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The objective of this paper is the estimation of linear time-invariant relation- 
ships for a stationary vector-valued time series using the Finite Fourier Trans- 
form as the basic statistic. Since this is asymptotically complex-Normal we are 
led to consider models of multivariate complex-Normal regression. We propose 
estimates of regression matrices in the tradition of Stein (shrunken estimates) 
which improve upon the usual estimates. Some experience with simulated time 
series is reported. 

I. INTRODUCTION 

To almost any result in real multivariate analysis there is a corresponding 
result for complex-Normal variates. The complex-Normal and the related 
complex-Wishart distribution were first explored by Goodman [6]. A survey of 
recent developments on complex multivariate distributions is given by 
Krishnaiah [7]. The multivariate complex-Normal distribution is of main 
importance to time-series analysts as it occurs as the limiting distribution of the 
finite Fourier transform of a stationary vector time series under suitable mixing 
conditions. A survey of this theory is given by Brillinger [2,3]. 

The present author (Lillestsl [S]) h as extended a large body of the theory in 
the tradition of Stein (shrunken estimates) on simultaneous estimation in Normal 
models to the complex-Normal case, and studied its potential application to 
time-series analysis. In Section 2 of this paper we report alternative estimates 
for multivariate complex-Normal regression. It extends the theory of Stein [I I], 
Sclove [9, lo], and Baranchik [l] to the complex-Normal case. The results and 
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COMPLEX-NORMAL REGRESSION AND ‘TIME SERIES 513 

their proofs are similar and we only give a brief exposition. In Section 3 we 
consider the possible application of these results to the time-series problem of 
estimating linear time-invariant relationships. Thereafter we report some ex- 
perience with the procedure on simulated time series. 

2. THEORY 

Consider independent (r + I)-dimensional complex column vectors 

K = 1, 2 ,...) n, 

each distributed according to the complex-Normal distribution with zero mean 

(2.2) 

so that 

E(Yk / xk> = uxk (2.3) 

where a is the row vector given by 

a = *yx@i$. (2.4) 

The corresponding conditional covariance is Y = @rr - *rx9;i@,, . 
Consider the problem of estimating the complex regression vector a. As our loss 
function we take 

L(a, C) = Y-l(Q - a) 9,,(h - a)* (2.5) 

which is admittedly partly chosen for its nice invariance properties. (In genera1 
we denote A* = z, that is A* is the transposed conjugate of A.) 

Let X = (X1 , X, ,..., X,), Y = (Yr , Ya ,..., Y,), and define matrices 
T = YY* = zk YkYk*, U = YX* = & Y,Xa*, and V = XX* = Ck X,X, 
of dimension (1 x l), (1 x r), and (r x r), respectively. The maximum 
likelihood estimates of the crucial parameters of the model are then given by 

&IO) = w-1 9 = (l/n)W, (2.6) 

where W = T - UV-W*. Among the properties of B(s) as an estimate of a 

we mention: It is unbiased (seen by conditioning on X). With the given loss 
function it is fully invariant and minimax. However, in the case r > 2 and 
sufficiently large 12 (in fact 71 > r + 1) it is inadmissible in the sense that, with 
the given loss function, there exist other estimates with uniformly smaller 
risk (expected loss). 
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Below we will present a class of estimates i tC) having some members that 
dominate the common estimate P(O) and may suggest useful alternative proce- 
dures in the time-series context as well. The work done for the real case (see the 
references given in Section 1) are mainly focused on the situation where the 
means are unknown. However, contrary to this, it is the zero mean situation 
which is of practical importance in the complex case, when we have applications 
to time series in mind. 

THEOREM I. The risk (expected loss) of the common estimate &to) = W-r is 
R(er, B(O)) = y(n - I)-’ provided n > Y + 1. 

Pyoof. A sufficient statistic for the model is (UV-l, W, V). By arguments 
similar to the real case, and using well-known properties of the complex- 
Normal distribution it follows that W N &!PX&,-r, independent of (UV-i, V) 
where V N Wpc(n, axx) and, conditionally given V, UV-r N Nrc(a, !P. V-l). 
Here N denotes “is distributed as,” xy3 denotes a chi-square-variate with v 
degrees of freedom, and Wrc(n, a’> denotes a complex-Wishart variate of 
dimension Y with covariance matrix 4 and n degrees of freedom. As in the real 
case one can use group-theoretic considerations together with invariance to 
show that in order to compute the risk of the common estimate &f”) it suffices 
to do it for Y = 1 and Qxx = 1. Let E. denote expectation computed for this 
case. We then get R(&, &co)) = EL(a, &co)) = EY-l(h(o) - a) 4p,(&‘o) - a)* = 
E,(B(O) - a)(P(O) - u)* = tr E,(B(O) - a)*(&(O) - a) = tr Eo(UV-r - a)* 
(UV-i - a) = tr EoV-l, where tr denotes the usual trace operator of a matrix. 
The last step follows by conditioning on X and using that for the given model 
E(U / X) = aV and E(U*U j X) = ?PV + (aV)*aV. Since V N Wp’(n, 4,) 
it follows that (see Brillinger [3, p. 3361) EV-l = (n - y)-l4;; provided 
n > Y + 1 and the theorem follows. [ 

THEOREM 2. For the class of estimates 

&CC) = 1 - c 
i 

W 
uv-w* 1 

uv-1 

wehaveinthecasey>2andn>r-/-lthat 

R(a, W) < R(a, k(O)) 

provided the constant c is chosen so that 

0 < c < 2(Y - l)(n - Y + 1)-l. 

Remark. The estimates can be alternatively written as 

&CC) = 1 - c c 1 - R2 $0’ 
i R2 ’ 

(2.7) 

(2.8) 

(2.9) 

(2.10) 
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where R” = W-lU*/T is an estimate of the multiple coherence coefficient 
(the complex version of multiple correlation). 

Proof. The proof is similar to the one given by Baranchik [I] for the real case. 
Again group-theoretic considerations and invariance will show that it suffices 
to compute the risk for the simpler case when Y = I and Cp,, = I, that is, 
R(u, W) = EL(a, W) = EoL(a, W) = E, jl 13~) - ti II2 where, in general, 
I( a (I2 = aa* and E,, denotes expectation calculated for the simpler case. It is 
easily checked that 

== 2c uVyu* (UV-2U* - UV-la*) - c2 (uvyu*)2 UV-2U* (2.11) 

and our objective is to prove that the expectation of the right-hand side is 
nonnegative and positive at least for some a. Using the fact that W - $x‘&+) 
independent of (UV-l, V), and consequently EW= n - r, EW2 = (n - r + 1) l 

(n - Y), we see that the improvement of W over &Go) can be written 

A(W : &co’) = E,[ll $0’ - a /I2 - I( W - a \I”] 

= 2c(n - r)E, [ ;::;: - UV-la* ] 
uv-‘U * 

- c2(n - r + l)(n - r)E, (;;:;z;)2 . 1 (2.12) 

In order to be able to reduce this expression we need a computational lemma. 

LEMMA 1. 

E JJV-la* 
( O uv-w* 1 = 41 a II, 4 f u7,(ll a 11, n, TV, (2.13) 

k-0 

Eo ( K::;: 
1 

= 41 a II, n) f W a I !  n, y)rk, (2.14) 
k=O 

* 
Eo ( (g:;*j2 1 

= 41 a IO n) t 4l a ! I ,  72, r)vk-, (2.15) 
L=O 

where y  = (/ a I[“(1 + /( a jj”)-” and 

1 1 
d(ll a I!, n) = r(n) * (1 + (, a ,,y1 * 

W(n+k- 1) 

(n + h - l)(r - 1) 
(1 + II aIl”)(n - r) 1 ’ 

c~;(lj a 11, n, Y) = (I + h - 1)-l bk(ll a 11, ti, r). 
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A key to the proof of this lemma is provided by the fact that in the case of 
Y = 1 we have that, given V, UV-l/a - Nrc(aV1/2, I). One can first calculate the 

conditional expectations of the variates given V and then undo the conditioning. 
This calculation makes use the complex versions of basic identities for normal 
variates similar to Lemma 1 of Baranchik [I]. Details are given in Lillestol [S]. 
Using Lemma 1 we get the following expression for the improvement in the risk: 

A(@’ : q(o)) = + - r)d !$a (2(b, - up) - c(n - r + 1h)+* (2.16) 

Here we have suppressed the arguments of the functions ak , b, , ck , and d. 

We see that this is positive provided 

O<c<2(b,-aa,)c,~(n-Y+l)-1=u,. (2.17) 

Using the expressions given in Lemma 1 we obtain 

uj( = 2 [(Y + k - 1) - k(y + k) rs + k + $$&fs]-l/. (2.18) 

A lower bound on uL not depending on k and (( 01 [( is easily obtained provided 

r > 2. We have 

uk > 2{(r + k - 1) - k(r + k)[(n - l)/(n - r) + k]-l: 

= 2(r - l)(n + k - I)[@ - Y + I)(n + k - 1) - (n - I)(n - Y) - k]-l 

> 2(r - l)(n - Y $ 1)-l. 

We can therefore conclude that condition (2.17) holds at least when 0 < c < 

2(r - l)(n - Y  + 1)-l in the case Y > 2. We have assumed throughout that 
n > Y + 1. This completes the proof of Theorem 2. 1 

It is instructive to examine the possible improvement in some special cases: 

For Q = 0 the improvement in the risk becomes 

A( SC) : 20)) = 2c - C2(Y - I)-‘(n - Y + 1). (2.19) 

This is maximized for c’ = c(O) = (r - l)(n - r + 1)-l corresponding to an 
improvement of 

A(Sc) : h(O)) = (Y - l)(n - r + 1)-l. (2.20) 

For (/ Q /I2 - co it can be shown that 

A@@ : &to)) = 1) Q iI-2 
[ 
2c r--l - ~2 

n-2 
(2.21) 
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Neglecting the lower-order term and maximizing with respect to c yields c( co) = 
(n - l)(r - l)(n - r)-l(n - r + 1)-l. F or this choice the improvement 
becomes 

d(&(C) : A(O) Q 
(n - l)(Y - 1)2 __ 1 = II = IIF2 (n _ 2)(n _ r)(n _ r + 1) + 41 ali-“). (2.22) 

It is seen that for any given 11 a 11 the optimal choice of c is one-half the maximum 
value satisfying the inequality. Call this ~(11 a II). We have obtained ~(11 a 11) > 
(r - l)(n - r + 1)” = c(O) with strict inequality for some )I a 11. The evaluation 
of the improvement for moderate // a /I is hampered by technical difficulties and 
it seems reasonable to judge the performance by doing some simulations. In 
practice one is most often interested in doing well for small (( a (I, and c(0) 
should therefore be a good choice for an all purpose estimate. Note also that 
this corresponds to the c(l] a ]I) modifying the common estimate the least. We see 
that the modifying factor may become negative (with small probability). This 
seems to be an undesirable property of the estimate, and the estimate we are 
suggesting as a competitor to the usual estimate for practical use is therefore 

$+) = 1 - 
i 

Y-l 
w 

n--r+1’ w-qJ* ) 
+ . $0) 

’ 

where a+ = a for a > 0 and a+ = 0 for a < 0. Using arguments similar to 
Stein [12] one can verify that Q ff) further improves the risk in terms of the 
given loss function. 

Estimates of the type presented here as an alternative are often referred to as 
shrunken estimates, obtained by shrinking the common estimate toward zero 
to an extent determined by the observations. There are numerous papers which 
discuss the application of such estimates in real multivariate analysis. 

3. APPLICATIONS TO TIME SERIES 

Consider an (Y + I)-variate stationary series 

z(t) = [;$* t = 0, fl, f2 )..., 

with spectral density matrix given by 

Consider the problem of determining a linear time-invariant expression 

(3.1) 

(3.2) 

v  + a(t - 14) X(U) (3.3) 
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so that IQ(t) - p - xu a(t -- u) x(u)] 3 is minimized. Here p is a scalar and 
{a(u)> is a (1 x u)-vector-valued function of filter coefficients. The optimal 
choice is given by 

p ~7 E),(t) - (C a(u)] Ex(t), (3.4) 

a(u) = (2~)-’ 1’” A(n) exup(im) da, 
‘0 

(3.5) 

where 

44 = fw(4 f,xW (3.6) 

is the transfer function of the filter (see Brillinger [3]). 
Our application of the theory in Section 2 will be to the estimation of A(h) 

for a given h + 0 (mod v): Suppose the series z(t) is observed at instants 
t = 0, 1, 2 )..., T - 1 so that the finite Fourier transforms 

(3.7) 

are available for analysis. Following the suggestion of Goodman [6] we use the 
complex-Normal distribution 

(3.8) 

as an approximate distribution of d,r(h) at h $ 0 (mod n) for large T. This 
suggests that 

Wv=(4 I d,‘(4) - fv&) fm(4-‘4T(4 = 44 d,W) (3.9) 

so that the transfer function A(/\) may be interpreted as a complex regression 
coefficient vector. In order to produce estimates with better stability properties 
we follow the usual procedure to compute the finite Fourier transform at 71 
frequencies AI , A, ,..., A, in the neighborhood of A. Under suitable mixing 
conditions of the stationary series z(t) (dependencies have to die off sufficiently 
rapidly as the time span increases) it has been shown by various authors that 
d,=(h,), k = 1, 2 ,...I 71 behave asymptotically as independent complex-Normal 
variates with the covariance structure given above. For precise statements see 
Brillinger [3] who proves a result of this kind by putting conditions on the joint 
cumulants of the series and considering neighboring frequencies of form A, = 
X,(T) = 2mk(T)/T -+ h as T -+ 00 where sk(T) are integers and 2X,(T), X,(T) -+ 
A*(T) f 0 (mod 21~) forj # K. 

In order to make use of the theory of Section 2 we make the identification 

Z, = [2] = (2aT)-1’2 [$:;], k = 1, 2 ,..., 71 (3.10) 
I; 
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and, furthermore, 
a = A(h), 

The common estimate of f,,(A) is 

(3.12) 

with partition similar to that of f,,(h). The common estimate of A(h) is then 

A’(X) = f;*(h) f&(h)-? (3.13) 

The complex-Normal theory of Section 2 suggests the following alternative 
estimate: 

where g=(h) = f:“(h) - fia(A) f~Jh)-lf&,(h) may be regarded as an estimate of 
the error spectrum g(h) = f,,,(X) - f,,(h) f,,(X)-lfz,(h). 

We close this section by making some comments on the presented application: 
The theoretical results of Section 2 are derived under the assumption of 

complex-Normality and with a particular loss function. For time series the 
complex-Normality of the frequency domain “observations” (created by taking 
finite Fourier transforms) is only true in a limiting sense. However, a frequency 
analysis of a time series will usually not be undertaken unless T is large, say at 
least of order T = 2s = 512. The central limit effect will therefore come into 
effect very strongly and gives reason to believe that the approximation to com- 
plex-Normality is fairly good. This is also confirmed by practical experience. 
This contrasts with the situation for real multivariate data analysis where the 
multinormal distribution rarely gives a very good approximation to reality. 
Moreover, as pointed out by several authors in the real case, there seem to be 
potential gains by using the shrunken estimates also when observations are not 
exactly normal. 

Furthermore, we point out that the loss function employed is to an extent 
arbitrary and partly chosen for convenience. Workers in the real case have 
pointed out that the issue is present for a wide class of reasonable loss functions 
and the suggested methods are likely to provide improvement in a more general 
context, but the mathematics involved gets much harder (see Brown [4]). 

4. SIMULATIONS 

In this section we report some of our experience with comparison of the 
common estimate and the alternative estimate on simulated time series. The 
main reasons for doing simulations are: 
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To demonstrate the extent of the improvement under different circumstances. 
The suggested procedures are based on asymptotic theory, and one may want 
to know how the extent of the improvement depends on the finiteness of T. 
This affects the normality and will also introduce slight dependencies among 
the frequency domain observations employed. One is typically interested in 
estimating the transfer function at a number of frequencies in the domain (0, v). 
It would be of interest to see how smoothing over overlapping sets of neighboring 
frequencies affects the estimates. Simulations also give the opportunity to 
compare the estimates for alternative loss functions which may be harder to 
handle analytically. 

An extensive simulation study was undertaken, where we generated a variety 
of different (r + I)-variate series of length T. The main effort was spent on 
various pure noise Gaussian series with Y = 5 and T = 2s = 512, and some 
details of our findings for this case are reported below. We tried out some 
non-Gaussian and higher-order schemes as well, but the results differed very 
little in character from those reported. 

We used the Fast Fourier Transform Algorithm to compute Finite Fourier 
Transforms (see Cooley and Tukey [5]). With T = 512 we therefore have 
transforms available for all frequencies of form As = 2~~1512, s = 0, 1, 2,..., 
T - 1. We have chosen to compute estimates of A(A) at the frequencies 

237.1 2?r .2 27r. 15 
32 ’ 31 ‘.‘.’ T’ 

which is a compromise between keeping down the amount of output and the 
desire to detect peculiarities between neighboring estimates, if any. The number 
71 of neighboring frequencies of form 27rs/512 to be used in smoothing the 
estimates is taken to be n = 11 and 71 = 21. In the former case the estimates at 
neighboring frequencies of form 2rrkk/32 are based on disjoint sets of frequency 
domain observations. In the latter case 5 (5) out of the 21 “observations” 
overlap with those of the left (right) neighb or. This makes it possible to study 
both the effect on the improvement when the smoothing takes more distant 
frequencies into account and the effect on estimates at neighboring frequencies 
in the grid when the dependence between these estimates is increased. In order 
not to be misled by a single (perhaps peculiar) run one should make repeated 
runs for the same process parameters. Note that for the case of pure noise 
series, when the spectrum is constant, the estimation at 15 different frequencies 
is essentially 15 close to independent repetitions of the same problem, and thus 
provides some insight into the variability of the performance of the estimate in a 
given situation. 

In order to simulate our pure noise series, we started in all cases with a 
stretch e(t), t = O,..., T - 1 of a 6-variate pure noise series with independent 
components each being pseudonormal with zero mean and unit variance. Each 
pure noise series was generated by the choice of a real (6 x 6)-matrix B and 
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computation of z(t) = Be(t), t = 0, I ,..., T - I. The autocovariance structure 
of the series is then given by the (6 x 6)-matrix C(U) = Ez(t + u) z(t)’ = BB’ 
for u = 0 and 0 for u # 0 and the spectral density matrix is f,,(h) = 
(2~)-lBB’ = b, not dependent on h. The transfer function of the first series 
with respect to the other five series is then A(h) = aUe@;,j = rz, also not 
dependent on h. We had originally simulated 28 different pure noise structures 
in order to cover a variety of situations. However, many of these turned out 
to be too smooth to be challenging, and some had features very similar to others. 
We have chosen to focus our attention on 10 of these structures and we refer 
to them as runs PN-i to PN-IO. Th eir associated B matrices are given by 

Il.0 .o .** 

! .o 1.0 *** 
. . . . 

:o :o . . . 

PN-1 

1.0 2.0 *** 
.o 1.0 --* 
. . . . 
:o :o . . . 

PN-3 

1.0 .4 .** 
.4 1.0 .‘. 
. . . . 
:4 14 . . . 

PN-5 

/2.0 2.0 ..f 

t 

.o 1.0 **. 

. . . . 

10 :o .,. 

PN-7 

/5.0 5.0 -*a 

1 .o 1.0 ..* 
. . . . 

, :o :o **- 

PN-9 

.O' 

.O 

-1 

. > 

l:o 

.O 

.O 

-1 

* 9 

1:o 

.4 

.4 

-1 

* 9 

l:o 

.O 

.O 

4 

. , 

l:o 

PN-2 

i 

2.0 1.0 *** 
.o 1.0 --- 
. . . . 

:o :o *** 

PN-4 

i 

1.0 .4 **. 
.o 1.0 ..* 
. . . . 

\ :o :o -** 

PN-6 

PN-8 

PN-10 

.O 

.O 

-1 

* , 

l:o 

.O 
.O 

4 

. > 

l:o 

A 
.4 

4 

. , 

l:o 

.O 

.O 

4 

’ , 

1:o 

.O 

.O 

4 

. . 

l:o 

The pure noise series are generated accordingly with different basic noise 
series I each time. For each run our computations are: For each frequency 

6831714-4 
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2rrk/32, k = I,2 ,..., 15 we compute the transfer function coefficients, the 
usual estimate &co), and our new estimate 

&(+I = 1 - 
c 

r-l 1 - R2 + ,.co, 
n--r+1 R2 1 , 

together with their respective computed losses. We also compute the multiple 
coherence and the empirical multiple coherence (R2). To avoid misinterpretation 
of the simulation results we point out again that our theory has provided an 
estimate which is better at all frequencies in terms of expected loss, at least 
asymptotically, and occasional flops should then be attributed to chance. 

In Table I we give for each of the 10 runs the associated (constant) transfer 
function, and for both n = 11 and n = 21 we give the average of the computed 
loss over the 15 frequencies of form 2nk/32, k = 1, 2,..., 15 for the estimates d(O) 
and &(+). For comparative purposes the computations for n = 11 and n = 21 
are based on the same simulated series. Note that the plus modification comes 
into effect whenever RR2 < 4/l 1 = 0.357 in the case of n = I1 and whenever 
R2 < 4/17 = 0.191 in the case of n = 21. 

TABLE I 

Averaged Computed Losses for Old and New Estimate 

n= 11 n = 21 
__- 

Run iy $0, SC+, p’ 6’ ‘1 

PN- I 
PN-2 
PN-3 
PN-4 
PN-5 
PN-6 
PN-7 
PN-8 
PN-9 
PN-10 

(.O, .o ,..., .O) 1.04 0.31 
(1.0, .o )..., .O) 0.54 0.43 
(2.0, .o ,...) .O) 0.79 0.71 
(1.0, .o ,..., .O) 0.76 0.35 
(.19, .o ,..., .O) 0.89 0.74 
(.40, .24 ,..., .OS) 1.13 0.71 
(2.0, .o ,...) .O) 0.81 . 0.58 
(1.0, .o ,,.., .O) 0.54 0.13 
(5.0, .o ,...) .O) 0.76 0.56 
(5.0, .o ,..., .O) 1.06 1.07 

0.27 0.03 
0.23 0.21 
0.31 0.27 
0.29 0.12 
0.27 0.24 
0.31 0.25 
0.30 0.25 
0.23 0.06 
0.29 0.24 
0.30 0.31 

Table I shows that the new estimate has performed well over the 15 frequencies 
chosen, for all 10 pure noise series considered. The savings over the usual estimate 
range from 7O-8Oo/o for the least challenging pure noise series PN-1 to no 
savings for the most challenging series PN-10, and the savings for the other 
series are in most cases appreciable. The table shows no clear picture as to 
which of the cases n = 11 and 11 = 21 gives the largest percentage saving, but 
our general experience seems to indicate that it is the former case. However, 
in the latter case the losses are reduced anyway. 
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Another interesting aspect is summarized in Table II. It shows for each of the 
10 runs the frequencies of form 2~~132 at which the new estimate got higher 
computed loss than the common estimate for both cases n = 11 and n = 21. 

TABLE II 

New Estimate Worse at Frequencies 2w/32 out of 15 Possible 

Run s (n = 11) s (n = 21) 

PN-1 None 
PN-2 7, 13, 15 
PN-3 2, 7, 15 
PN-4 None 

PN-5 9 
PN-6 6, 11 
PN-7 6, 13 
PN-8 None 
PN-9 None 
PN-IO 2,5,6,11,13 

None 
1, 3,7,9, 13, 14, 15 
1,13,15 
None 

3, 5, 699 
2,11 
4, 6, 7, 13 
None 
None 
2, 5, 6,7, 10, II, 13 

In this sense the new estimate is favorable in all the cases studied, ranging 
from the least challenging situation PN-1 to the most challenging PN-10. Even 
for PN-10 the new estimate turned out better at a majority of frequencies. 
Typically, more is saved at those frequencies for which the new estimate is 
better than is lost at those where the new estimate is worse. Table II seems to 
indicate that the new estimate comes out best in this sense more often in the 
case n == 11 than n = 21, and this is also our general experience. 

We have also simulated 21 different first-order moving average series and 
a few second-order moving average series, The character of our findings is no 
different from those above. Finally we have simulated 26 different first-order 
autoregressive series, for which our findings were extremely favorable to the 
new estimate; in most case the new estimate turned out best at all frequencies. 
However, these simulations were based on models which seemed to be realistic 
in practice, and it is of course possible to choose structures for which the savings 
are only moderate. 

Further remarks and a number of suggestions for further research in this area 
are given in Lillestel [8]. 
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