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Abstract

Exploiting the fact that Kaluza–Klein monopoles and the associated generalized orbifold planes are sources for geometrical fluxes, ω, we
show that the standard constraint ωω = 0, valid for superstring compactifications on twisted tori, can be consistently relaxed. This leads to
novel possibilities for constructing superstring models with fluxes and localized sources, as well as for stabilizing moduli. This also explains the
ten-dimensional origin of a family of N = 4 gauged supergravities, whose interpretation in type-IIA orientifold compactifications was lacking.
© 2007 Elsevier B.V. Open access under CC BY license.
1. Introduction

Recent years have witnessed intense theoretical efforts and
significant progress in superstring and M-theory compactifi-
cations with general systems of fluxes and branes (for recent
reviews and references to the original literature, see, e.g., [1]).
However, much remains to be understood in view of a sys-
tematic classification of consistent vacua and their low-energy
effective field theories, and of a systematic phenomenological
analysis of those vacua most closely resembling the observed
world.

A rich spectrum of possibilities is offered, already at the
classical level (i.e., before the inclusion of perturbative and non-
perturbative corrections), by toroidal type-II orientifold com-
pactifications, where we can simultaneously consider fluxes for
the RR p-forms G(p) and for the NSNS 3-form H , as well as
geometrical fluxes ω à la Scherk–Schwarz [2]. The latter mod-
ify the topology of the internal manifold, which for this reason
is also called ‘twisted torus’ in the literature. Recently, this type
of fluxes has received a renewed interest in string compactifi-
cations for several reasons, such as the possibility to construct
new gauged supergravities [3], stabilize moduli [4–6], improve
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the understanding of string dualities [7,8] and consistency con-
ditions [8–11]. In the presence of O-planes and D-branes, acting
as localized sources, a number of stringent constraints must be
satisfied, which can be interpreted as integrability conditions
associated with the Bianchi identities (BI) of the different lo-
cal symmetries. Until now, geometrical fluxes were restricted
to obey the consistency condition [2]

ωω = 0,

together with the integrability conditions coming from the BI
of the RR and NSNS forms, involving the other fluxes and
branes. In this Letter we will show that the above condition is
too restrictive. Using the fact that (5 + 1)-dimensional Kaluza–
Klein monopoles (KK5) and the associated generalized orbifold
planes (KKO5) are sources for geometrical fluxes, we will in-
deed show that, in the presence of these KK sources, the BI for
geometrical fluxes modifies into

dω + ωω = QKK,

where QKK stands for the contribution of the KK sources. Us-
ing string dualities, we will also show that the last condition is
equivalent to the well-known BI for the NSNS and RR forms.

The modified BI above tells us that the integrability con-
dition ωω = 0 can be relaxed by adding KK sources. This is
analogous (actually dual) to what happens in the RR sector,
where the non-trivial RR plus NSNS flux contribution to the BI
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is cancelled by the contribution of D-branes and O-planes. The
consistency of such constructions is also strengthened by the
existence [4] of consistent N = 1 truncations of N = 4 gauged
supergravities, derived from type-IIA, N = 1 orientifold com-
pactifications with NSNS, RR and geometrical fluxes, which
do not satisfy [5] the quadratic constraint ωω = 0. The inclu-
sion of KK sources allows to fill the gap and to understand the
ten-dimensional origin of such gauged supergravities.

Finally, we will conclude by discussing the importance that
KK5 monopoles may have in various aspects of string compact-
ifications.

2. From KK5 monopoles to generalized twisted tori

It is well known that NS5-branes can be identified as the
magnetic sources dual to strings for the NSNS 2-form potential
B . In compactifications on twisted tori, the corresponding BI
gets modified by a torsion term ω,

(1)dH + ωH = [ν5],
where [ν5] is the localized 4-form Poincaré dual to the NS5-
brane world-volume ν5, H is the 3-form field strength associ-
ated with B , and (more details on our notation can be found in
[5]):

ωH = 1

4
ωab

eHecd dxa ∧ dxb ∧ dxc ∧ dxd.

Here and in the following, we will ignore all numerical and α′
factors related with charges and tensions. The Scherk–Schwarz
[2] parameter1 ω, often called geometrical (or metric) flux in
the recent literature, corresponds to a background value for the
spin connection, and satisfies the condition

(2)ωω = 0,

which ensures the closure of the external derivative (d + ω),
modified by the torsion ω, in the new geometry. Requiring the
brane to wrap a non-trivial cycle on the twisted torus corre-
sponds to the constraint [8,9]

(d + ω)[ν5] = 0,

i.e., ν5 must be a non-trivial cycle in the cohomology con-
structed with the modified derivative (d + ω). The H com-
ponents in the first term of Eq. (1) are those sourced by the
NS5-brane and by the bulk fluxes (the second term on the l.h.s.).
They are not constant on the internal manifold, but have a singu-
larity at the brane, according to Gauss law, in order to satisfy the
BI and the equations of motion locally. However, since fields
are periodic over the cycles of the original torus, these terms
do not contribute to the integrability conditions. On the other
hand, non-vanishing background fluxes for H contribute to the
BI of Eq. (1) with the extra torsion term ωH : such term may
give a non-trivial contribution to the integrability conditions,

1 Our geometrical flux parameter ωab
c corresponds to −f c

ab in the notation
of [2].
which must be compensated by the contributions from local-
ized sources [ν5], as shown in [12] for the heterotic case.2 This
means that on twisted tori the total charge from NS5-branes can
be non-zero, as long as it is eventually cancelled by fluxes, sim-
ilarly to what happens for D-branes in the presence of RR and
NSNS fluxes (see, e.g., [13]).

There exist also magnetic sources for H with negative
charge and tension. From the effective field theory point of
view, they are the NSNS analogue of what the orientifold planes
are for the RR forms: they are non-dynamical codimension-four
objects with a Z2 orbifold involution under which bulk fields
have non-trivial internal parities. For instance, their existence
can be deduced in the type-IIB theory by S-duality. There is a
string–string duality [14–17] connecting the SO(32) heterotic
theory on T 4 with the type-IIA theory on K3. As an intermedi-
ate step (see Table 1), we get a type-IIB string theory with 32
D5-branes (16 D5-branes plus their orientifold images), two on
each of the 16 O5-planes lying at the fixed points of T 4/Z2. The
D5-branes provide the matter fields dual to the U(1)16 sector
of the heterotic theory, while the O5-planes are there to cancel
RR tadpoles and to halve the number of supersymmetries. Via
S-duality, the D5-branes map into NS5-branes, which now
carry NSNS charge. To cancel this charge, the O5-planes must
map into some generalized orbifold planes (NSO5) that carry
negative tension and NSNS charge, and act non-trivially on the
fields ([18], see also [19]). Then we must also include these
contributions in Eq. (1), which now reads

(3)dH + ωH = QH ,

where

(4)QH =
∑([ν5] + [

νo
5

])
is the sum of all the contributions from NS5-branes and NSO5-
planes ([νo

5 ]). Notice that the latter give a negative contribution
to Eq. (4), but we reabsorbed the negative charge coefficient in
the definition of [νo

5 ].
In the absence of fluxes, the integrability condition from

Eq. (3) implies that the number of NS5-branes must be 32, to
cancel the contributions from the NSO5-planes. This condition
is just the dual of the RR-tadpole cancellation condition that
ensures the cancellation of anomalies. In more general com-
pactifications, however, with ω and H fluxes, the contributions
from NS5-branes need not match the ones from NSO5-planes,
analogously to what happens in the RR sector in the presence
of RR and NSNS fluxes.

As the NSNS 2-form, also the graviton possesses its own
magnetic source in ten dimensions: the Kaluza–Klein 5D
monopole [14,20]. Its geometry is described by the Euclidean
4D Taub-NUT metric embedded in 10D space–time [20–23]

ds2
κ5

= ημν dxμ dxν + f −1(r)
(
dr2 + r2dθ2 + r2 sin2 θdφ2)

(5)+ f (r)
(
dψ + V ψ

)2
,

2 In [12] the non-trivial ωH term was actually compensated by a topologi-
cal instanton number Tr(F ∧ F) from the bulk gauge sector: its contribution,
however, is globally equivalent to that of a stack of NS5-branes.
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Table 1
String–string duality chain between the heterotic theory on T 4 and the type-IIA theory on T 4/Z2. The symbols “ S−→” and “

Tn−−→” mean S-duality or T -duality along
n directions (inside T 4); Z′

2, Z′′
2 and Z2 are the Z2 involutions of the O5 orientifold, of the NSO5 orbifold and of the KKO5 orbifold, respectively; the last line

describes the system of branes/solitons providing the 16 N = 4 vector multiplets

heterotic S−→ type-I
T4−→ type-IIB S−→ type-IIB

T1−→ type-IIA

On T 4 T 4 T 4/Z′
2 T 4/Z′′

2 T 4/Z2
With U(1)16 D9/O9 D5/O5 NS5/NSO5 KK5/KKO5
where the indices μ,ν span 5 + 1 space–time dimensions, and

f (r) =
(

1 + m

r

)−1

, V ψ = m(1 − cos θ) dφ.

The above metric can be derived from the NS5-brane soliton
background via T -duality [24,25] (see also [26,27]), which in-
deed rotates the metric and the B-field. Eq. (5) is a solitonic
solution of the 10D equations of motion that sources a flux for
the graviphoton V ψ . This means that KK5 monopoles are the
sources for the geometrical fluxes [7]

(6)ωψ ≡ dV ψ = m sin θ dθ ∧ dφ,

which thus satisfy the ‘BI-like’ condition

(7)dωψ = [κ5]ψ,

where [κ5]ψ is the localized 3-form in the (r, θ,φ) space dual
to the world-volume of the KK5 monopole. The components
of ω sourced by the KK5 monopoles are not constant—they
must be singular at the monopole—but they are periodic over
the torus cycles, therefore the l.h.s. of Eq. (7) will vanish if in-
tegrated over a torus cycle. This means that the total KK charge
must also vanish on the torus. Indeed, in analogy with what we
recalled for the BI of H , also ω possesses magnetic sources
with negative charge, one example is provided by the Atiyah–
Hitchin spaces [28]. They are solitonic (everywhere smooth)
solutions of the 10D Einstein equations, which at large dis-
tances look like, up to exponentially small corrections (see
also [29]), KK5 monopoles with negative charge (and tension),
modded by an orbifold involution acting on the four orthogo-
nal directions. Therefore Eq. (7) will receive also contributions
from these generalized orbifold planes (κo

5 ), namely

(8)dωψ =
∑([κ5]ψ + [

κo
5

]ψ)
.

From the effective field theory point of view, these new objects
can be considered just as orbifold fixed planes, which however
carry negative tension and source a negative geometrical flux.
The integrability condition from Eq. (7) ensures that we must
dress each of these KK orbifold planes (KKO5-planes) with
KK5 monopoles, to cancel the negative charge. The localized
fields arising from each stack of KK5 monopoles provide the
twisted sector of the orbifold. When all KK5 monopoles are
put on top of the KKO5-planes, so that tensions and charges
cancel locally, the internal manifold is flat, it is just a toroidal
orbifold. The twisted sector is provided by the fields localized
on KK5 monopoles, and the twisted cycles are those created by
the KK5 with their orbifold images, which are indeed shrunk to
zero size. An example of these configurations can be obtained
by T -dualizing the type-IIB NS5-brane/NSO5-plane configu-
ration discussed above, which gives type-IIA on the T 4/Z2
orbifold limit of K3, i.e., the outcome of the string-string du-
ality chain mentioned before. On each of the 16 orbifold fixed
points there are a KKO5-plane and two KK5 monopoles (one
KK5 plus its image), giving a shrunk 2-sphere and a massless
U(1) vector multiplet. The vector field, which can be seen as
the SO(2) truncation of the enhanced U(2) gauge group asso-
ciated to the two KK5 [30], comes from the RR 3-form over
the shrunk sphere. When the KK5 monopoles move away from
the KKO5-planes, the localized fields describing the position of
the KK5 monopoles acquire a VEV, the twisted cycles blow up
and the internal manifold becomes a K3 at a generic point of
its moduli space. The latter can thus be seen as a generic con-
figuration of KK5 and KKO5: indeed, the moduli space and the
topology of K3 coincide with those of the KK system describ-
ing T 4/Z2 [31,32].

Now, if we compactify on twisted tori, we have to take into
account also the contributions from background geometrical
fluxes, which turn on other components of ω than those ap-
pearing in Eqs. (7) and (8). Thus we expect that also Eqs. (7)
and (8) get modified by a torsion term, analogously to the BI
for H of Eq. (3). We can derive the modified BI by applying
Buscher rules [33] directly to Eq. (1). Indeed, under T -duality
along one direction, say c, the components of the NSNS 3-form
flux along c map into a geometrical flux, a NS5-brane orthog-
onal to c goes into a KK5 monopole, with the fibered S1 along
the dualized direction, and analogously NSO5-planes map into
KKO5-planes, namely

Habc −→ ωab
c,

[ν5]dabc −→ [κ5]dab
c,[

νo
5

]
dabc

−→ [
κo

5

]
dab

c.

Hence Eq. (3) goes into3

(9)dω + ωω = QKK,

where

(10)QKK =
∑([κ5]ψ + [

κo
5

]ψ)
.

We thus get also a non-trivial contribution from the background
geometrical fluxes of the twisted tori, which now contribute
non-trivially to the integrability conditions (9). This means that

3 If ω is along the T -dualized direction, i.e., ωbc
d , it T -dualizes into a ‘non-

geometric’ flux [7]: we will restrict ourselves here to geometric compactifica-
tions, but we will comment on the non-geometric case below.
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it is possible to have a non-vanishing total KK charge in a com-
pact space, as long as ωω �= 0. This seems to be in contrast with
the consistency condition of Eq. (2). However, the topology in
the presence of a KK5 monopole changes—a string wrapping
the fibered circle S1 may unwrap passing through the tip of the
monopole [34]. Eq. (9) suggests that, when (and only when)
Eq. (9) is satisfied, this change exactly compensates for the
apparent clash with the closure of the external derivative. Hav-
ing separately either a violation of Eq. (2) or an uncancelled
net KK charge in a compact volume would lead to a topologi-
cally inconsistent construction. However, when both are present
and satisfy the integrability condition from Eq. (9), the whole
construction is consistent. Exactly as it works for the T -dual
construction with NS5-branes and H fluxes on twisted tori dis-
cussed before.

Another cross-check comes from ‘S-duality’ in type-IIA.
In the strong coupling limit, the type-IIA theory uplifts to
M-theory, developing a new dimension. KK5 monopoles in
type-IIA derive from KK6 monopoles in M-theory, when one
of the worldvolume dimensions of the KK6 is compactified to a
circle that shrinks to zero size [26]. Analogously, KKO5-planes
uplift to M-theory by adding a dimension in their worldvolume.
Therefore, Eq. (9) uplifted to M-theory should keep the same
form,

dω + ωω = QKK,

with the only difference that now the space is eleven-dimen-
sional. We can now recover type-IIA in another limit, by shrink-
ing a different circle to zero. If we identify the eleventh dimen-
sion with ψ , the fibered S1 of the KK6, the latter will produce
a D6-brane in ten dimensions [20]; Atiyah–Hitchin spaces will
give O6-planes [35] (see also [30]); ωψ will instead map into
the RR 2-form flux G(2) (see, e.g., [7,36]) since the RR 1-form
C(1) is given by the graviphoton V ψ . In this limit Eq. (9) will
then reduce to the type-IIA equation

(11)dG(2) + ωG(2) = QRR =
∑([π6] + [

πo
6

])
,

which is the BI for the RR form G(2) in the presence of D6-
branes (π6) and O6-planes (πo

6 ) on twisted tori [5]. Eqs. (9)
and (11) have thus the same M-theory origin, confirming the
consistency of compactifications with non-vanishing global KK
charge, cancelled by geometrical fluxes with non-trivial ωω.

Notice that in principle we could saturate the contributions
from O6-planes by using fluxes instead of D6-branes, so that
among the light degrees of freedom there is no extra local-
ized matter field besides the bulk sector. Analogously, we could
saturate the negative contributions from the KKO5-planes with
geometrical fluxes ω and no KK5 monopoles. In this case the
compactification would keep the orbifold involution, but with-
out light twisted sectors! These compactifications thus provide
deformations of the orbifold that stabilize/avoid the twisted
fields. Consider, for instance, the family of AdS4 N = 1 super-
symmetric vacua from the superpotential of Refs. [4,5] in the
type-IIA theory compactified on the T 6/(Z2 × Z2) orbifold,
with O6-planes, generic fluxes and all untwisted bulk moduli
stabilized; by saturating now the RR and KK BI just with fluxes,
without D6-branes and KK5 monopoles, all moduli are stabi-
lized, since in this case there are no extra light fields from the
orbifold twisted sector nor from D-branes.

We can also derive the intrinsic O6-orientifold parity of the
KK5 monopoles by using M-theory. As mentioned before, the
M-theory uplift of an O6-plane is an Atiyah–Hitchin space,
which at large distances can be well approximated by a KK6
monopole solution with negative mass parameter m, with the
11th dimension identified with the S1 of the monopole (ψ),
and with a Z2 involution on the four orthogonal dimensions.
The KK5 monopole of the type-IIA theory comes from another
KK6 in M-theory, this time extending along the ψ direction.
Since this direction is odd under the Z2, the KK5 monopole
worldvolume is odd under the O6-orientifold involution. This
is analogous to what happens to D4-branes, which come from
M5-branes wrapping the 11th dimension. This means that the
KK5 monopole can only wrap 2-cycles that are odd under the
O6 parity. Usually, in N = 1 compactifications on orbifolds
or CY with O6-planes, all 2-cycles are odd with respect to
the orientifold involution. Therefore, unlike NS5-branes, KK5
monopoles can be consistently included in N = 1 orientifold
string compactifications to four dimensions. In particular, this
also means that, in the study of the effective action for the
bulk moduli, in N = 1 type-II compactifications with generic
fluxes and branes, condition (2) can be relaxed by inserting
KK5 monopoles.

Finally, notice that Eq. (9) nicely fits with the T -duality
invariant form for the NSNS Bianchi identities (up to non-
geometrical fluxes), namely

(12)DD = QNS,

where D is the modified external derivative in the presence of
geometrical and H fluxes,

(13)D = d + ω + H∧,

QNS is the sum of the NSNS sources

QNS = QH + QKK,

and Eq. (12) should be read as projected into a basis of forms.
In particular, Eq. (12) gives back Eqs. (1) and (9).

In the case of non-geometrical fluxes we can guess that
Eq. (12) will continue to hold, with D replaced by the com-
bination d + H + ω + Q + R (where Q and R are the non-
geometrical fluxes T -dual to H and ω defined in [37]), and with
QNS receiving also contributions from the solitons (if they ex-
ist) sourcing Q and R fluxes.

3. An example: The DKPZ solution

In Ref. [4], Derendinger, Kounnas, Petropoulos and one of
the authors (DKPZ) derived the effective N = 1 superpotential
for bulk moduli in a T 6/(Z2 × Z2) type-IIA compactification
with generic NSNS, RR and geometrical fluxes, exploiting the
underlying N = 4 supergravity that is present after the orien-
tifold projection, but before the Z2 × Z2 orbifold projection. In
particular, they found an AdS4 solution with exact N = 1 super-
symmetry and all closed untwisted moduli stabilized. Later [5]
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it was realized that, although such vacua correspond to a consis-
tent N = 4 gauged supergravity from the effective field theory
point of view, they do not admit an interpretation in terms of
geometric compactifications from ten dimensions with fluxes,
D-branes and O-planes. This is due to the fact that, in con-
trast with the heterotic theory [12], there does not seem to be
a one-to-one correspondence between BI constraints from the
compactification and Jacobi identities of the underlying N = 4
gauged supergravity. While the fact that some of the compact-
ifications cannot be viewed as N = 4 gaugings can be easily
understood, in terms of N = 1 D-brane configurations that re-
alize part of the N = 4 supersymmetry in a non-linear way, the
N = 4 gaugings without an interpretation in terms of compact-
ifications from ten dimensions were not understood. In partic-
ular, the DKPZ AdS4 vacua fail to satisfy Eq. (2). We can now
understand why it was not possible to obtain these vacua from
compactifications with only fluxes and D6/O6 sources: they
also need KK sources. In the notation of [5], Eq. (2) for the
DKPZ setup reduces to the conditions

ω3(ω3 − ω1) = 0,

(14)ω2(ω3 − ω1) = 0,

where ω1,2,3 correspond to some components of the geometri-
cal fluxes. The first condition corresponds to a Jacobi identity
of the underlying N = 4 gauged supergravity, which however
does not require the second condition. The DKPZ AdS4 vacua
have ω3 = 0 but non vanishing ω1 and ω2. This means that the
second condition is not satisfied, thus the compactification re-
quires the existence of a mismatch between the charges of KK5
monopoles and KKO5-planes. In particular, it is easy to check
that the number of required KK5 monopoles is less than the one
needed to cancel the charge and the tension from the KKO5-
planes, i.e., the needed KK charge and tension are negative. In
some sense, we need to remove part of the KK5 monopoles
present at the T 6/(Z2 × Z2) fixed points. Each of them must
wrap one of the three factorized 2-tori (which are indeed odd
under the orientifold involution), with fibered S1 parallel to the
O6-plane. The fact that the vacuum solution in the effective 4D
theory is supersymmetric, and agrees with the constraints from
N = 4 supergravity, tells us that such KK5 monopole configura-
tions preserve the same N = 4 supersymmetry as the O6-plane,
as for D6-branes parallel to the O6-plane.

It is also possible to check that, once the right number of
KK5 monopole is removed, the effective potential derived by
dimensional reduction (the contribution of the KK5 monopoles
is discussed in [38]) agrees with the one dictated by supersym-
metry and by the N = 1 superpotential of [4,5], once (and only
once) Eq. (9) is satisfied. In particular, the contributions to the
effective potential for the closed string moduli coming from the
tensions of KK5 monopoles and KKO5-planes cancel against
the extra contributions from the Einstein term, originating from
the non-closure of the external derivative (ωω �= 0). KK sources
and the possibility of violating Eq. (2) thus fill the gap in the un-
derstanding of the 10D origin of the DKPZ type-IIA vacua and
of the microscopic interpretation of the corresponding N = 4
gaugings.
Notice that, as in the case of D6-branes, there also exist con-
sistent KK5-monopole configurations that do not correspond to
any N = 4 gauging, but preserve at least N = 1 supersymmetry
in four dimensions. They correspond to KK5 monopoles with
the S1 fiber orthogonal to the O6-planes, giving a non-vanishing
contribution also to the condition in the first line of Eq. (14).
When such KK5 monopoles are inserted (or removed) the cor-
responding vacua cannot be seen as a truncation of an N = 4
gauged supergravity, analogously to what happens when D6-
branes at generic angles are considered, as discussed in [5].

4. Outlook

As mentioned before, by performing suitable Scherk–
Schwarz twists, it is possible to add KK5 monopoles to N = 1
type-IIA compactifications with intersecting branes and fluxes.
Besides relaxing the condition of Eq. (2), and allowing for new
vacua with geometrical fluxes, these new objects contribute
to the effective action with extra matter fields localized on
the KK5 monopoles. As in the case of D6-branes, each KK5
monopole gives an N = 4 vector multiplet in four dimensions
(a non-Abelian group is generated if a stack of KK5 is con-
sidered [30]), eventually truncated by orbifold and orientifold
projections and with mass terms from flux contributions. These
extra matter fields can also be seen as arising from the bulk
RR p-forms, calculated on the new cycles generated by the
KK5 geometry, analogously to what happens in type-IIA on the
T 4/Z2 orbifold mentioned before, with fixed points resolved
by KK5 monopoles and KKO5-planes.

There is a number of interesting aspects of these new com-
pactifications that would be worth studying. First of all, they
may add new phenomenologically relevant ingredients to the
usual models with intersecting/magnetized branes, both be-
cause they allow to relax the condition (2) and because KK5
monopoles can generate extra matter fields at low energy. More-
over, KK5 monopoles might be a new source of SUSY break-
ing: changing their orientation with respect to other localized
objects (such as O-planes and D-branes) and/or turning on lo-
calized magnetic fluxes we expect that D terms may be gener-
ated, analogously to the case of usual D-branes. From a com-
plementary point of view, it would be interesting to understand
better the embedding of these new compactifications in the gen-
eral classifications of gauged supergravities (see, e.g., [39–41])
and of generalized geometries for superstring compactifications
(see, e.g., [42]).

We focused here on type-II compactifications, but we could
also consider heterotic and type-I theories on these new geome-
tries. Since these string theories give at most N = 4 supergrav-
ities in four dimensions and KK5 monopoles are BPS, thus
breaking half of the supersymmetries, a configuration with non-
trivial KK charge, eventually cancelled by ω fluxes, cannot be
viewed as a N = 4 gauging in 4D, unlike type-II compactifica-
tions where BPS objects can be included in an N = 4 invariant
way. This is the reason why in the heterotic and type-I the-
ories the correspondence between BI and Jacobi identities of
the N = 4 gaugings is one-to-one, while this is not the case in
type-II or M-theory: with N = 1 supersymmetry in ten dimen-
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sions, the only N = 4 supergravities in four dimensions arise
from compactifications without localized sources. This, how-
ever, does not forbid the construction of N = 2,1,0 vacua in
heterotic/type-I compactifications with non-trivial KK mono-
pole charges. Finally, we did not discuss much the extension to
non-geometrical fluxes (see, e.g., [8,37,43]); it would be inter-
esting to understand whether there exist analogous sources for
non-geometrical fluxes too, and if they may allow to relax the
corresponding BI constraints [37]. We leave all this to future
work.
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