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1. Introduction

This paper is intended to be a continuation of the papers [5–7], which are concerned with large
time behavior of small solutions to the Cauchy problem for a nonlinear system of Klein–Gordon equa-
tions in (t, x) ∈ R

1+2:

{(� + m2
1

)
u1 = F1(u, ∂u),(� + m2

2

)
u2 = F2(u, ∂u),

(1.1)
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where � = ∂2
t − ∂2

1 − ∂2
2 , ∂ = (∂0, ∂1, ∂2) with ∂0 = ∂t = ∂/∂t , ∂ j = ∂/∂x j for j = 1,2, while u =

(u j) j=1,2 is an R
2-valued unknown function and ∂u = (∂au j) j=1,2

a=0,1,2
is its first order derivative (R2×3-

valued). The masses m1, m2 are supposed to be positive constants. Without loss of generality, we may
assume that m1 � m2 throughout this paper. The nonlinear term F j = F j(v, w) is a C∞ function of
(v, w) ∈ R

2 × R
2×3 which vanishes at quadratic order at the origin, that is,

F j(v, w) = O
((|v| + |w|)2)

as (v, w) → (0,0).

For simplicity, the initial data are supposed to be of the form

u j(0, x) = ε f j(x), ∂t u j(0, x) = εg j(x), x ∈ R
2, j = 1,2 (1.2)

with a small parameter ε > 0 and C∞
0 functions f j , g j .

From a perturbative point of view, quadratic nonlinear Klein–Gordon systems on R
2 are of special

interest because ratio of the masses and the structure of the nonlinearities play essential roles when
one considers large time behavior of the solutions. Let us recall known results briefly. In the case of
m2 �= 2m1 (which will be referred to as the non-resonant case), it is shown in [5,11] that the solution
u(t) for (1.1)–(1.2) exists globally without any structural restrictions of F1, F2 if ε is sufficiently small.
Moreover, u(t) is asymptotically free (in the sense that we can find a solution u±(t) of the homoge-
neous linear Klein–Gordon equations such that u(t) tends to u±(t) as t → ±∞ in the energy norm)
and satisfies the following time decay estimate for all p ∈ [2,∞]:

∑
|I|�1

∥∥∂ I
t,xu(t, ·)∥∥L p(R2

x )
� Cε

(
1 + |t|)−(1− 2

p )
(t ∈ R) (1.3)

with some positive constant C which is independent of ε. Remember that this decay rate is same
as that for the linear case. On the other hand, the above assertion fails to hold in the resonant case
(i.e., the case where m2 = 2m1) because of counterexamples due to [6,7,10] etc. One of the simplest
example is

{
F1 = 0,

F2 = u2
1.

For this nonlinearity, we can choose f j , g j ∈ C∞
0 (R2) and positive constants C , T such that the solu-

tion u(t) for (1.1)–(1.2) satisfies

∑
|I|�1

∥∥∂ I
t,xu(t, ·)∥∥L2 � Cε2 log |t| (|t| � T

)

however small ε > 0 is, whence the estimate (1.3) is violated. Thus we need to put some structural
condition on the nonlinearities in order to obtain global solutions for (1.1)–(1.2) satisfying (1.3) in the
resonant case. This is what we are going to address here. A sufficient condition on the nonlinearities
is introduced by Delort, Fang, and Xue [2], called the null condition, which admits a global solution for
(1.1)–(1.2) in the resonant case. They also give an asymptotic profile of the solution, from which the
decay estimate (1.3) follows immediately. However, their condition is not optimal since it does not
cover some important cases. For instance,

{
F1 = u1u2,

F = u2 (1.4)

2 1
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is excluded from their condition, while the system (1.1) with the nonlinearity (1.4) can be viewed
as a simplified model for some physical systems, such as Dirac–Klein–Gordon system, Maxwell–Higgs
system, and so on. Someone may call this type of interaction the Yukawa type one (see e.g., [3,11] and
the references therein).

Our aim in this paper is to give a new sufficient condition on the nonlinearities which includes
(1.4). Under this condition, we will show that the solution for (1.1)–(1.2) exists globally in time and it
enjoys time decay property (1.3) even in the resonant case.

2. Main result

In order to state the result, let us introduce several notations. For j = 1,2, denote by Q j the
quadratic homogeneous part of the nonlinear term F j , that is,

Q j(v, w) = lim
λ↓0

λ−2 F j(λv, λw)

for (v, w) ∈ R
2 × R

2×3. Roughly saying, Q j(u, ∂u) gives the main part of the nonlinearity while
F j(u, ∂u) − Q j(u, ∂u) is regarded as a cubic or higher order remainder if we are interested in small
amplitude solutions. Next we set

H = {
ω = (ω0,ω1,ω2) ∈ R

3: ω2
0 − ω2

1 − ω2
2 = 1

}
and

Φ j(ω) =
1∫

0

Q j
(

V (θ), W (ω, θ)
)
e−2π i jθ dθ (2.1)

for ω ∈ H, where V (θ) = (cos 2πkθ)k=1,2, W (ω, θ) = (−ωamk sin 2πkθ) k=1,2
a=0,1,2

and i = √−1. Note

that Φ j can be explicitly computed only from m1, m2 and F j . With these Φ1(ω) and Φ2(ω), we
introduce the following two conditions:

(a) Both Φ1(ω) and Φ2(ω) vanish identically on H.
(b) The real part of the product Φ1(ω)Φ2(ω) is uniformly positive on H, while the imaginary part of

Φ1(ω)Φ2(ω) vanishes identically on H.

Our main result is the following theorem.

Theorem 2.1. Let m2 = 2m1 > 0. Suppose that either the condition (a) or (b) is satisfied. Then (1.1)–(1.2)
admits a unique global classical solution for sufficiently small ε. Moreover, for all p ∈ [2,∞], the solution u(t)
satisfies (1.3), i.e.,

∑
|I|�1

∥∥∂ I
t,xu(t, ·)∥∥L p(R2

x )
� Cε

(
1 + |t|)−(1− 2

p )

with some positive constant C which does not depend on ε.

Remark 2.1. The condition (a) is equivalent to the null condition in the sense of [2]. On the other
hand, the condition (b) is completely new, as far as the authors know. (1.4) is a typical example of
the nonlinearity which is excluded from (a) but included in (b). As our proof below suggests, it may
be reasonable to conjecture that the solution may not be asymptotically free under the condition (b)
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(while it is possible to prove that the solution is asymptotically free under the condition (a); see [4]
for the detail). This problem will be discussed in a future work.

Remark 2.2. Our main result remains valid for quasilinear systems if the definition of Φ j is slightly
modified and a suitable hyperbolicity assumption is imposed on F j .

The rest of this paper is organized as follows. In Section 3 we make some reduction of the problem
along the idea of [1,2] with a slight modification. Section 4 is devoted to the derivation of some energy
inequalities. In Section 5 we specify the worst contribution of the nonlinearities in the resonant case.
Section 6 describes a lemma on some ordinary differential equations, which reveals the role of our
condition imposed on Φ j . After that, we get an a priori estimate in Section 7, from which global
existence follows immediately. Finally, in Section 8, the time decay estimate (1.3) is derived. In what
follows, several positive constants appearing in estimates will be denoted by the same letter C , which
may vary from line to line.

3. Reduction of the problem

In the following, we restrict ourselves to the forward Cauchy problem (t > 0) since the backward
problem can be treated in the same way. Also, we shall neglect the higher order terms of F j (i.e. we
assume F j = Q j ) to make the essential idea clearer.

Let K be a positive constant which satisfies

supp f j ∪ supp g j ⊂ {
x ∈ R: |x| � K

}
and let τ0 be a fixed positive number strictly greater than 1 + 2K . We start with the fact that we may
treat the problem as if the Cauchy data are given on the upper branch of the hyperbola

{
(t, x) ∈ R

1+2: (t + 2K )2 − |x|2 = τ 2
0 , t > 0

}
and it is sufficiently smooth, small, compactly-supported. This is a consequence of the classical local
existence theorem and the finite speed of propagation (see e.g., [1, Proposition 1.4] or [2, Proposition
1.1.4] for the detail). Next, let us introduce the hyperbolic coordinate (τ , z) ∈ [τ0,∞) × R

2 in the
interior of the light cone, i.e.,

t + 2K = τ cosh |z|, x1 = τ
z1

|z| sinh |z|, x2 = τ
z2

|z| sinh |z|

for |x| < t + 2K . Then, with the auxiliary expression z1 = ρ cos θ , z2 = ρ sin θ , we see that

(
∂0
∂1
∂2

)
=

(
∂t

∂x1

∂x2

)
=

( coshρ − sinhρ 0
− sinhρ cos θ coshρ cos θ − sin θ

− sinhρ sin θ coshρ sin θ cos θ

)⎛
⎝ ∂τ

1
τ ∂ρ

1
τ sinhρ ∂θ

⎞
⎠ ,

whence

∂a = ωa(z)∂τ + 1

τ

2∑
j=1

ηaj(z)∂z j (3.1)

for a = 0,1,2, where
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ω(z) =
(

ω0(z)
ω1(z)
ω2(z)

)
=

( coshρ
− sinhρ cos θ

− sinhρ sin θ

)
,

(
η01(z) η02(z)
η11(z) η12(z)
η21(z) η22(z)

)
=

⎛
⎝ − sinhρ cos θ − sinhρ sin θ

coshρ cos2 θ + ρ
sinhρ sin2 θ (coshρ − ρ

sinhρ ) cos θ sin θ

(coshρ − ρ
sinhρ ) cos θ sin θ coshρ sin2 θ + ρ

sinhρ cos2 θ

⎞
⎠ .

Remark that ωa(z) and ηbj(z) can be regarded as C∞ functions of z ∈ R
2 which satisfy

∣∣ωa(z)
∣∣ + ∣∣ηbj(z)

∣∣ � Ce|z|

for a,b = 0,1,2 and j = 1,2. Moreover, ω(z) ∈ H for all z ∈ R
2. Also we observe that

�u = 1

τ

(
∂2
τ − 1

τ 2
Λ0

)
(τu),

where

Λ0 = ∂2
ρ + coshρ

sinhρ
∂ρ + 1

sinh2 ρ
∂2
θ . (3.2)

Next we introduce a weight function χ(z) = e−κ〈z〉 with a large parameter κ , where 〈z〉 = √
1 + |z|2.

(In fact, we shall not always need the explicit form of χ , but only the properties that χ is smooth,
radial, as well as the estimates 0 < χ(z) � C0e−κ |z| and |∂ I

zχ(z)| � C Iχ(z) for any multi-indices I
with some constants C I . Another choice for such χ(z) may be 1

cosh(κ |z|) , as was done by Delort et al.
in [1,2]. We also note that κ � 6 is enough for our purpose.) With this weight function, let us define
the new unknown function v j(τ , z) by

u j(t, x) = χ(z)

τ
v j(τ , z).

Then we see that v = (v1, v2) satisfies

(
∂2
τ − 1

τ 2
Λ + m2

j

)
v j = Q̃ j(τ , z, v, ∂τ ,z v)

if u = (u1, u2) solves (1.1), where Λ is defined by

Λv = eκ〈z〉Λ0
(
e−κ〈z〉v

)
and

Q̃ j(τ , z, v, ∂τ ,z v) = χ(z)

τ
Q j

(
v,ω(z)∂τ v

) +
1∑

ν=0

∑
1�k,l�2

|I|�1,| J |�ν

qν jklI J (z)

τ 2+ν
∂ I

z vk · ∂1−ν
τ ∂

J
z vl (3.3)

with some qν jklI J ∈ C∞(R2) satisfying

∣∣∂ L
z qν jklI J (z)

∣∣ � CLe(2−κ)|z|

for any multi-index L.
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At last, the original problem (1.1)–(1.2) is reduced to

⎧⎪⎨
⎪⎩

(
∂2
τ − 1

τ 2
Λ + m2

j

)
v j = Q̃ j(τ , z, v, ∂τ ,z v), τ > τ0, z ∈ R

2,

(v j, ∂τ v j)|τ=τ0 = (ε f̃ j, ε g̃ j), z ∈ R
2,

(3.4)

where f̃ j and g̃ j are C∞ functions of z ∈ R
2 with compact support.

4. Commuting vector fields and energy inequalities

In this section, we will derive a kind of energy inequalities for the operator

Pm = ∂2
τ − 1

τ 2
Λ + m2

with m > 0 which will be needed in Section 7. For this purpose it is helpful to introduce the following
function class.

Definition 4.1. Let ν ∈ R. We denote by S ν the space of C∞ functions a(z) defined on R
2 satisfying

sup
z∈R2

( |∂ I
za(z)|

〈z〉ν−|I|

)
< ∞

for any multi-index I .

We start with splitting Λ into three parts: Λ = Λ0 + Λ1 + Λ2, where Λ0 is defined by (3.2) and

Λ1 = −2κ
ρ

〈ρ〉∂ρ = −2κ

2∑
j=1

z j

〈z〉∂z j ,

Λ2 = κ2|z|2〈z〉 − κ

〈z〉3
+ κ |z| cosh |z|

〈z〉 sinh |z| .

Note that we can rewrite Λ0 as

Λ0 v = 1√
G(z)

2∑
i, j=1

∂zi

(√
G(z)gij(z)∂z j v

)

when we put

(
g11(z) g12(z)
g21(z) g22(z)

)
=

(
1 0
0 1

)
−

(
1

|z|2 − 1

sinh2 |z|
)(

z2
2 −z1z2

−z1z2 z2
1

)

and

G(z) =
(

sinh |z|
|z|

)2

.



Y. Kawahara, H. Sunagawa / J. Differential Equations 251 (2011) 2549–2567 2555
We observe that

2∑
j,k=1

g jk(z)ζ jζk =
∣∣∣∣ z

|z| · ζ
∣∣∣∣
2

+ 1

sinh2 |z| |z ∧ ζ |2 � 0 (4.1)

for ζ = (ζ1, ζ2) ∈ R
2, and that

G(z) = det
(

g jk(z)
)−1

1� j,k�2.

Next, let us introduce the vector fields

Γ1 = (t + 2K )∂x1 + x1∂t = (cos θ)∂ρ − sin θ

tanhρ
∂θ ,

Γ2 = (t + 2K )∂x2 + x2∂t = (sin θ)∂ρ + cos θ

tanhρ
∂θ ,

Γ3 = −x2∂x1 + x1∂x2 = ∂θ .

In what follows, we write |I| = I1 + I2 + I3 and Γ I = Γ
I1

1 Γ
I2

2 Γ
I3

3 for a multi-index I = (I1, I2, I3). We
can immediately check that

[Γ1,Γ2] = Γ3, [Γ1,Γ3] = Γ2, [Γ2,Γ3] = Γ1,

where [· , ·] denotes the commutator. Another important thing is that Γ1, Γ2 are written as linear
combinations of ∂z1 , ∂z2 with S 1-coefficients, while ∂z1 , ∂z2 are written as linear combinations of Γ1,
Γ2 with S 0-coefficients. More precisely, we have

Γ j =
2∑

k=1

c jk(z)∂zk

for j = 1,2 and

∂zk =
2∑

l=1

c̃kl(z)Γl

for k = 1,2, where(
c11(z) c12(z)
c21(z) c22(z)

)
=

(
cos θ − sin θ

sin θ cos θ

)(
1 0
0 ρ

tanhρ

)(
cos θ sin θ

− sin θ cos θ

)
,

(
c̃11(z) c̃12(z)
c̃21(z) c̃22(z)

)
=

(
cos θ − sin θ

sin θ cos θ

)(
1 0
0 tanhρ

ρ

)(
cos θ sin θ

− sin θ cos θ

)
.

As for the commutation relation between Pm and Γ j ’s, we have the following:

Lemma 4.1. For any multi-index I , we have

[
Pm,Γ I] = 1

τ 2

∑
| J |�|I|

hI J (z)Γ J

with some hI J ∈ S 0 .
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Proof. First we note that

[� + m2,Γ I] = 0

for any multi-index I , and that

� + m2 = ∂2
τ + 2

τ
∂τ − 1

τ 2
Λ0 + m2 = Pm + 1

τ 2
(Λ1 + Λ2).

So we have

[
Pm,Γ I] = − 1

τ 2

[
Λ1 + Λ2,Γ

I]

= 1

τ 2

2∑
j=1

[
p jΓ j,Γ

I] − 1

τ 2

[
Λ2,Γ

I],

where p j(z) = 2κ
z j
〈z〉 ∈ S 0. By induction on I , we have the desired conclusion. �

Now, we turn to the energy inequalities for the operator Pm which we need. For s ∈ Z�0, we
introduce the energy Es as follows:

Es(τ ; v,m) =
∑
|I|�s

1

2

∫
R2

((
∂τΓ I v

)2 + 1

τ 2

2∑
j,k=1

g jk(z)
(
∂z j Γ

I v
)(

∂zk Γ
I v

) + m2(Γ I v
)2

)√
G(z)dz.

We also introduce the norm ‖ · ‖(s) by

‖v‖(s) :=
∑
|I|�s

∥∥Γ I v
∥∥

L2(R2;√G(z)dz).

Lemma 4.2. For s ∈ Z�0 , we have

d

dτ
Es(τ ; v,m) �

(
2κ

τ
+ C

τ 2

)
Es(τ ; v,m) + C Es(τ ; v,m)1/2

∥∥Pm v(τ )
∥∥

(s) (4.2)

and

d

dτ
Es(τ ; v,m) � C

τ 2
Es+1(τ ; v,m) + C Es(τ ; v,m)1/2

∥∥Pm v(τ )
∥∥

(s). (4.3)

Proof. First we consider the case of s = 0. As usual, we compute

d

dτ
E0(τ ; v,m)

=
∫

2

(
(∂τ v)∂2

τ v + m2 v∂τ v + 1

τ 2

2∑
j,k=1

g jk(z)(∂zk v)∂τ ∂z j v − 2

τ 3

2∑
j,k=1

g jk(z)(∂z j v)∂zk v

)√
G(z)dz
R
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�
∫
R2

(
∂2
τ v + m2 v

)
(∂τ v)

√
G(z) − 1

τ 2

2∑
j,k=1

∂z j

(√
G(z)g jk(z)∂zk v

)
(∂τ v)dz

=
∫
R2

(
Pm v − 1

τ 2
Λ1 v − 1

τ 2
Λ2 v

)
(∂τ v)

√
G(z)dz

� ‖Pm v‖(0)E0(τ ; v,m)1/2 + 1

τ 1+l

∫
R2

|Λ1 v|
τ 1−l

|∂τ v|√G(z)dz + C

τ 2
E0(τ ; v,m)

for l = 0,1. We shall estimate the second term differently according to l = 0 or l = 1. In the case of
l = 0, from the relations

|Λ1 v| =
∣∣∣∣2κ

|z|
〈z〉∂ρ v

∣∣∣∣ � 2κ |∂ρ v|

and

2∑
j,k=1

g jk(z)(∂z j v)(∂zk v) = |∂ρ v|2 + 1

sinh2 |z| |∂θ v|2 � |∂ρ v|2

it follows that

1

τ

∫
R2

|Λ1 v|
τ

|∂τ v|√G(z)dz � 2κ

τ

∫
R2

|∂ρ v|
τ

|∂τ v|√G(z)dz

� κ

τ

∫
R2

( |∂ρ v|2
τ 2

+ |∂τ v|2
)√

G(z)dz

� κ

τ

∫
R2

(
1

τ 2

2∑
j,k=1

g jk(z)(∂z j v)(∂zk v) + |∂τ v|2
)√

G(z)dz

� 2κ

τ
E0(τ ; v,m),

which gives us (4.2) with s = 0. On the other hand, using the relation

|Λ1 v||∂τ v| =
∣∣∣∣∣2κ

2∑
j=1

z j

〈z〉Γ j v

∣∣∣∣∣|∂τ v| � κ

m

(
m2|Γ v|2 + |∂τ v|2),

we have

1

τ 2

∫
R2

|Λ1 v||∂τ v|√G(z)dz � C

τ 2

∫
R2

(
m2|Γ v|2 + |∂τ v|2)√G(z)dz

� C
2

E1(τ ; v,m),

τ
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which yields (4.3) with s = 0. Next we consider the case of s � 1. It follows from Lemma 4.1 that

∑
|I|�s

∥∥[
Pm,Γ I]v

∥∥
(0)

� C

τ 2
‖v‖(s) � C

τ 2
Es(τ ; v,m)1/2.

Therefore

d

dτ
Es(τ ; v,m)

=
∑
|I|�s

d

dτ
E0

(
τ ;Γ I v,m

)

�
∑
|I|�s

{(
2κ

τ
+ C

τ 2

)
E0

(
τ ;Γ I v,m

) + C E0
(
τ ;Γ I v,m

)1/2∥∥PmΓ I v(τ )
∥∥

(0)

}

�
(

2κ

τ
+ C

τ 2

)
Es(τ ; v,m) + C Es(τ ; v,m)1/2

∑
|I|�s

(∥∥Γ I Pm v(τ )
∥∥

(0)
+ ∥∥[

Pm,Γ I]v
∥∥

(0)

)

�
(

2κ

τ
+ C

τ 2

)
Es(τ ; v,m) + C Es(τ ; v,m)1/2

∥∥Pm v(τ )
∥∥

(s).

This completes the proof of (4.2). In the same way (4.3) can be derived. �
We close this section with the following lemma, which will be used in Section 7 to estimate

quadratic terms.

Lemma 4.3. For κ > 9/2 and s ∈ Z�0 , we have

∥∥e−κ〈z〉ϕψ
∥∥

(s) � C
(∥∥e−2|z|ϕ

∥∥
L∞‖ψ‖(s) + ‖ϕ‖(s)

∥∥e−2|z|ψ
∥∥

L∞
)
,

provided that the right-hand side is finite.

Proof. First we note that∑
|I|�s

∣∣Γ Iφ(z)
∣∣2√G(z) � C

∑
|I|+ j�s

∣∣e(1/2)〈z〉〈z〉|I|∂ I
z∂

j
θ φ(z)

∣∣2
,

whence

‖φ‖(s) � C
∑

|I|+ j�s

∥∥e(1/2+δ)〈z〉∂ I
z∂

j
θ φ

∥∥
L2(R2;dz)

for any δ > 0. By taking δ = κ − 9/2 (so that 1/2 + δ = κ − 4), we have

∥∥e−κ〈z〉ϕψ
∥∥

(s)

� C
∑

|I|+ j�s

∥∥e(1/2+δ)〈z〉∂ I
z∂

j
θ

(
e−κ〈z〉ϕψ

)∥∥
L2

= C
∑

|I|+ j�s

∥∥e(κ−4)〈z〉∂ I
z

{
e−(κ−4)〈z〉∂ j

θ

(
e−2〈z〉ϕ · e−2〈z〉ψ

)}∥∥
L2
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� C
∑

|I|+ j�s

∥∥∂ I
z∂

j
θ

(
e−2〈z〉ϕ · e−2〈z〉ψ

)∥∥
L2

� C

{∥∥e−2〈z〉ϕ
∥∥

L∞
∑

|I|+ j�s

∥∥∂ I
z∂

j
θ

(
e−2〈z〉ψ

)∥∥
L2 + ∥∥e−2〈z〉ψ

∥∥
L∞

∑
|I|+ j�s

∥∥∂ I
z∂

j
θ

(
e−2〈z〉ϕ

)∥∥
L2

}

� C

{∥∥e−2|z|ϕ
∥∥

L∞
∑
|I|�s

∥∥Γ Iψ
∥∥

L2 + ∥∥e−2|z|ψ
∥∥

L∞
∑
|I|�s

∥∥Γ Iϕ
∥∥

L2

}

� C
{∥∥e−2|z|ϕ

∥∥
L∞‖ψ‖(s) + ∥∥e−2|z|ψ

∥∥
L∞‖ϕ‖(s)

}
. �

5. The leading part of the nonlinearity

The objective of this section is to extract the leading part of Q j(v,ω∂τ v) under some assumptions
on v . What we are going to prove is the following:

Lemma 5.1. Let m2 = 2m1 > 0, ω = (ωa)a=0,1,2 ∈ H, T > τ0 > 0 and ε > 0. Suppose that v = (v1, v2) is an
R

2-valued function of (τ , z) ∈ [τ0, T ) × R
2 which satisfies

∣∣v j(τ , z)
∣∣ + ∣∣∂τ v j(τ , z)

∣∣ � Cε1/2e2|z|,
∣∣(∂2

τ + m2
j

)
v j(τ , z)

∣∣ � Cε1/2e2|z|

τ

for (τ , z) ∈ [τ0, T ) × R
2 , j = 1,2. Then we have

∣∣∣∣e−im1τ

τ
Q 1(v,ω∂τ v) −

(
Φ1(ω)

τ
α1α2 + ∂τ γ1

)∣∣∣∣ � Cε〈ω〉2e4|z|

τ 2
, (5.1)

∣∣∣∣e−im2τ

τ
Q 2(v,ω∂τ v) −

(
Φ2(ω)

τ
α2

1 + ∂τ γ2

)∣∣∣∣ � Cε〈ω〉2e4|z|

τ 2
, (5.2)

where Φ j(ω) is given by (2.1), α j is defined by

α j(τ , z) = e−im jτ

(
1 + 1

im j

∂

∂τ

)
v j(τ , z), (5.3)

α j denotes the complex conjugate of α j , and γ j is a function of (τ , z,ω) satisfying

∣∣γ j(τ , z,ω)
∣∣ � Cε〈ω〉2e4|z|

τ
,

for (τ , z,ω) ∈ [τ0, T ) × R
2 × H. In the above estimates, the constants C are independent of ε, T , τ , z, ω.

Proof. Because of the relations vk = Re(αkeimkτ ), ωa∂τ vk = −ωamk Im(αkeimkτ ) and m2 = 2m1, we
may regard Q j(v,ω∂τ v) as a trigonometric polynomial in eim1τ (with coefficients depending on αk ,
mk , ω), that is,

Q j(v,ω∂τ v) =
∑

1�k1�k2�2
σ1,σ2∈{+,−}

Ψ
σ1σ2
jk1k2

(ω)α
(σ1)

k1
α

(σ2)

k2
ei(σ1k1+σ2k2)m1τ (5.4)

for j = 1,2, where α
(+)

k = αk , α
(−)

k = αk and
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Ψ
σ1σ2
jk1k2

(ω) = m1

2π

2π/m1∫
0

Q j
(

Ṽ (θ), W̃ (ω, θ)
)
e−i(σ1k1+σ2k2)m1θ dθ

with Ṽ (θ) = (cos km1θ)k=1,2, W̃ (ω, θ) = (−ωamk sin km1θ) k=1,2
a=0,1,2

. Now we focus on the relation j =
σ1k1 + σ2k2, which implies creation of eim jτ in the right-hand side of (5.4). We see that this relation
is satisfied precisely when ( j,k1,k2, σ1, σ2) = (1,1,2,−,+) or (2,1,1,+,+), and that

Ψ
σ1σ2
jk1k2

(ω) =
{

Φ1(ω) if ( j,k1,k2,σ1,σ2) = (1,1,2,−,+),

Φ2(ω) if ( j,k1,k2,σ1,σ2) = (2,1,1,+,+).

This observation shows that

e−im1τ

τ
Q 1(v,ω∂τ v) − Φ1(ω)

τ
α1α2

and

e−im2τ

τ
Q 2(v,ω∂τ v) − Φ2(ω)

τ
α2

1

are written as sums of the terms in the form

C(ω)α
(σ1)

k1
α

(σ2)

k2

eiμτ

τ

with some μ ∈ R\{0} and C(ω) = O (〈ω〉2) (|ω| → ∞). Eventually we arrive at (5.1) and (5.2) through
the identity

α
(σ1)

k1
α

(σ2)

k2

eiμτ

τ
= ∂

∂τ

(
α

(σ1)

k1
α

(σ2)

k2
eiμτ

iμτ

)
− ∂

∂τ

(
α

(σ1)

k1
α

(σ2)

k2

τ

)
eiμτ

iμ

combined with the estimates

∣∣α(σ )

k

∣∣ = |vk| + 1

mk
|∂τ vk| � Cε1/2e2|z|

and

∣∣∂τα
(σ )

k

∣∣ = 1

mk

∣∣(∂2
τ + m2

k

)
vk

∣∣ � Cε1/2e2|z|

τ
. �

6. A lemma on ODE

In this section we investigate the behavior as τ � τ0 of the solution (β1(τ , z), β2(τ , z)) of

⎧⎪⎪⎨
⎪⎪⎩

i
∂β1

∂τ
= χ1(z)Φ1(ω(z))

τ
β1β2 + r1(τ , z),

i
∂β2 = χ2(z)Φ2(ω(z))

β1
2 + r2(τ , z),

τ > τ0, (6.1)
∂τ τ
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with the initial condition

sup
z∈R2

(∣∣β1(τ0, z)
∣∣ + ∣∣β2(τ0, z)

∣∣) � Cε. (6.2)

Here ω(z) = (cosh |z|,−z1
sinh |z|

|z| ,−z2
sinh |z|

|z| ), Φ j is given by (2.1), χ j is a real-valued function satisfy-
ing

c � χ1(z)

χ2(z)
� C

with some C � c > 0, and r j(τ , z) satisfies

sup
z∈R2

∣∣r j(τ , z)
∣∣ � Cε

τ 2−δ

with some 0 < δ < 1. Note that the condition (a) reduces the system (6.1) to a trivial one, that is to
say i∂τ β j = O (ετ−2+δ), so it is easy to see that (β1, β2) stays bounded when τ becomes large. In the
following, we will see that a bit weaker assertion is valid under the condition (b).

Lemma 6.1. Suppose that the condition (b) is satisfied. Let (β1, β2) be the solution of (6.1)–(6.2) on [τ0, T ).
Then we have

sup
(τ ,z)∈[τ0,T )×R2

e−2|z|(∣∣β1(τ , z)
∣∣ + ∣∣β2(τ , z)

∣∣) � Cε,

where C is independent of ε, T .

Proof. We first note that both Φ1(ω) and Φ2(ω) never vanish and that

∣∣Φ1(ω)Φ2(ω)
∣∣ = Re

(
Φ1(ω)Φ2(ω)

) = Φ1(ω)Φ2(ω) � C0

with some strictly positive constant C0 by virtue of (b). We put

Bε(τ , z) = (
λ1(z)

∣∣β1(τ , z)
∣∣2 + λ2(z)

∣∣β2(τ , z)
∣∣2 + ε2)1/2

with

λ1(z) = e−2〈z〉
√

χ2(z)|Φ2(ω(z))|
χ1(z)|Φ1(ω(z))| , λ2(z) = e−2〈z〉

√
χ1(z)|Φ1(ω(z))|
χ2(z)|Φ2(ω(z))| .

Then we see that

λ1(z) = e−2〈z〉
√

χ2(z)

χ1(z)

|Φ2(ω(z))|√
Re(Φ1(ω)Φ2(ω))

� Ce−2|z|(1 + ∣∣ω(z)
∣∣2) � C

and

λ2(z) = e−4〈z〉
� Ce−4|z|.
λ1(z)
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In the same way, we have λ2(z) � C and λ1(z) � Ce−4|z| . Therefore

Bε(τ , z) � Ce−2|z|(∣∣β1(τ , z)
∣∣ + ∣∣β2(τ , z)

∣∣). (6.3)

Next we observe that

λ1(z)χ1(z)Φ1
(
ω(z)

) = λ2(z)χ2(z)Φ2
(
ω(z)

)
,

which implies the matrix

(
λ1(z) 0

0 λ2(z)

)(
0 χ1(z)Φ1(ω(z))β1

χ2(z)Φ2(ω(z))β1 0

)

is hermitian. Thus, by rewriting (6.1) in the form

i∂τ

(
β1
β2

)
= 1

τ

(
0 χ1(z)Φ1(ω(z))β1

χ1(z)Φ2(ω(z))β1 0

)(
β1
β2

)
+

(
r1
r2

)
,

we see that

Bε(τ , z)∂τ Bε(τ , z) = 1

2
∂τ

(
λ1|β1|2 + λ2|β2|2

)
= Im

{
(β1 β2 )

(
λ1 0
0 λ2

)
i∂τ

(
β1
β2

)}

= Im

{
(β1 β2 )

(
λ1 0
0 λ2

)(
r1
r2

)}

� Cε

τ 2−δ
Bε(τ , z).

Therefore we have

Bε(τ , z) � Bε(τ0, z) +
∞∫

τ0

Cε

η2−δ
dη � Cε,

which, together with (6.3), leads to the desired estimate. �
7. A priori estimate

Now we are in a position to obtain an a priori estimate for the solution of (3.4), which is the main
step of the proof of Theorem 2.1. We set

M(T ) := sup
(τ ,z)∈[τ0,T )×R2

e−2|z|
(∣∣v(τ , z)

∣∣ + ∣∣∂τ v(τ , z)
∣∣ + 1

τ

∣∣∂z v(τ , z)
∣∣)

for the smooth solution v = (v1, v2) to (3.4) on τ ∈ [τ0, T ). We will prove the following:

Lemma 7.1. There exist ε1 > 0 and C1 > 0 such that M(T ) � ε1/2 implies M(T ) � C1ε for any ε ∈ (0, ε1].
Here C1 is independent of T .
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Once this lemma is proved, we can derive global existence of the solution in the following way:
By taking ε0 ∈ (0, ε1] so that 2C1ε

1/2
0 � 1, we deduce that M(T ) � ε1/2 implies M(T ) � ε1/2/2 for

any ε ∈ (0, ε0]. Then, by the continuity argument, we have M(T ) � C1ε as long as the solution exists.
Therefore the local solution to (3.4) can be extended to the global one. Going back to the original
variables, we deduce the small data global existence for (1.1)–(1.2).

The rest part of this section is devoted to the proof of Lemma 7.1. The proof will be divided into
two steps: We first derive an auxiliary estimate for the energy

Es(τ ) := Es(τ ; v1,m1) + Es(τ ; v2,m2)

under the assumption that M(T ) � ε1/2. Remark that we do not need the special structure of the non-
linearity at this stage. Next we will prove the improved estimate for M(T ) by using the condition (a)
or (b).

7.1. Energy estimate with moderate growth

Our goal here is to show Es1 (τ ) � Cε2τ δ under the assumption that M(T ) � ε1/2, where s1 � 4
and 0 < δ < 1. We will argue along the same line as [8,9]. We apply (4.2) with s = s0 + s1 + 1 at first,
where s0 is an integer greater than 2κ . Since Lemma 4.3 yields

∥∥Q̃ j(τ , ·, v, ∂v)
∥∥

(s) � C

τ
M(T )Es(τ )1/2 � C

τ
ε1/2 Es(τ )1/2,

we have

d

dτ
Es0+s1+1(τ ) �

(
2κ + Cε1/2

τ
+ C

τ 2

)
Es0+s1+1(τ ) �

(
s0 + 1

2

τ
+ C

τ 2

)
Es0+s1+1(τ ).

It follows from the Gronwall lemma that

Es0+s1+1(τ ) � Es0+s1+1(τ0)exp

( τ∫
τ0

s0 + 1
2

η
+ C

η2
dη

)
� Cε2τ s0+ 1

2 .

Next, we apply (4.3) with s = s0 + s1. Then we have

d

dτ
Es0+s1(τ ) � C

τ 2
Es0+s1+1(τ ) + Cε

τ
Es0+s1(τ ) � Cε2τ s0− 3

2 + Cε

τ
Es0+s1(τ ),

which yields

Es0+s1(τ ) � Cε2τ s0− 1
2 .

Repeating this procedure recursively, we have

Es0+s1+1−n(τ ) � Cε2τ s0−n+ 1
2

for n = 1,2, . . . , s0. Eventually we see that

Es1+1(τ ) � Cε2τ 1/2.
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Finally, we again use (4.3) with s = s1 to obtain

d

dτ
Es1(τ ) � C

τ 2
Es1+1(τ ) + Cε

τ
Es1(τ ) � Cε2

τ 3/2
+ Cε

τ
Es1(τ ),

whence we deduce

Es1(τ ) � Cε2τ Cε

for τ ∈ [τ0, T ). By choosing ε so small that Cε � δ, we arrive at the desired estimate.

7.2. Pointwise estimate

We are going to prove M(T ) � Cε. First we note that

∣∣(∂2
τ + m2

j

)
v j

∣∣ =
∣∣∣∣Q̃ j + 1

τ 2
Λv j

∣∣∣∣ � Ce(6−κ)|z|

τ
M(T )2 + C

τ 2
E4(τ )1/2.

This implies the assumption of Lemma 5.1 is satisfied if we take κ � 6 and s1 � 4. Next we introduce
α j(τ , z) by (5.3). Then we see that α1 satisfies

i∂τα1 = e−im1τ

m1

(
∂2
τ + m2

1

)
v1 = χ1(z)Φ1(ω(z))

τ
α1α2 + R1 + ∂τ S1,

where χ1(z) = χ(z)/m1, S1(τ , z) = χ1(z)γ1(τ , z,ω(z)) with γ1 given by Lemma 5.1 and

R1(τ , z) = e−im1τ

m1
Q̃ 1 − χ1(z)Φ1(ω(z))

τ
α1α2 − ∂τ S1 + e−im1τ

m1τ 2
Λv1.

Since Q̃ 1 is given by (3.3), it follows from (5.1) that

∣∣R1(τ , z)
∣∣ � e−κ |z|

m1

∣∣∣∣e−im1τ

τ
Q 1

(
v,ω(z)∂τ v

) −
(

Φ1(ω(z))

τ
α1α2 + ∂τ γ1

)∣∣∣∣
+ Ce(6−κ)|z|

τ 2
M(T )2 + C

τ 2
E4(τ )1/2

� Cε〈ω(z)〉2e(4−κ)|z|

τ 2
+ Cεe(6−κ)|z|

τ 2
+ Cε

τ 2−δ

� Cε

τ 2−δ

and

∣∣S1(τ , z)
∣∣ � Cεe(6−κ)|z|

τ
� Cε

τ
.

Similarly we have

i∂τα2 = χ2(z)Φ2(ω(z))
α2

1 + R2 + ∂τ S2

τ
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with χ2(z) = χ(z)/m2 and suitable R2, S2 satisfying

∣∣R2(τ , z)
∣∣ � Cε

τ 2−δ
,

∣∣S2(τ , z)
∣∣ � Cε

τ
.

Now, we set β j = α j + i S j so that (β1, β2) satisfies (6.1) with

r1 = R1 − χ1(z)Φ1(ω(z))

τ
(iα1 S2 − iα2 S1 + S1 S2),

r2 = R2 − χ2(z)Φ2(ω(z))

τ

(
2iα1 S1 − S2

1

)
.

Since

|r1| � |R1| + C
e(2−κ)|z|

τ

(|α1||S2| + |α2||S1| + |S1||S2|
)
� Cε

τ 2−δ
,

|r2| � |R2| + C
e(2−κ)|z|

τ

(|α1||S1| + |S1|2
)
� Cε

τ 2−δ
,

we can apply Lemma 6.1 to obtain

sup
(τ ,z)∈[τ0,T )×R2

e−2|z|∣∣β j(τ , z)
∣∣ � Cε.

We thus deduce

∣∣α j(τ , z)
∣∣ �

∣∣β j(τ , z)
∣∣ + ∣∣S j(τ , z)

∣∣ � Cεe2|z|.

Finally, from

∣∣v j(τ , z)
∣∣ + ∣∣∂τ v j(τ , z)

∣∣ � C
(∣∣v j(τ , z)

∣∣2 + m2
j

∣∣∂τ v j(τ , z)
∣∣2)1/2 = C

∣∣α j(τ , z)
∣∣

and

∣∣∂z v j(τ , z)
∣∣ � C E3(τ )1/2

it follows that

M(T ) � C sup
(τ ,z)∈[τ0,T )×R2

e−2|z|
(∣∣α(τ , z)

∣∣ + E3(τ )1/2

τ

)
� Cε,

as desired.
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8. End of the proof of Theorem 2.1

The remaining task is to show the decay estimate (1.3). Remember that our change of variables is

u j(t, x) = χ(z)

τ
v j(τ , z)

with

t + 2K = τ cosh |z|, x j = τ
z j

|z| sinh |z|

for |x| < t +2K , and that u(t, ·) is supported on {x ∈ R
2: |x| � t + K }. Moreover, we already know that

|v(τ , z)| + |∂τ v(τ , z)| � Cεe2|z| and |∂z v(τ , z)| � Cετ δ/2. So it follows that

∣∣u(t, x)
∣∣ = χ(z) cosh |z|

τ cosh |z|
∣∣v(τ , z)

∣∣ � e−(κ−3)|z|

t + 2K
· e−2|z|∣∣v(τ , z)

∣∣ � Cε

1 + t
.

Also, by using (3.1), we see that

∂au(t, x) = ωa(z)χ(z)

τ
∂τ v(τ , z) + 1

τ

2∑
j=1

χ(z)ηaj(z)
∂z j v(τ , z)

τ

+ 1

τ 2

{
−χ(z)ωa(z) +

2∑
j=1

(
∂z j χ(z)

)
ηaj(z)

}
v(τ , z),

whence

∑
|I|=1

∣∣∂ I
t,xu(t, x)

∣∣ � Cεe−(κ−3)|z|

t + 2K
+ Cεe−(κ−5)|z|

(t + 2K )2
� Cε

1 + t
.

To sum up, we obtain (1.3) with p = ∞. As for the case of p ∈ [2,∞), we have

∑
|I|�1

∥∥∂ I
t,xu(t, ·)∥∥L p(R2)

=
∑
|I|�1

∥∥∂ I
t,xu(t, ·)∥∥L p({x∈R2;|x|�t+K })

� C
∑
|I|�1

∥∥∂ I
t,xu(t, ·)∥∥L∞ ·

( ∫
{x∈R2: |x|<t+K }

1 dx

)1/p

� Cε(1 + t)−1+2/p,

which completes the proof.
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