
(t,x0)→(0,x)

Jt(0 : x0) � lim
(t,x0)→(0,x)

E
[
e−αt g

(
x0elt Eσ (t)

)]
� g(x).

Hence we have (2.17b). �
Theorem 2.9. Let u (resp. v) be an upper (resp. lower) semi-continuous sub-solution (resp. super-solution) of (2.17a) and

u(t,0) = v(t,0) = 0, u(0, x) = v(0, x) = g(x), t, x � 0, (2.18)

sup
t,x�0

|u(t, x)| + |v(t, x)|
1 + t + xeβt

< ∞. (2.19)

Then u � v on R2+ .

Proof. Assume to the contrary that 2ζ := u(t0, x0) − v(t0, x0) > 0 for some t0, x0 > 0, and let us work towards a contradic-
tion. For any m � 1 and η > σ 2 + 2| f ′(0+)| + 1, we define

ψ(t, x) = (
1 + x2)eηt ,

ϕ(t, x, s, y) = u(t, x) − v(s, y) − m

2

[
(t − s)2 + (x − y)2] − ε

[
ψ(t, x) + ψ(s, y)

]
,

Mm = sup
R2+×R2+

ϕ(t, x, s, y),

where the constant ε > 0 is chosen so that

Mm � ϕ(t0, x0, t0, x0) = u(t0, x0) − v(t0, x0) − 2εψ(t0, x0) = ζ.



T. Adachi, H. Morimoto / J. Math. Anal. Appl. 358 (2009) 28–46 37
Since η > β = ( f ′(0+) − α)+ , (2.19) guarantees that Mm = ϕ(tm, xm, sm, ym) for some (tm, xm), (sm, ym) ∈ R2+ , and

ζ + m

2

[
(tm − sm)2 + (xm − ym)2] + ε

[
ψ(tm, xm) + ψ(sm, ym)

]
� u(tm, xm) − v(sm, ym),

which provides that {(tm, xm)}m and {(sm, ym)}m are located in a compact subset of R2+ . Therefore, after passing to a subse-
quence, (tm, xm)

m→∞−−−−→ (t∗, x∗) ∈ R2+ . Further, Lemma 3.1 in [1] gives

m
[
(tm − sm)2 + (xm − ym)2] m→∞−−−−→ 0,

Mm
m→∞−−−−→ u(t∗, x∗) − v(t∗, x∗) − 2εψ(t∗, x∗) � ζ.

Hence we know from (2.18) that (t∗, x∗) ∈ (0,∞)2 and so (tm, xm), (sm, ym) ∈ (0,∞)2 for sufficient large m. By virtue of
Theorem 8.3 in [1], there exist a,b ∈ R such that

ax2 − by2 � 3m(x − y)2, x, y ∈ R,(
pm + εψt(tm, xm),qm + εψx(tm, xm),a + εψxx(tm, xm)

) ∈ P 2,+u(tm, xm),(
pm − εψt(sm, ym),qm − εψx(sm, ym),b − εψxx(sm, ym)

) ∈ P 2,−v(sm, ym), (2.20)

where pm = m(tm −sm), qm = m(xm − ym) and P 2,+w(z) (resp. P 2,−w(z)) is the closed superjet (resp. subjet) of the function
w at the point z, see §8 in [1] for the definitions. By the viscosity properties of the functions u and v , (2.20) implies that

0 � αu(tm, xm) + pm − f (xm)qm − σ 2

2
x2

ma − Ũ
(
qm + εψx(tm, xm)

)
+ ε

[
ψt(tm, xm) − f (xm)ψx(tm, xm) − σ 2

2
x2

mψxx(tm, xm)

]
� αu(tm, xm) + pm − f (xm)qm − σ 2

2
x2

ma − Ũ (qm) + εψ(tm, xm),

0 � αv(sm, ym) + pm − f (ym)qm − σ 2

2
y2

mb − Ũ
(
qm − εψx(sm, ym)

)
− ε

[
ψt(sm, ym) − f (ym)ψx(sm, ym) − σ 2

2
y2

mψxx(sm, ym)

]
� αv(sm, ym) + pm − f (ym)qm − σ 2

2
y2

mb − Ũ (qm) − εψ(sm, ym),

where we use the monotonicity of Ũ . Putting these inequalities together, we get

α
[
u(tm, xm) − v(sm, ym)

] + ε
[
ψ(tm, xm) + ψ(sm, ym)

]
�

[
f (xm) − f (ym)

]
qm + σ 2

2

(
x2

ma − y2
mb

)
�

[∣∣ f ′(0+)
∣∣ + ∣∣ f ′(∞)

∣∣ + 2σ 2] · m(xm − ym)2 m→∞−−−−→ 0,

which yields the contradiction: αζ + 2(1 + α)εψ(t∗, x∗) � 0. �
Remark 2.10. By Theorems 2.8 and 2.9 and (2.7), we have V ∗ � V∗ on R2+ . Since V∗ � V � V ∗ on R2+ by (2.15) and (2.17b),
we see that V is continuous on R2+ .

Remark 2.11. The results in this section hold true even if U (0) > 0, exclusive of the continuity of V (t, ·) at x = 0. Indeed,
we can easily prove that

V ∗(t,0+) = V∗(t,0+) = U (0)+ 1 − e−αt

α
, t � 0.

Adding the assumption U (∞) > 0 and replacing Ũ (resp. U ) with Ũ+ (resp. U+) in (2.7) (resp. (2.9)–(2.10)), we do not
require the assumption U (0) � 0 in order to obtain the results in this section. However the concavity of V (t, ·), which
is proved for the case U (0) = 0 in the next section, may be no longer the truth if U (0) < 0. Although there is room for
argument on this point, we may leave the details to future studies.
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3. Classical solutions and optimal consumption

In this section, we study the C1,2-regularity of the continuous viscosity solution V (t, x) of (2.17), and we present a
synthesis of the optimal consumption c∗ ∈ AT for the optimization problem (1.1).

Lemma 3.1. The function x 
→ V (t, x) is concave for each t � 0, and

λ(t0, t1, x) := inf
t0�t�t1

D+
x V (t, x) > 0, 0 < t0 � t1, x > 0, (3.1)

where D+
x V denotes the right-hand derivative of the concave function V (t, ·).

Proof. Fix arbitrary p ∈ [0,1], t, x1, x2 > 0 and c1, c2 ∈ C , and define

ĉi(s) = ci(s)1{s�τ xi ,ci }, i = 1,2, X̃(s) = p Xx1 ,̂c1(s) + (1 − p)Xx2 ,̂c2(s).

Set x = px1 + (1 − p)x2 and c(s) = p̂c1(s) + (1 − p)̂c2(s). Thanks to the comparison results, we then have X̃ � Xx,c a.e. and
τ x1,c1 ∨ τ x2,c2 � τ x,c a.s. by means of the concavity of f . Since U and g are concave and non-negative, we observe

V (t, x) � Jt(c : x) � p Jt(c1 : x1) + (1 − p) Jt(c2 : x2),

and thus V (t, ·) is concave.
To prove (3.1), we will assume that λ(t0, t1, x0) = 0 for certain 0 < t0 � t1 and x0 > 0, and then contradict this assump-

tion. Then for all ε > 0 there is an sε ∈ [t0, t1] such that D+
x V (sε, x0) � ε. Since x 
→ D+

x V (sε, x) is non-increasing, we see
that D+

x V (sε, x) � ε for all x � x0, and hence

V (sε, x) � V (sε, x0) + ε(x − x0), x � x0.

Extracting a subsequence, sε
ε↓0−−−→ s0 ∈ [t0, t1]. Letting ε ↓ 0 in the above inequality, by Proposition 2.1, we have

E

[ s0∫
0

e−αsU
(
xe(l−1)s Eσ (s)

)
ds + e−αs0 g

(
xe(l−1)s0 Eσ (s0)

)]
� Ũ (y)

s0∫
0

e−αs ds + x0eβs0 y + e−αs0 g
(
x0e(α+β)s0

)
for all x � x0 and y > 0. Letting x → ∞, Fatou’s lemma gives

U (∞) � inf
y>0

[
Ũ (y) + x0ξ y

] + ξe−(α+β)s0
[

g
(
x0e(α+β)s0

) − g(∞)
]
� U (x0ξ),

where ξ−1 := e−βs0
∫ s0

0 e−αvdv . This is in contradiction with (1.3). �
Define

u(t, x) = V (T − t, x), t ∈ [0, T ], x � 0. (3.2)

Then we have the first main result.

Theorem 3.2. Under (1.3), u satisfies the following properties:

(i) The function x 
→ u(t, x) is strictly increasing and concave on R+ for each t ∈ [0, T ).
(ii) u ∈ C([0, T ] × R+) ∩ C1,2([0, T ) × (0,∞)) is a solution to the HJB equation (1.4).

Proof. We have already proved the assertion (i) in the previous lemma. We can also deduce the assertion (ii) from the
following:

V ∈ C
(
R2+

) ∩ C1,2((0,∞)2) is a solution to (2.17). (3.3)

To show this claim, let Q := (t0, t1) × (x0, x1) be any bounded open subset of R2+ . We consider the parabolic equation

vt − Lv − Ũ (vx ∨ λ) = 0 in Q (3.4a)

with the boundary condition

v(ti, x) = V (ti, x), v(t, xi) = V (t, xi), (t, x) ∈ Q , i = 0,1, (3.4b)

where the constant λ = λ(t0, t1, x1) > 0 is as in (3.1).
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According to [8], there exists a solution v ∈ C(Q ) ∩ C1,2(Q ) to (3.4) since Ũ (· ∨ λ) is Lipschitz. Clearly, v is a viscosity
solution to (3.4). On the other hand, we can deduce by the concavity of V that ϕx(s0, y0) � D+

x V (s0, y0) for any ϕ ∈
C1,2((0,∞)2) and (s0, y0) ∈ (0,∞) which gives an extremal value of (V −ϕ). Therefore we know by Theorem 2.8 that V is
a continuous viscosity solution to (3.4). By the standard arguments as in Theorem 8.2 of [1], we can prove the comparison
results on viscosity solutions of (3.4). Hence V = v ∈ C(Q ) ∩ C1,2(Q ). Thus we have (3.3). �

Let us define

I(x) = argmax
c�0

[
U (c) − cx

] = (U ′)−1(x) · 1{x<U ′(0+)}, x > 0,

G(t, x) = I
(
ux(t, x)

) · 1{t<T } · 1{x>0}, t ∈ [0, T ], x ∈ R,

and consider the SDE

dX∗
t = [

f
(

X∗
t

) − G
(
t, X∗

t

)]
dt + σ X∗

t dWt, t ∈ [0, T ], X∗
0 = x � 0. (3.5)

Lemma 3.3. The SDE (3.5) has a unique non-negative solution X∗ .

Proof. 1. In view of (3.2) and (2.6), by L’Hospital’s rule and Fatou’s lemma, we have

ux(t,0+) � E

[ T −t∫
0

e−αs lim
x↓0

U (xye(l−y)s Eσ (s))

x
ds

]

= U ′(0+)
y

α − l + y

[
1 − e−(α−l+y)(T −t)] y→∞−−−→ U ′(0+), (3.6)

which implies I(ux(t,0+)) = 0. Hence G is continuous on [0, T ) × R and x 
→ G(t, x) is non-decreasing.
2. For m � 1, t ∈ [0, T ] and x ∈ R, let us define gm(t, x) := G(t, x ∨ m−1) − G(t,m−1). Then we note that gm(t, ·) is locally

Lipschitz on R and 0 � gm � gm+1. Since f is Lipschitz on R+ , Theorem V.1.1 of [7] guarantees that there is a unique
solution xm of the SDE

dxm(t) = [
f
(
xm(t)+

) − gm
(
t, xm(t)

)]
dt + σ xm(t)dWt, t ∈ [0, T ], (3.7)

with an initial data xm(0) = x � 0. The comparison results show

xm+1(t) � xm(t) � xe f ′(0+)t · Eσ (t) a.s., t ∈ [0, T ].
Since f (x+) − gm(t, x) = 0 for x � 0, by applying Itô’s formula to φ(x) := (x−)3 ∈ C2(R), we have dφ(xm(t)) =
φ(xm(t))[3σ 2 dt + 3σ dWt], i.e.,(

xm(t)−
)3 = (

x−)3 · e3σ 2t · E3σ (t) = 0 a.s., t ∈ [0, T ],
which means xm � 0. Now we define X∗(t) := limm→∞ xm(t), t ∈ [0, T ]. Sending m to infinity in (3.7), we know that X∗
satisfies (3.5) because gm ↗ G as m → ∞.

3. Let X0 and X1 be two non-negative solutions of (3.5) and set Zt := X0
t − X1

t . Since G(t, ·) is non-increasing, by Itô’s
formula, we have

dZ 2
t = 2Zt

[
f
(

X0
t

) − f
(

X1
t

) − {
G
(
t, X0

t

) − G
(
t, X1

t

)}]
dt + σ 2 Z 2

t dt + 2σ Z 2
t dWt

� Z 2
t [C0 dt + 2σ dWt],

where C0 = 2(| f ′(0+)| + | f ′(∞)|) + σ 2. Hence the comparison results prove that

Z 2
t � Z 2

0 · eC0t · E2σ (t) = 0, t ∈ [0, T ],
which implies the uniqueness of X∗ . �

Now we obtain another main result.

Theorem 3.4. Under (1.3), c∗ = {c∗(t) := G(t, X∗(t))}t�0 ∈ AT is an optimal consumption process for the optimization problem (1.1).
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Proof. The previous lemma implies c∗ ∈ AT . Since u is a classical solution of the HJB equation (1.4), we can use Itô’s formula
to get

u(0, x) = E

[ θn∧T ∧τ∫
0

e−αt U
(
c∗

t

)
dt

]
+ E

[
e−α(θn∧T ∧τ )u

(
θn ∧ T ∧ τ , X∗

θn∧T ∧τ

)]
� J T

(
c∗ : x

) + E
[
u
(
θn, X∗

θn

)
1{θn<T ∧τ }

]
, (3.8)

where τ = τ x,c∗
and θn = inf{t � 0: X∗(t) � n}, n � 1. Since X∗(t) � xe f ′(0+)t · Eσ (t), by (2.7), we have

E
[
u(θn,n)1{θn<T ∧τ }

]
� c0(1 + n)P

{
sup

0�t�T
xe f ′(0+)t · Eσ (t) � n

}
� c0x2e2(α+β)T

E

[
sup

0�t�T
Eσ (t)2

]1 + n

n2
n→∞−−−→ 0,

where c0 = c0(x, T ) is a positive constant. Hence we obtain u(0, x) � J T (c∗ : x), i.e. c∗ is optimal. �
By the definition of u in (3.2), we observe that

e−αt u(t, x) = sup
c∈AT

E

[ T ∧θ
x,c
t∫

t

e−αsU (cs)ds + e−αT g
(
Y t,x,c

T

)
1{θ x,c

t >T }

]
, t ∈ [0, T ], x � 0,

where a controlled process Y t,x,c is given as a solution to the SDE

dYs = [
f (Ys) − cs

]
ds + σ Ys dW s, s ∈ [t, T ], Yt = x � 0

and θ
x,c
t = inf{s � t: Y t,x,c(s) = 0}.

Theorem 3.5. Assume (1.3). Let w ∈ C([0, T ] × R+) ∩ C1,2([0, T ) × (0,∞)) be a solution to the HJB equation (1.4) with polynomial
growth. Then w = u on [0, T ] × R+ .

Proof. Since w(t,0) = 0 and Ũ (wx(t, x)) < ∞, we first note w(t, x) � 0. Let (t, x) ∈ [0, T ) × (0,∞) and c ∈ AT be arbitrary.
1. By Itô’s formula and (1.4), we have

e−αt w(t, x) + σ

T ∧θ
x,c
t∫

t

e−αsYs wx(s, Ys)dW s �
T ∧θ

x,c
t∫

t

e−αsU (cs)ds + e−α(T ∧θ
x,c
t )w

(
T ∧ θ

x,c
t , Y T ∧θ

x,c
t

)
� 0

and thereby

e−αt w(t, x) � E

[ T ∧θ
x,c
t∫

t

e−αsU (cs)ds + e−αT g(Y T )1{θ x,c
t >T }

]
.

This implies w � u.
2. Since w � u and w(s,0) = u(s,0) = 0, we see that wx(s,0+) � ux(s,0+) � U ′(0+). Thus, by the same line as

Lemma 3.3, we know that there exists a unique non-negative solution Y ∗ of the SDE

dY ∗
s = [

f
(
Y ∗

s

) − G w(
s, Y ∗

s

)]
dt + σ Y ∗

s dW s, s ∈ [t, T ], Y ∗
t = x � 0,

where G w(s, y) = I(wx(s, y)) ·1{t�s<T } ·1{y>0} . Since w(s, y) � C0(1+ yk) for some constants C0,k > 0, the same arguments
as in Theorem 3.4 give

e−αt w(t, x) � E

[ T ∧θ∗∫
t

e−αsU
(
cw

s

)
ds + e−αT g

(
Y ∗

T

)
1{θ∗>T }

]
� e−αt u(t, x),

where cw = {cw(s) := G w(s, Y ∗(s))}s�0 ∈ AT and θ∗ = θ
x,cw

t . Hence the proof is complete. �
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4. Infinite time horizon Ramsey problem

In this section, we give an application of the above results to the infinite time horizon problem so as to maximize the
discounted expected utilities with a discount rate α > 0:

J∞(c : x) = E

[ τ x,c∫
0

e−αt U
(
c(t)

)
dt

]
(4.1)

over the class C . In order to present the similar results to the theorems in Section 3, let us define

V̂ (x) = sup
c∈C

J∞(c : x), x � 0,

and we make the following hypotheses: There exist β,γ ∈ R and ξ0 > 0 such that

α � f ′(0+) − β + σγ , (4.2a)

F̃ (ξ0) := E

[ ∞∫
0

e−αt Ũ
(
ξ0e−βt Eγ (t)

)
dt

]
< ∞. (4.2b)

Theorem 4.1. Let the conditions (1.3) and (4.2) hold true. Then the following assertions are valid:

(i) V̂ is strictly increasing and concave on R+ .
(ii) V̂ ∈ C(R+) ∩ C2(0,∞) is a solution to the HJB equation

−LV̂ (x) − Ũ
(

V̂ ′(x)
) = 0, x > 0, V (0) = 0. (4.3)

Proof. 1. Let us begin with showing

0 � V̂ (x) � F̃ (ξ0) + xξ0, x � 0. (4.4)

Let x � 0 and c ∈ C be arbitrary. By (2.4), we have

E

[ τ x,c∧T∫
0

e−αt U (ct)dt

]
= E

[ τ x,c∧T∫
0

e−αt[U (ct) − ξe−βt Eγ (t)ct
]

dt

]
+ ξE

[ τ x,c∧T∫
0

e−(α+β)t Eγ (t)ct dt

]

� E

[ ∞∫
0

e−αt Ũ
(
ξe−βt Eγ (t)

)
dt

]
+ ξx.

Letting T → ∞, Fatou’s lemma shows (4.4).
Also we can easily deduce the following analogue of (2.6):

V̂ (x) � E

[ ∞∫
0

e−αt U
(
xze(l−z)t Eσ (t)

)
dt

]
, x, z � 0. (4.5)

2. The proof of Lemma 3.1 guarantees the concavity of V̂ . We denote by V̂ ′+ the right-hand derivative of V̂ . We shall
prove that V̂ ′+(x) > 0 for all x > 0 by the reduction to absurdity. Suppose that V̂ ′+(x0) = 0 for some x0 > 0. By (4.4)–(4.5)
and the same line as Lemma 3.1, we then have

U (∞)

α
� F̃ (ξ0) + ξ0x0 < ∞.

Hence we may assume Ũ (0) = U (∞) < ∞. Choosing γ = 0 and β = ( f ′(0+) − α)+ ,

F̃ (ξ0) =
T∫

0

e−αt Ũ
(
ξ0e−βt)dt +

∞∫
T

e−αt Ũ
(
ξ0e−βt)dt � 1 − e−αT

α
Ũ

(
ξ0e−βT ) + e−αT

α
Ũ (0)

for all ξ0 > 0. Combining two inequalities above, we obtain

U (∞) � inf
ξ0>0

[
Ũ

(
ξ0e−βT ) + α

1 − e−αT
ξ0x0

]
= U

(
αeβT

1 − e−αT
x0

)
.

This is in contradiction with (1.3). Thus the assertion (i) holds true.
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3. Since F̃ (ξ) ↘ 0 as ξ → ∞, we see V̂ (0+) = 0 by (4.4). Hence the concave function V̂ is continuous on R+ .
4. Let us introduce the auxiliary control problems

V̂n(x) := sup
c∈Cn

J∞(c : x), x � 0, n � 1,

and we will establish a dynamic programming principle for V̂n:
For every F-stopping time θ with θ < ∞ a.s., Vn satisfies the following property:

V̂n(x) = sup
c∈Cn

E

[ θ∧τ x,c∫
0

e−αsU
(
c(s)

)
ds + e−α(θ∧τ x,c) V̂n

(
Xx,c(θ ∧ τ x,c))], x � 0, (4.6)

where θ may depend on a control c ∈ Cn .
By the same calculation as in (2.14), it is clear that the part “�” in (4.6) holds. Let 0 < t < T and c ∈ Cn be arbitrary.

Theorem 2.5 provides

Vn(T , x) � E

[ θ∧τ x,c
t∫

0

e−αsU
(
c(s)

)
ds + e−α(θ∧τ x,c

t )Vn
(
T − θ ∧ τ x,c

t , Xx,c(θ ∧ τ x,c
t

))]
,

where τ x,c
t = τ x,c ∧ t and g ≡ 0. Since Vn(T , x) T →∞−−−−→ V̂n(x), Fatou’s lemma gives

V̂n(x) � E

[ θ∧τ x,c
t∫

0

e−αsU
(
c(s)

)
ds + e−α(θ∧τ x,c

t ) V̂n
(

Xx,c(θ ∧ τ x,c
t

))]
.

Letting t → ∞, we obtain the part “�” in (4.6).
5. By the similar arguments to Lemma 2.7, we can prove that V̂n is a continuous viscosity solution to the associated HJB

equation

−LV̂n(x) − Ũn
(

V̂ ′
n(x)

) = 0, x > 0.

Also the same arguments as in Proposition 2.3 ensure that V̂n(x) ↗ V̂ (x) as n → ∞ for each x � 0. Then Dini’s theorem
implies that V̂n converges to V̂ locally uniformly on R+ . Thus we can deduce from the standard stability results [1, §6] that
V̂ is a viscosity solution to (4.3).

6. Let Q := (x0, x1) be any bounded open subset of R+ and set λ := V ′+(x1) > 0. It is known in [3] that the following
boundary value problem has a smooth solution v:

−Lv(x) − Ũ
(

v ′(x) ∨ λ
) = 0, x ∈ Q , v(xi) = V̂ (xi), i = 0,1. (4.7)

Clearly, v is a viscosity solution to (4.7). On the other hand, since V̂ is the concave viscosity solution to (4.3), we see easily
that V̂ is a continuous viscosity solution to (4.7). Thus, by the comparison results [1, Theorem 3.3] for viscosity solutions,
we have V̂ = v ∈ C(Q ) ∩ C2(Q ). Hence the proof is complete. �

To obtain an optimal consumption process for the infinite time horizon problem, we make the following condition which
is slightly stronger than (4.2): There exist ρ ∈ (0,α), β,γ ∈ R and ξ0 > 0 such that

α − ρ � f ′(0+) − β + σγ and E

[ ∞∫
0

e−(α−ρ)t Ũ
(
ξ0e−βt Eγ (t)

)
dt

]
< ∞. (4.8)

Theorem 4.2. Assume (1.3) and (4.8). Then c� = {c�(t) := Ĝ(X�(t))}t�0 ∈ C is an optimal policy for the problem (4.1), where Ĝ(x) =
I(V̂ ′(x)) · 1{x>0} and X� is a unique non-negative solution of the SDE

dX�
t = [

f
(

X�
t

) − Ĝ
(

X�
t

)]
dt + σ X�

t dWt, t � 0, X�
0 = x � 0. (4.9)

Proof. 1. Taking account of (4.5), the same calculations as in (3.6) provide V̂ ′(0+) � U ′(0+). Hence we can prove the
existence of a unique non-negative solution X� to (4.9) by the same line as Lemma 3.3, and thereby c� ∈ C .

2. Let x � 0 and c ∈ C be arbitrary. We shall show

lim E
[
e−α(T ∧τ x,c) V̂

(
Xx,c(T ∧ τ x,c))] = 0. (4.10)
T →∞
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To this end, let us define

h(x) = sup
c∈C

E

[ τ x,c∫
0

e−(α−ρ)t U (ct)dt

]
, x � 0.

Thanks to Theorem 4.1, we know that h ∈ C(R+) ∩ C2(0,∞) satisfies

0 � V̂ (x) � h(x), Lh(x) + ρh(x) + Ũ
(
h′(x)

) = 0 < h′(x), x > 0.

Thus, by Itô’s formula, we have

h(x) + σ

T ∧τ x,c∫
0

e−αs Xsh′(Xs)dW s = e−α(T ∧τ x,c)h(XT ∧τ x,c ) +
T ∧τ x,c∫

0

e−αs[csh′(Xs) − Lh(Xs)
]

ds

� ρ

T ∧τ x,c∫
0

e−αsh(Xs)ds � 0.

Hence we have

E

[ ∞∫
0

e−αsh(Xs)1{s�τ x,c} ds

]
� h(x)

ρ
< ∞, (4.11)

which implies limT →∞ E[e−αT h(XT )1{T �τ x,c}] = 0 and thereby (4.10).
3. By the definition of c� we know that Itô’s formula gives

V̂ (x) = E

[ θn∧T ∧τ∫
0

e−αt U
(
c�

t

)
dt

]
+ E

[
e−α(θn∧T ∧τ ) V̂

(
X�

θn∧T ∧τ

)]
� J∞

(
c�

) + E
[
e−α(θn∧T ∧τ ) V̂

(
X�

θn∧T ∧τ

)]
, (4.12)

where τ = τ x,c�
and θn = inf{t � 0: X�(t) � n}, n � 1. Since X�(t) � xe f ′(0+)t · Eσ (t), by (4.4) and Doob’s maximal inequality,

we have

E

[
sup
n�1

V̂
(

X�
θn∧T ∧τ

)]
� F̃ (ξ0) + ξ0xe| f ′(0+)|T

E

[
sup

0�t�T
Eσ (t)

]
< ∞.

Letting n → ∞ and then T → ∞ in (4.12), by the dominated convergence theorem and (4.10), we obtain V̂ (x) � J∞(c�), i.e.
c� is optimal as asserted. �
Theorem 4.3. Assume (1.3) and (4.2). Let w ∈ C(R+) ∩ C2(0,∞) be a solution to the HJB equation (4.3) with polynomial growth.
Suppose further that either one of the following conditions holds:

(a) There exist ρ1 > 0, h0 ∈ R and h ∈ C(R+) ∩ C2(0,∞) such that

lim
x→∞

w(x)

h(x)
< ∞, Lh(x) + ρ1h(x) � h0, h(∞) > 0, h′(x) � 0.

(b) lim
x→∞

U (I(w ′(x)))

w(x)
� 2ρ2 for some ρ2 > 0.

Then w = V̂ on R+ .

Proof. Since w(0) = 0 and Ũ (w ′(x)) < ∞, we first note w ′(x) � 0 and w(x) � 0. Let x > 0 and c ∈ C be arbitrary.
1. By the same line as step 1 in the proof of Theorem 3.5, we have

w(x) � E

[ T ∧τ x,c∫
0

e−αsU (cs)ds

]
.

Thus Fatou’s lemma shows w � V̂ .
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2. Since w � V̂ and w(0) = V̂ (0) = 0, we see that w ′(0+) � V̂ ′(0+) � U ′(0+). Thus, by the same line as Lemma 3.3, we
know that there exists a unique non-negative solution Y � of the SDE

dY �
t = [

f
(
Y �

t

) − Ĝ w(
Y �

t

)]
dt + σ Y �

t dWt, t � 0, Y �
0 = x � 0,

where Ĝ w(y) = I(w ′(y)) · 1{y>0} . Denote τ = inf{t � 0: Y �(t) = 0} and we shall show

lim
T →∞

E
[
e−αT w

(
Y �

T

)
1{T <τ }

] = 0. (4.13)

2-1. Assume that condition (a) holds. Similarly to (4.11), we have

E

[ ∞∫
0

e−αs[h
(
Y �

s

) − h(0)
]
1{s�τ } ds

]
� h(x)

ρ1
+ (h0 − ρ1h(0))+

ρ1α
< ∞,

which implies limT →∞ E[e−αT [h(Y �
T ) − h(0)]1{T �τ }] = 0. We choose a number N1 > 0 so that

0 � w(x)

h(x)
� η := 1 + lim

x→∞
w(x)

h(x)
, ∀x � N1.

Then we get

E
[
e−αT w

(
Y �

T

)
1{T <τ }

]
� e−αT [

w(N1) + ηh(0)+
] + ηE

[
e−αT [

h
(
Y �

T

) − h(0)
]
1{T �τ }

] T →∞−−−−→ 0.

2-2. Assume that condition (b) holds. We choose a number N2 > 0 so that U (I(w ′(x))) � ρ2 w(x) for all x � N2. Then
Itô’s formula gives

w(x) + σ

T ∧τ∫
0

e−αsY �
s w ′(Y �

s

)
dW s = e−α(T ∧τ )w

(
Y �

T ∧τ

) +
T ∧τ∫
0

e−αsU
(

I
(

w ′(Y �
s

)))
ds

� ρ2

T ∧τ∫
0

e−αs w
(
Y �

s

)
1{Y �

s �N2} ds � 0,

which yields limT →∞ E[e−αT w(Y �
T )1{Y �

T �N2} · 1{T <τ }] = 0, and thereby (4.13).

3. Since w(y) � C0(1 + yk) for some constants C0,k > 0, by the same arguments as step 3 in the proof of Theorem 4.2,
we have

w(x) � J∞
(
cw�

)
� V̂ (x),

where cw� = {cw�(t) := Ĝ w(Y �(t))}t�0 ∈ C . Thus the verification theorem is established. �
Here are two examples for the hypotheses (4.2) and (4.8) to be fulfilled.

Example 4.4 (HARA utilities). For a ∈ (0,1), we consider for the case

U (x) = xa

a
, Ũ (y) = 1 − a

a
y

−a
1−a , x � 0, y > 0.

Since E[Ũ (ξe−βt Eγ (t))] = Ũ (ξ)exp([ a
1−a β + a

(1−a)2
γ 2

2 ]t), we need

α > A := a

1 − a
β + a

(1 − a)2

γ 2

2

to ensure (4.2b). Let B := f ′(0+) − β + σγ . Then we get

min
β,γ

(A ∨ B) = min
γ

[
a

2(1 − a)
γ 2 + aσγ

]
+ af ′(0+) = −a(1 − a)

2
σ 2 + af ′(0+),

where γ ∗ = −(1 − a)σ and β∗ = (1 − a)[ f ′(0+) − (2 − a)σ 2/2] give the minimum value. Hence (4.2) is equivalent to

α >

[
af ′(0+) − a(1 − a)

2
σ 2

]+
(4.14)

because α > 0. Clearly, (4.14) also guarantees (4.8).
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Example 4.5. In addition to (1.3), we assume that

U ′(0+) = ∞ and AE(U ) := lim
x→∞

xU ′(x)

U (x)
< 1.

By virtue of Lemma 6.3 in [6], we then have

Ũ (ξ) �
(

ξ

ξ0

) −a
1−a

Ũ (ξ0), 0 < ξ < ξ0,

for certain ξ0 > 0 and a ∈ [AE(U ),1). Thus we observe

E
[
Ũ

(
ξe−βt Eγ (t)

)]
� Ũ (ξ0)

(
P
{
ξe−βt Eγ (t) � ξ0

} + E

[(
ξe−βt Eγ (t)

ξ0

) −a
1−a

])
for all ξ > 0. Since α > 0, Example 4.4 implies that (4.8) holds true if α satisfies (4.14).

We are now in a position to make the corrections of Theorems 3.3 and 3.4 in the second author’s paper [10].

Remark 4.6. For the reference we use the list of references of the paper [10].

(i) We need to add the following assumption:
There exists a concave function ψ ∈ B ∩ C2(0,∞) such that ψ(0) = 0 and

−αψ(z) + σ 2

2
z2ψ ′′(z) + (

f (z) − μz
)
ψ ′(z) + Ũ

(
ψ ′(z)

)
� 0 < ψ ′(z) (4.15)

for z > 0. Then, we replace ϕ in the estimate of J1 in the proof of Lemma 3.2 by ψ to have

J1 � Cρ |z − z̃| + ρ
[
ϕ(z) + ϕ( z̃ )

]
.

(ii) We replace τz ↓ θ in the proof of Theorem 3.4 by the following: Choosing sufficiently small ε > 0, we have

E

[ τz∫
0

e−(β+1/ε)tc(t)dt

]
� z + E

[ τz∫
0

e−(β+1/ε)t f
(
z(t)

)
dt

]

� z + f ′(0+)E

[ ∞∫
0

e−(β+1/ε)tq(t)dt

]
→ 0 as z ↓ 0.

Then, by the concavity of U , we get

E

[ τz∫
0

e−(β+1/ε)t U
(
c(t)

)
dt

]
→ 0 as z ↓ 0.

By (i) and (ii), we can obtain the same conclusions as these theorems.

Remark 4.7. Let U (x) = xa/a be the power utility as in Example 4.4. Then we notice that ψ(x) = xa satisfies the condition
(4.15) if

α >

[
af ′(0+) − a(1 − a)

2
σ 2 + (1 − a)a1/(a−1)

]+
,

where α and f are of this paper. (We remark that α and f (z) in (4.15) are different from those of this paper. The α in
(4.15) is a positive number which is smaller than the discount rate α of this paper, and the function f (z) − μz in (4.15)
corresponds to f (z) of this paper.) Obviously, the condition (4.14) is weaker than the above requirement. Hence our results
in this section are sharp as compared with [10].

Remark 4.8. We observe that (4.15) is analogous with the condition (V.2.11) of [2] for the exit time control problem in
the finite horizon. Excepting some simple cases, however, it is hard to verify whether there is a function ψ satisfying the
condition (4.15). On the other hand, given parameters α,σ and functions f , U , it is easy to verify whether the conditions
(4.2) and (4.8) hold or not. In comparison with [10], the contribution of this section is to have provided the readable
conditions (4.2) and (4.8).
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