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A Cross-Validation Bandwidth Choice for Kernel
Density Estimates with Selection Biased Data

Colin O. Wu

John Hopkins University

This paper studies the risks and bandwidth choices of a kernel estimate of the
underlying density when the data are obtained from s independent biased samples.
The main results of this paper give the asymptotic representation of the integrated
squared errors and the mean integrated squared errors of the estimate and establish
a cross-validation criterion for bandwidth selection. This kernel density estimate is
shown to be asymptotically superior to many other intuitive kernel density
estimates. The data-driven cross-validation bandwidth is shown to be asymptoti-
cally optimal in the sense of Stone (1984, Ann. Statist. 12, 1285�1297). The finite
sample properties of the cross-validation bandwidth are investigated through a
Monte Carlo simulation. � 1997 Academic Press

1. INTRODUCTION

Suppose we observe s independent samples Xi1 , ..., Xini i.i.d. on Rd with
distribution Gi and density gi , i=1, ..., s, with respect to Lebesgue measure.
Here gi depends on an underlying density function f with distribution func-
tion F such that

gi (t)=
wi (t)
Wi

f (t), (1)

where wi are known nonnegative weight functions and

Wi=| wi (t) f (t) dt<�.

In the literature, distributions satisfying (1) are usually referred as the
weighted distributions or the selection biased models. In this paper, we
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consider the estimation of the underlying density f based on the indepen-
dent samples Xi1 , ..., Xini , i=1, ..., s. This type of data frequently arises in
survey sampling, economics, epidemiology, reliability theory, and many
other fields. Examples and applications of this type of data can be found
in Cox (1969), Patil, Rao, and Zelen (1988), Patil and Taillie (1989),
Morgenthaler and Vardi (1986), among others.

Theory and methods of nonparametric estimation with selection biased
models have been mostly concentrated on the underlying distribution func-
tion F and the nonparametric maximum likelihood estimate (NPMLE) F� n

of F introduced by Vardi (1985). Gill, Vardi, and Wellner (1988) further
developed the necessary and sufficient conditions for the identifiability
of F and the asymptotic efficiency of F� n in the sense described in Bickel,
Klaassen, Ritov, and Wellner (1993). In density estimation, Jones (1991)
obtained a kernel density estimate of f by smoothing the Vardi's NPMLE
when s=1, and Ahmad (1995) extended this estimate to a multivariate
setting. Furthermore, Wu and Mao (1996) derived explicit forms of the
asymptotic minimax kernels and bandwidths for the estimate of Jones
(1991) and Ahmad (1995). Extending the estimation to the multi-sample
case, Wu (1996a) studied the mean squared errors and the integrated mean
squared errors of a kernel density estimate by smoothing the multisample
version of the Vardi's NPMLE F� n , and showed that this estimate is supe-
rior to any estimate obtained by a linear combination of f� (i) , where f� (i) is
the kernel density estimate of Jones (1991) and Ahmad (1995) constructed
using the i th sample only.

The main theme of this paper is to establish the asymptotic representa-
tions of the integrated squared errors and the mean integrated squared
errors for a multivariate generalization of the kernel NPMLE density
estimate of Wu (1966a) and develop a natural cross-validation criterion for
the corresponding data-driven bandwidth choices. Similar to the i.i.d. direct
samples, the choice of the bandwidth plays a crucial role in the perfor-
mance of the kernel NPMLE density estimate. Too small or too large of
a bandwidth will lead to ``undersmoothing'' or ``oversmoothing'' of the
estimate, respectively.

Under the i.i.d. direct samples, various bandwidth selection procedures in
kernel density estimates have been discussed in the literature. A partial list
of these results include Rudemo (1982), Bowman (1984), Hall (1983),
Stone (1984), Marron (1985, 1987), and Marron and Ha� rdle (1986),
among others. Among all the popular bandwidth selection techniques, the
least-squares cross-validation remains as a promising method. There are
two main reasons for the popularity of the least-squares cross-validation.
First, this method requires only the minimal condition that the kernels to
be Ho� lder continuous; hence, it can be applied to a large class of kernel
estimates. Second, it is asymptotically optimal in the sense of Stone (1984)
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or Marron (1985), and such asymptotic optimality does not require
excessive smoothness conditions on the density to be estimated as many
other competing methods usually do. The bandwidth selection procedure of
this paper is a natural extension of the least-squares cross-validation to the
biased sampling case and is shown to be asymptotically optimal in the
sense of Stone (1984) or Marron (1985). The finite sample properties of the
kernel NPMLE density estimate and its cross-validation bandwidths are
investigated through a Monte Carlo simulation study.

In Section 2, we first recall the identifiability conditions of (1) introduced
by Vardi (1985) and Gill, Vardi and Wellner (1988), and then give a
derivation of the kernel NPMLE density estimate. The asymptotic repre-
sentations of the integrated squared errors (ISE) and the mean integrated
squared errors (MISE) of the estimate are established in Section 3, while
the asymptotic optimality of the cross-validation bandwidths is shown in
Section 4. In Section 5, we present some simulation results for the estimate
and its comparison with other intuitive estimation procedures. The proofs
of the main results are deferred to Section 6.

2. KERNEL SMOOTHING OF NPMLE

In general, the distribution function F, hence f, is not identifiable non-
parametrically, in the sense that there is no one-to-one mapping between
the underlying density f and the weighted densities g1 , ..., gs , if there is no
restriction on f and the weight functions w1 , ..., ws . Examples of noniden-
tifiable cases in stratified samples and case-control studies can be found in
Vardi (1985) and Gill, Vardi, and Wellner (1988). For instance, if f has
positive measure on the set [x : wi (x)=0 for all i=1, ..., s], then f itself is
not identifiable and it is only possible to estimate the conditional density
f (x | wi (x)>0 for some i=1, ..., s).

Let S be the support of f, that is, S is the smallest closet set which
satisfies �S f (t) dt=1. Throughout this paper we assume that the following
support and graph connectedness conditions of Gill, Vardi, and Wellner
(1988) are satisfied:

A1: (support) S is a subset of the of [x : wi (x)>0 for some i=1, ..., s]

A2: (graph connectedness) For any 1�i�s and 1� j�s, there exist
1�i1�s, ..., 1�ik�s, 1�k�s&2, such that

| 1[wi (t)>0] 1[wi1 (t)>0] f (t) dt>0, | 1[wik(t)>0] 1[wj (t)>0] f (t) dt>0,
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and

| 1[wil (t)>0] 1[wil+1(t)>0] f (t) dt>0 for all l=1, ..., k&1.

The following identifiability result is essentially Proposition 1.1 of Gill,
Vardi, and Wellner (1988).

Proposition 2.1 (Gill, Vardi, and Wellner). The distribution F, hence f,
is identifiable in the sense that there exists an one-to-one mapping between
f and (g1 , ..., gs), if and only if A1 and A2 are satisfied.

Now assume that the distributions given in (1) satisfy A1 and A2. Let
n=n1+ } } } +ns be the overall sample size and *ni=ni�n be the proportion
of the observations in the i th sample relative to the overall sample. Let
F(A)=P(T # A) for any random variable T # S with distribution F and
A�S, it is straightforward to derive from (1) that

G� n(A)=*n1
G1(A)+ } } } +*ns Gs(A)

=|
A \ :

s

i=1

*ni wi ( y)
Wi + f ( y) dy

and, consequently,

f (x)= :
s

i=1
\ :

s

r=1

*nr wr(x)
Wr +

&1

*ni gi (x), (2)

F(A)=|
A

:
s

i=1
\ :

s

r=1

*nr wr(x)
Wr +

&1

*ni dGi (x)

=|
A \ :

s

r=1

*nr wr(x)
Wr +

&1

dG� n(x). (3)

Denote further that Vi=Wi �Ws for all i=1, ..., s&1 and Vs=1. If Wi

were known, then replacing Gi in (3) by the empirical measure G� ni (A)=
n&1

i �ni
j=1 1[Xij # A] , an intuitive estimate of F(A) is

Fn(A)=D&1
n |

A \ :
s

r=1

*nr wr( y)
Vr +

&1

dG� n( y), (4)

where G� n(A)=n&1 �s
i=1 �ni

j=1 1[Xij # A] and

Dn=|
S \ :

s

r=1

*nr wr( y)
Vr +

&1

dG� n( y).
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Here, in general, Dn does not necessarily equal 1. Equivalently, Fn(A) is
computed by summing up the point mass

\Dn :
s

r=1

nrwr(Xij)
Vr +

&1

=\nDn :
s

r=1

*nr wr(Xij)
Vr +

&1

for all Xij # A. Applying kernel smoothing to this point mass, we obtain an
intuitive estimate of f (x),

fn(x)= :
s

i=1

:
ni

j=1 {\Dn :
s

r=1

nr wr(Xij)
Vr +

&1

h&dK \x&Xij

h += , (5)

where K( } ) : Rd � R is a kernel function and h # R+ is a bandwidth
sequence.

Since Wi are generally unknown, a natural modification of fn(x) is to
estimate Vi from the data and substitute the estimates into (5). Based on
the obvious identity

Hni (W1 , ..., Ws)=W &1
i |

S
wi ( y) \ :

s

r=1

*nr wr( y)
Wr +

&1

dG� n( y)=1,

Vardi (1985) and Gill, Vardi, and Wellner (1988) showed that the equations

H� ni (V� n1
, ..., V� ns&1

, 1)=V� &1
ni |

S
wi ( y) \ :

s

r=1

*nr wr( y)
V� nr

+
&1

dG� n( y)

=1 (6)

for all i=1, ..., s have a unique solution (V� n1
, ..., V� ns&1

) with probability one
when n1 , ..., ns are sufficiently large. Thus (V� n1

, ..., V� ns&1
) is a natural

estimate of (V1 , ..., Vs&1).
The NPMLE of F(A) proposed by Vardi (1985) is defined by

F� n(A)=D� &1
n |

A \ :
s

r=1

*nr wr( y)
V� nr

+
&1

dG� n( y), (7)

where V� ns=1,

D� n=|
S \ :

s

r=1

*nr wr( y)
V� nr

+
&1

dG� n( y). (8)

Furthermore, an estimate of W=(Wi , ..., Ws) based on (7) is given by

W� #(W� n1
, ..., W� ns), (9)
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where

W� ni=|
S

wi (t) dF� n(t)=V� ni W� ns .

and

W� ns=D� &1
n =\|S \ :

s

r=1

*nr wr( y)
V� nr

+
&1

dG� n( y)+
&1

.

When (6) has a unique solution, a natural estimate of f based on kernel
smoothing of the NPMLE F� n can be defined by substituting D� n and V� ni

back to (5), so that

f� n(x)= :
s

i=1

:
ni

j=1
{\D� n :

s

r=1

nr wr(Xij)
V� nr

+
&1

h&dK \x&Xij

h += . (10)

When (6) does not have a unique solution, we do not have a computable
NPMLE F� n . In this case, we simply define f� n(x) to be fn(x). The sufficient
and complete conditions of the existence of the unique solution of (6) can
be found in Theorem 1.1 of Gill, Vardi, and Wellner (1988).

More generally, it is also possible to consider the bandwidth h� =
(h1 , ..., hd) with hj # R+, j=1, ..., d, and the kernel estimate of the form

f� n, h� (x)= :
s

i=1

:
ni

j=1
{\D� n :

s

r=1

nr wr(Xij)
V� nr

+
&1

v&1
h� K \x&Xij

h� += ,

where vh� =>d
j=1 hj and x�h� =(x1 �h1 , ..., xd�hd). For simplicity, we only dis-

cuss here the asymptotic properties of f� n as defined in (10). With some
more complicated notation, the techniques of this paper can also be
extended to that of f� n, h� .

3. ASYMPTOTIC RISKS

The aim of this section is to study the asymptotic properties of the
integrated squared error (ISE) and the mean integrated squared error
(MISE) of f� n defined by

ISE( f� n)=|
S

( f� n(x)& f (x))2 ?(x) dx
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and

MISE( f� n)=E |
S

( f� n(x)& f (x))2 ?(x) dx,

respectively, where ?(x) is a bounded and known nonnegative weight func-
tion. For simplicity, the support of ? is assumed to be a compact subset of
S. This eliminates the complication of boundary effects which are well
known in the i.i.d. direct samples case. The results here are essential for the
development of the cross-validation criterion (Section 4). Our approach
here is to first consider a ``pseudo-estimate'' f n* of f by replacing the ran-
dom jumps of (10) with some deterministic quantities, and then to show
that f� n is asymptotically equivalent to f n* in terms of ISE and MISE.

Intuitively, ISE( f� n) measures the global L2 risk of f� n for each given data
set, while MISE( f� n) measures the average effect of the global L2 risk of f� n .
In density estimation with i.i.d. direct samples, both ISE and MISE defined
above have been extensively studied in the literature, for example, Marron
(1985, 1987), Marron and Ha� rdle (1986), among others. But the cross-
validation bandwidths have been mostly developed using ISE as a compell-
ing risk criterion (cf. Stone, 1984, and Marron, 1985, 1987). Here we adopt
the same framework and extend the approach of ISE and MISE to the
more general biased sampling case. Analyses using other types of errors,
such as the L1 risks, in the i.i.d. direct sample case, can be found in
Devroye and Gyo� rfi (1985), Devroye (1994), Fan and Hall (1994), among
others.

By the obvious identity

|
S \ :

s

i=1

*ni wi (t)
Wi +

&1

dG� n(t)=1, (11)

we define f n*(x) to be a ``pseudo-estimate'' of f (x) such that

f n*(x)= :
s

i=1

:
ni

j=1
{!n(Xij)

nhd K \x&Xij

h += , (12)

where

!n(t)=\ :
s

i=1

*ni wi (t)
Wi +

&1

. (13)

Notice here that f n* is different from fn as defined in (5) since the jumps
used in (5) still depend on the empirical measure G� n , while the jumps used
in (12) are totally deterministic.
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Parallel to the usual conditions in the i.i.d. direct samples (cf. Marron,
1985), we also assume the following conditions:

A3: (a) the underlying density f is uniformly bounded and Ho� lder
continuous on its support S, that is, there exist constants C1>0 and
0<:�1 so that

| f (x)& f ( y)|�C1 |x& y|: for all x, y # S,

where |x|=(�d
i=1 x2

i )1�2;

(b) the bandwidth h satisfies limn � � h=0 and limn � � nhd=�;

(c) the kernel function K has compact support on Rd, satisfies
� K(u) du=1 and is Ho� lder continuous in the sense that there exist con-
stants C2>0 and 0<;�1 so that

|K(x)&K( y)|�C2 |x& y|; for all x, y # Rd;

(d) there exist constants 0<*i<1 so that �s
i=1 *i=1 and *ni � *i as

n � � for all i=1, ..., s;

(e) there exists a function , : Rd � R such that

|
Rd

!n(x&hu) K 2(u) du [ ,(x) as n � �,

where x&hu=(x1&hu1 , ..., xd&hud).

The last condition A3(e) is set to cover a general enough class of inter-
esting situations. For the special case of d=1, A3(e) is automatically
satisfied when each wi has only finite number of discontinuity points on its
support. For the general case of Rd, A3(e) is satisfied if, for each wi , there
are finite number of subsets Si1 , ..., S iJ , 0<J<�, such that S=�J

j=1 S ij

and wi is continuous on each Sij , 1� j�J. In Wu and Mao (1996), it has
been shown that, if our goal is to estimate the density value f (x) at the
point x when s=d=1 and the corresponding weight function w is discon-
tinuous at x, then a discontinuous kernel function should be used in order
to obtain some asymptotic minimax properties for f� n(x). So far, no result
in the literature has shown that whether discontinuous kernels are still
asymptotically superior than continuous kernels in the minimax sense
when a global measure, such as ISE or MISE, is used. Thus the Ho� lder
continuity condition of A3(c) is assumed only because it is a natural condi-
tion for the i.i.d. direct samples and is technically convenient for the discus-
sion of the next section.
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Let B( f� , f (x)) and V( f� , f (x)) be the bias and variance of any estimate
f� (x) of f (x), respectively. By the well-known variance-bias squares decom-
position,

MISE( f n*)=|
S

B2( f n* , f (x)) ?(x) dx+|
S

V( f n*, f (x)) ?(x) dx, (14)

where, by direct computation and A1 through A3,

B( f n*, f (x))=|
S

K(u)( f (x&hu)& f (x)) du, (15)

V( f n*, f (x))=n&1h&df (x) ,(x)+o(n&1h&d), (16)

and x&hu=(x1&hu1 , ..., xd&hud).
To compare the risks between f� n and f n*, a simple decomposition shows

that

ISE( f� n)=ISE( f n*)+2II(h)+III(h) (17)

and

MISE( f� n)=MISE( f n*)+2E[II(h)]+E[III(h)], (18)

where

II(h)=|
S

( f� n(x)& f n*(x))( f n*(x)& f (x)) ?(x) dx, (19)

III(h)=|
S

( f� n(x)& f n*(x))2 ?(x) dx. (20)

We now give the main results of this section.

Theorem 3.1. Suppose that hd # [n&1+=, n&=] for some 0<=< 1
2 and A1

through A3 are satisfied. Then, as n � �,

sup
hd # [n&1+=, n&=] }

ISE( f� n)&MISE( f n*)
MISE( f n*) }� 0 with probability one. (21)

Furthermore, replacing ISE( f� n) by MISE( f� n), it follows that

sup
hd # [n&1+=, n&=] }

MISE( f� n)&MISE( f n*)
MISE( f n*) }� 0 as n � �. (22)
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Proof. By A1 through A3 and the Cauchy�Schwartz inequality, (21)
and (22) follow from the next two technical lemmas whose proofs are
deferred to Section 6. K

Lemma 3.1. If the assumptions of Theorem 3.1 are satisfied, then

sup
hd # [n&1+=, n&=] }

ISE( f n*)&MISE( f n*)
MISE( f n*) }� 0 with probability one as n � �.

(23)

Lemma 3.2. If the assumptions of Theorem 3.1 are satisfied, then

sup
hd # [n&1+=, n&=]

n$III(h) � 0 with probability one as n � � (24)

and

sup
hd # [n&1+=, n&=]

n$E[III(h)] � 0 as n � � (25)

hold for any constant $ with 0<$< 1
2.

Similar to the i.i.d. direct samples case, the conclusions of Theorem 3.1
are uniform over hd # [n&1+=, n&=]. This restriction should not bring any
difficulty in practice since one has to select hd within the interval
[n&1+=, n&=] so that f� n has the desired rate of convergence.

Remark 3.1. It immediately follows from A1 through A3 and (14) through
(16) that f� n is consistent under both integrated squared error and mean
integrated squared error in the sense that suphd # [n&1+=, n&=] ISE( f� n) � 0 with
probability one as n � � and suphd # [n&1+=, n&=] MISE( f� n) � 0 as n � �. In
fact, it is a direct consequence of Stone (1980, 1982) and Bretagnolle and
Huber (1979) that the optimal convergence rate of ISE( f� n) is n&2:�(2:+d )

which is exactly the same rate as in the i.i.d. direct samples case, and this
rate is achieved by taking h=n&1�(2:+d )h0 for some constant h0>0.

Remark 3.2. Similar to the i.i.d. direct samples case, higher order ker-
nels should also be used in order to obtain the best possible convergence
rates when the underlying density is assumed to have more than 2 times
derivatives. Specifically, if f is k times differentiable with k>2 and the k th
derivative f (k) is continuous, then the optimal rate of ISE( f� n) is n&2k�(2k+d )

in the sense of Stone (1980, 1982), and this rate is achieved by taking K
such that � K(u) du=1, � u j K(u) du=0 for all 1�| j |�k&1, where
j=( j1 , ..., jd), | j |= j1+ } } } + jd and u j=u j1

1 } } } u jd
d , and h=n&1�(2k+d ) h0

for some constant h0>0.
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Remark 3.3. The special feature which distinguishes the biased sampling
model (1) from the i.i.d. direct sampling model enters into the analysis only
through the variance term given in (16). Denote

!(x)=\ :
s

i=1

*iwi (x)
Wi +

&1

. (26)

If wi are continuous functions on the support S, then

V( f n*, f (x))=n&1h&d \| K2(u) du+\|S
!(x) f (x) ?(x) dx++o(n&1h&1),

which differs from the variance of the usual kernel density estimate with
i.i.d. direct data only through a factor !(x). If wi have discontinuity points,
the explicit form of ,(x), or equivalently V( f n* , f (x)), depends on the
particular choices of wi .

4. CROSS-VALIDATION BANDWIDTH SELECTION

The effort here is to establish a cross-validation criterion for f� n and then
show that, by minimizing this criterion, we can obtain an asymptotically
optimal data-driven bandwidth. Define h to be an ideal bandwidth if it
minimizes ISE( f� n). An easy expansion shows that

ISE( f� n, h)=|
S

f� 2
n, h(x) ?(x) dx&2 |

S
f� n, h(x) f (x) ?(x) dx+|

S
f 2(x) ?(x) dx,

where f� n, h is used throughout this section to denote the kernel estimate of
(10) when a specific bandwidth h is used.

Since the third term of ISE( f� n, h) does not depend on h, it suffices to min-
imize the first two terms of ISE( f� n, h) with respect to h. To estimate the
second term of ISE( f� n, h), we first define a ``leave-one-out'' version of the
kernel NPMLE density estimate of f,

f� &(i, j), h(x)=(n&1)&1 :
(i $, j $){(i, j)

_{\D� n :
s

r=1

*nr wr(Xi $j $)
V� nr

+
&1

h&dK \x&Xi $j $

h += , (27)

and then estimate �S f� n, h(x) f (x) ?(x) dx by

1
n

:
s

i=1

:
ni

j=1

f� &(i, j), h (Xij) ?(Xij)
W� ni

wi (Xij)
.
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This leads to the biased sampling cross-validation criterion,

CV(h)=|
S

f� 2
n, h(x) ?(x) dx&

2
n

:
s

i=1

:
ni

j=1

f� &(i, j), h(Xij) ?(Xij)
W� ni

wi (Xij)
, (28)

which is an estimate the first two terms of ISE( f� n, h). The cross-validation
bandwidth h� c is then defined to be the minimizer of CV(h) over the interval
[n(&1+=)�d, n&=�d], that is, CV(h� c)=infhd # [n&1+=, n&=] CV(h).

We now give the main result of this section.

Theorem 4.1; If the assumptions A1 through A3 are satisfied, then h� c is
asymptotically optimal in the sense that

ISE( f� n, h� c)

infhd # [n&1+=, n&=] ISE( f� n, h)
� 1 with probability one as n � �. (29)

Remark 4.1. An alternative viewpoint is to define an ideal bandwidth
h0( f ) such that it minimizes the mean integrated squared error MISE( f� n, h).
For i.i.d. direct samples, it has been shown that the least-squares cross-
validation bandwidth h� c converges to h0( f ) in probability with the very
slow rate n&1�10, and this rate can be improved by some alternative
bandwidth selection methods (cf. Hall, Sheather, Jones, and Marron, 1991,
or Fan and Marron, 1992). However, these methods suffer some drawbacks
by requiring extra smoothness conditions on f and K. Obviously further
study is worthwhile to determine whether these alternative methods can be
extended to the current biased sampling model.

5. SIMULATION AND COMPARISON WITH OTHER ESTIMATES

In this section, we first compare the theoretical properties of f� n(x) with
another class of kernel estimates of f (x), and then investigate the finite
sample performance of f� n(x) and the cross-validation bandwidth h� c through
a Monte Carlo simulation study based on stratified samples. The main
features of this section indicate that: (i) the kernel estimate f� n has superior
statistical properties than many other intuitive kernel estimates of f; (ii) the
cross-validation bandwidths give adequate kernel estimates in practice with
moderate (a few hundred) to large sample sizes.

5.1. Comparison with Other Kernel Estimates

In many special situations, f can also be estimated by kernel estimates
other than (10). By (1), if wi (x)>0, then f (x)=Wigi (x)�wi (x) is uniquely
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defined at x # Rs. it is easy to verify that, if wi(x)>0 for all i=1, ..., s and
p1 , ..., ps are any nonnegative weights which may depend on x and satisfy
�s

i=1 pi=1, then f (x)=�s
i=1 piWigi (x)�wi (x).

Suppose that the support of f is contained in the set [x : wi (x)>0 for all
1�i�s]. Then f (x) can also be estimated by a linear combination of
kernel estimates,

f� p(x)= :
s

i=1

pi f� (i)(x),

where

f� (i)(x)=(ni &̂i)
&1 h&d :

ni

j=1

w&1
i (Xij) K \x&Xij

h +
and &̂i=n&1

i �ni
j=1 w&1

i (Xij) are natural estimates of f (x) and W &1
i , respec-

tively, based on the i th sample. Here, one may select pi=*ni or any other
nonnegative weights p1 , ..., ps .

By the similar calculations as in Section 3, we can show that

MISE( f� p)=|
S

B2( f� p , f (x)) ?(x) dx+|
S

V( f� p , f (x)) ?(x) dx,

where B( f� p , f (x))=� K(u) ( f (x&hu)& f (x)) du and

V( f� p , f (x))=n&1h&d | :
s

i=1
\ p2

i Wi

*i wi (x&hu)+
_K2(u) f (x&hu) du+o(n&1h&d).

For the bias term, B( f� p , f (x)) is exactly the same as B( f n* , f (x)) of (15).
But, by Jensen's inequality, we have

:
s

i=1

pi \ piWi

*iwi (t)+�\ :
s

i=1

*iwi (t)
Wi +

&1

for all p1 , ..., ps ,

and the equality sign may hold only for the trivial cases when wi (t) are
constants. It is straightforward to verify from (16) that, when n is suf-
ficiently large,

V( f� p f (x))&V( f n*, f (x))�0 for all p1 , ..., ps .

Thus, in terms of MISE, f� n is asymptotically superior to f� p for any selection
of p1 , ..., ps , and the two estimates may be equivalent only for the most
trivial cases.
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In some other sampling schemes, the support of f is not necessarily con-
tained in the set [x : wi (x)>0 for all 1�i�s], so that f� p can not be
applied directly. Without loss of generality, suppose that there exists a
positive integer s*�s such that wi (x)>0 for 1�i�s*, but wi (x)=0 for
s*+1�i�s. In order to ensure the identifiability of f, we assume further
that W1 , ..., Ws* are known. These kind of samples can be found, for exam-
ple, in Jewell (1985) and Jewell and Quesenberry (1986). Then, since the
last s&s* samples yield no information about f (x), f (x) can be
analogously estimated using the first s* samples such that

f� p(x)= :
s*

i=1

pi \n&1
i h&dWi :

ni

j=1

w&1
i (Xij) K \x&Xij

h ++ ,

where p1 , ..., ps* are nonnegative weights satisfying �s*
i=1 pi=1. By similar

calculations as that for f� p , we can show that MISE( f� p) is asymptotically
the same as MISE( f� p) with s replaced by s*. Thus f� n is asymptotically
superior or equivalent to f� p for all possible choices of p1 , ..., ps with equiv-
alence only holds for the same trivial cases as those for f� p .

5.2. Simulation with Stratified Samples

As a special case of (1), we consider the following stratified samples: Let
Xi1 , ..., Xini be i.i.d. on the real line having densities gi , i=1, ..., s+1,
satisfying (1) with wi (t)=1[t # Di] for i=1, ..., s, and ws+1(t)=1, where
D1 , ..., Ds is a partition on [&�, �] such that Di & Dj=< if i{j.

By A1 and A2, it is straightforward to verify that f is identifiable, and on
the set of y # Dk , 1�k�s,

:
s

j=1

*nj 1[ y # Dj]

uj
=

*nk 1[ y # Dk]

uk
.

Consequently, (6) is reduced to

(*ni+*ns+1
V� ni)

&1 D� n(Di)=1,

where G� n(Di)=�Di
dG� n( y)=*ni+*ns+1

G� ns+1
(Di). Thus, V� ni=G� ns+1

(Di) for
i=1, ..., s, and (10) is reduced to

f� n(x)=D� &1
n :

s+1

i=1

:
ni

j=1 _\ :
s

r=1

nr1[Xin # Dr]

G� ns+1
(Dr)

+ns+1+
&1

h&1K \x&Xij

h +& ,

where

D� n= :
s+1

i=1

:
ni

j=1
\ :

s

r=1

nr1[Xij # Dr]

G� ns+1
(Dr)

+ns+1+
&1

.
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If W1 , ..., Ws were known, then f (x) can also be estimated by f� p(x). Since
wj (x)=0 if x # Di for all j{i and j{s+1, only the i th and the (s+1)th
the samples can be used in f� p(x) for the estimation of f (x) when x # Di .
So that a natural choice of ( p1 , ..., ps) could be pi=ni�(ni+ns+1),
ps+1=1& pi , and pj=0 for j{i and j{s+1 when x # Di and i=1, ..., s.

Fig. 1. (a) (Top): CV(h) versus h. (b) (Bottom): Comparison of the real and estimated
density values when the cross-validation bandwidth 0.6 was used: (i) the solid curve gives the
real density of the mixture normal distribution f; (ii) the dotted curve represents the estimated
density values obtained from f� n ; (iii) ``V '' represents the selected estimated density values
obtained from f� p .
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For the simulation results, we considered the estimation of a mixture
density f (x)= 1

2,(x;&2, 1)+ 1
2 ,(x ; 2, 1) where ,(x ; +, _2) is the density

value at x of a normal distribution with mean + and variance _2. Here
?(x)#1 and three independent samples of sizes n1=n2=150 and n3=300
were randomly generated based on (1) and wi (t)=1[t # Di] , i=1, 2, 3,
where D1=[&�, 0), D2=[0, �] and D3=[&�, �]. For both f� n and
f� p , the kernels were chosen to be the standard Gaussian density. For the
construction of f� p , W1=W2= 1

2 , W3=1 and ( p1 , p2 , p3) was chosen to be
( 1

3 , 0, 2
3) if x<0 and (0, 1

3 , 2
3) if x�0.

Figure 1a shows the relationship of CV(h) versus h when h is within the
range of [0.1, 2.0]. It is easy to see that CV(h) reaches the minimum when
h is around 0.6 which was taken to be the cross-validation bandwidth.
Figure 1b gives the actual mixture density f (x) (solid curve), the estimated
density values obtained from f� n (dotted curve) and the estimated density
values obtained from f� p . The cross-validation bandwidth h� c was used for
both f� n and f� n . Although slightly oversmoothed in this particular simula-
tion, the general pattern of Fig. 1b shows that f� n, h� n gives reasonable
estimated values. It is also interesting to see from Fig. 1b that, in general,
f� p(x) stays very close to f� n(x), and in some regions, f� p(x) even gives slightly
better estimates than f� n(x). Thus, despite the theoretical advantage of f� n
over f� p , f� p remains to be a very competitive estimate of f at least for this
sampling scheme. Other simulations with different samples sizes and
bandwidths revealed the similar patterns in the statistical behavior of f� n
and f� p .

6. PROOFS

In this section, we sketch the proofs of the main results of Section 3 and
Section 4. Further details and tedious computations used in the proofs can
be found in the technical report of Wu (1996b).

First, the following technical lemma is useful to establish Lemma 3.1 and
Lemma 3.2.

Lemma 6.1. Let = be a constant satisfying 0<=< 1
2. If assumptions A1

through A3 are satisfied, then there exist constants c1 and c2 with
0<c1<c2<� such that

(a) c1�Vr�c2 for all r=1, ..., s, and c1�V� nr�c2 with probability
one for all r=1, ..., s and sufficiently large n;

(b) c1�Dn�c2 and c1�D� n�c2 with probability one for all suf-
ficiently large n;
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(c) n=(V� nr&Vr) � 0 and n=(W� nr&Wr) � 0 for all r=1, ..., s with prob-
ability one as n � �;

(d) n=(W &1
s &D� n) � 0 with probability one as n � �.

Proof. (a) By the definitions of Wi and Vi , i=1, ..., s, it is obvious
that the assertion for Vr holds. By Proposition 2.1 of Gill, Vardi, and
Wellner (1988), we know that the unique (V� n1

, ..., V� ns) exists almost surely
and that V� nr � Vr with probability one as n � �. This certainly implies
that c1�V� nr�c2 with probability one for sufficiently large n.

(b) Recall from (9) that D� n=W� ns . Then Proposition 2.1 of Gill,
Vardi, and Wellner (1988) shows that W� ns � Ws with probability one as
n � �. Since c1�Ws�c2 for some positive c1 and c2 , we know that the
assertion for D� n holds.

By the definition given in Section 2, Dn can be written as

Dn=W &1
s n&1 :

s

i=1

:
ni

j=1
\ :

s

r=1

*nr wr(Xij)
Wr +

&1

.

Thus, the almost sure boundness of W� ns , Ws , and D� n immediately shows
that c1�Dn�c2 almost surely for some positive c1 , c2 and sufficiently
large n.

(c) The assertions here are direct consequences of Proposition 2.2
and Proposition 2.3 of Gill, Vardi, and Wellner (1988).

(d) Since

n=(W &1
s &D� n)=

n=(W� ns&Ws)

W� ns Ws

,

it immediately follows from Proposition 2.2 that n=(W� ns&Ws) � 0 with
probability one as n � �. Hence, the assertion follows since (W� ns , Ws) is
bounded away from 0 almost surely. K

Proof of Lemma 3.1. The proof here is similar to the method used in
the proof of Theorem 1 of Marron and Ha� rdle (1986), with some slight
modifications. To avoid repetition, we only sketch the main steps and refer
to Marron and Ha� rdle (1986) for the related computations.

Let Hn be any sequence of finite sets whose cardinality increases at most
algebraically fast, that is,

*(Hn)�Cn\ for some constants C>0 and \>0. (30)
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By the Ho� lder continuity condition A3(c) and a straightforward continuity
argument (cf. Ha� rdle and Marron, 1985; Marron, 1985; and Marron and
Ha� rdle, 1986), it suffices to prove (23) by showing

sup
hd # Hn

} ISE( f n*)&MISE( f n*)
MISE( f n*) }� 0 with probability one as n � �. (31)

Now (30) and the Chebyshev inequality imply that, for any $>0 and
k=1, 2, ...,

P _ sup
hd # Hn

} ISE( f n*)&MISE( f n*)
MISE( f n*) }>$&

�Cn\$&2k sup
hd # Hn

E _ISE( f n*)&MISE( f n*)
MISE( f n*) &

2k

.

It can be shown by the same method as in the proofs of (6.3) and (6.4)
of Marron and Ha� rdle (1986) that there is a constant #>0, so that for
k=1, 2, ..., there are constants Ck and

E _ISE( f n*)&MISE( f n*)
MISE( f n*) &

2k

�Ckn&#k. (32)

Then (32) and the Borel�Cantelli lemma imply that (31) holds. K

Proof of Lemma 3.2. First notice that, by (10) and (12),

| f� n(x)& f n*(x)|� sup
t # S*

|2n(t)| :
s

i=1

:
ni

j=1
} 1
nhd K \x&Xij

h + } , (33)

where

2n(t)=\D� n :
s

r=1

nrwr(t)

V� nr
+

&1

&\ :
s

r=1

*nr wr(t)
Wr +

&1

�_D� nW &1
s :

s

r=1

*nr wr(t)

V� nr
&

&1

(D� &1
n &Ws)

+

Ws :
s

r=1
_\*nr wr(t)

V� nr Vr + (V� nr&Vr)&
\ :

s

r=1

*nr wr(t)

V� nr
+\ :

s

r=1

*nr wr(t)
Vr +

.
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Applying Lemma 6.1 repeatedly, we have, for all 0<=< 1
2,

sup
t # S*

n= |2n(t)| � 0 with probability one as n � �. (34)

Extending the method in the proof of Theorem 1 of Marron and Ha� rdle
(1986) to the current sampling case, we can show that

sup
hd # Hn

| _ :
s

i=1

:
ni

j=1
} 1
nihd K \x&Xij

h + }&
2

?(x) dx<c with probability one,

(35)

for some c>0 and all sufficiently large n. Thus (33) through (35) imply
that (24) holds, while (25) is an easy consequence of (24). K

The following technical lemma is an essential component in the proof of
Theorem 4.1.

Lemma 6.2. If the conditions of Theorem 4.1 hold, then

sup
hd # [n&1+=, n&=] }

U� n&Un

MISE( f� n, h) }� 0 with probability one as n � �, (36)

where

U� n=
1
n

:
s

i=1

:
ni

j=1

f� &(i, j), h(Xij) ?(Xij)
W� ni

wi (Xij)
&|

S
f� n, h(x) f (x) ?(x) dx

and

Un=
1
n

:
s

i=1

:
ni

j=1

f (Xij) ?(Xij)
Wi

wi (Xij)
&|

S
f 2(x) ?(x) dx.

Proof. We first write $h(x, y)=h&dK((x& y)�h), and observe that

U� n=
1

n(n&1)
:
s

i=1

:
ni

j=1

:
(i $, j $){(i, j) _\D� n :

s

r=1

*nr wr(Xi $j $)
V� nr

+
&1

$h(Xij , Xi $j $)

_
?(Xij) W� ni

wi (Xij)
&\D� n :

s

r=1

*nrwr(Xi $j $)
V� nr

+
&1

_|
S

$h(x, Xi $j $) f (x) ?(x) dx&,

Un=
1

n(n&1)
:
s

i=1

:
ni

j=1

:
(i $, j $){(i, j) _f (Xij)

?(Xij) Wi

wi (Xij)
&|

S
f 2(x) ?(x) dx&.
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It is straightforward to verify that

U� n&Un=
1

n(n&1)
:
s

i=1

:
ni

j=1

:
(i $, j $){(i, j)

[Z(i, j), (i $, j $)&Z$(i, j), (i $, j $)],

where

Z(i, j), (i $, j $)=\Dn :
s

r=1

*nr wr(Xi $j $)
Vr +

&1

$h(Xij , Xi $j $) ?(Xij)
Wi

wi (Xij)

&\Dn :
s

r=1

*nr wr(Xi $j $)
Vr +

&1

|
S

$h(x, Xi $j $) f (x) ?(x) dx

& f (Xij) ?(Xij)
Wi

wi (Xij)
+|

S
f 2(x) ?(x) dx,

Z$(i, j), (i $, j $)=_\D� n :
s

r=1

*nr wr(Xi $j $)

V� nr
+

&1

W� ni&\Dn :
s

r=1

*nr wr(Xi $j $)
Vr +

&1

Wi &
_[$h(Xij , Xi $j $) ?(Xij) w&1

i (Xij)]

&_\D� n :
s

r=1

*nr wr(Xi $j $)

V� nr
+

&1

&\Dn :
s

r=1

*nr wr(Xi $j $)
Vr +

&1

&
_|

S
$h(x, Xi $j $) f (x) ?(x) dx.

Now it can be shown by Lemma 6.1 and a direct extension of the proofs
of (7.2) and (7.4) of Marron (1987) and Section 6 of Marron and Ha� rdle
(1986) from direct samples to the current biased sampling case that the
following limits hold with probability one as n � �,

sup
hd # [n&1+=, n&=] }

n&1(n&1)&1 �s
i=1 �ni

j=1 � (i $, j $){(i, j) Z(i, j), (i $, j $)

MISE( f� n, h) }� 0 (37)

and

sup
hd # [n&1+=, ne=] }

n&1(n&1)&1 �s
i=1 �ni

j=1 � (i $, j $){(i, j) Z$(i, j), (i $, j $)

MISE( f� n, h) }� 0. (38)

See also Wu (1986b) for further details in the derivations of (37) and (38).
Thus the proof is completed since (36) follows from (37) and (38).
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Proof of Theorem 4.1. Let hI be the minimizer of ISE( f� n, h), so that

ISE( f� n, hI)= inf
hd # [n&1+=, n&=]

ISE( f� n, h).

As a direct consequence of the inequalities

ISE( f� n, h� c)�ISE( f� n, hI), CV(hI)�CV(h� c),

we have

} ISE( f� n, h� c)&ISE( f� n, hI)

ISE( f� n, h� c) }� } ISE( f� n, h� c)&ISE( f� n, hI)+CV(hI)&CV(h� c)

MISE( f� n, h� c)+MISE( f� n, hI) }
_

MISE( f� n, h� c)+MISE( f� n, hI)

ISE( f� n, h� c)
.

Thus, by Theorem 3.1, it is enough to show that

sup
hd

1 , hd
2 # [n&1+=, n&=] }

ISE( f� n, h1
)&CV(h1)&[ISE( f� n, h2

)&CV(h2)]

MISE( f� n, h1
)+MISE( f� n, h2

) }� 0 (39)

with probability one as n � �.
Now since

CV(h)=ISE( f� n, h)&|
S

f 2(x) ?(x) dx

&2 _1
n

:
s

i=1

:
ni

j=1

f� &(i, j), h(Xij) ?(Xij)
W� ni

wi (Xij)

&|
S

f� n, h(x) f (x) ?(x) dx&
and, by the triangular array central limit theorem,

lim
n � �

n$Un=0 with probability one for all 0<$< 1
2 ,

where Un is defined in Lemma 6.2, (29) is then an easy consequence of
Lemma 6.2. K
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