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a b s t r a c t

The aim of this work is to study the Legendre wavelets for the solution of initial value
problems of Bratu-type, which is widely applicable in fuel ignition of the combustion
theory and heat transfer. The properties of Legendre wavelets together with the Gaussian
integration method are used to reduce the problem to the solution of nonlinear algebraic
equations. Also a reliable approach for convergence of the Legendre wavelet method when
applied to a class of nonlinear Volterra equations is discussed and an error estimation
for the proposed method is also introduced. Illustrative examples have been discussed
to demonstrate the validity and applicability of the technique and the results have been
compared with the exact solution. We finally show the high accuracy and efficiency of the
proposed method.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the studies of initial value problems in the second order ordinary differential equations (ODEs) have
attracted many researchers. One of the equations describing this type is the Bratu-type equations formulated as

u′′
+ λ eu = 0, 0 < x < 1, u(0) = u′(0) = 0, λ is a constant. (1)

The standard Bratu problem [1] was used to model a combustion problem in a numerical slab. Bratu’s problem [2–6] is also
used in a large variety of applications such as the fuel ignition model of the thermal combustion theory, the model of the
thermal reaction process, the Chandrasekharmodel [7] of the expansion of the universe, questions in geometry and relativity
concerning the Chandrasekhar model, chemical reaction theory, radiative heat transfer and nanotechnology [8–13].

A substantial amount of research work has been done for the study of the Bratu problem [1,14–17]. Boyd [14,15]
employed Chebyshev polynomial expansions and the Gegenbauer as base functions. Syam and Hamdan [18] presented the
Laplace Adomian decomposition method for solving Bratu’s problem. Also Yigit Aksoy and Mehmet Pakdemirli had solved
new perturbation iteration solutions for Bratu-type equations [19]. Wazwaz [20] presented the Adomian Decomposition
method for solving Bratu’s problem.

In recent years, wavelets have found their way in to many different fields of science and engineering. Many researchers
started using various wavelets [21–23] for analyzing problems of greater computational complexity and proved wavelets to
be powerful tools to explore a new direction in solving differential equations. Legendre wavelet based approximate solution
of lane-Emden type was studied by Yousefi [24] recently.

In the present article, we apply the Legendre wavelet method (LWM) to find the approximate solution of Bratu-type
equations. The Legendrewaveletmethod is based on conversion of Bratu-type equations to integral equations and expanding
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the solution by Legendre wavelets with unknown coefficients. The properties of Legendre wavelets together with the
Gaussian integration formula are utilized to evaluate the unknown coefficients and then an approximate solution to (1)
will be identified.

The article is summarized as follows. In Section 2, we describe the basic formulation of wavelets and Legendre wavelets
required for our subsequent development. Section 3 is devoted to the solution of (1) by using integral operator and Legendre
wavelets. Uniqueness theorem and Convergence theorem have been studied in Section 4. Also the error estimation for the
proposed LWMhas been discussed in Section 5. In Section 6, we report our numerical finding and demonstrate the accuracy
of the proposed scheme by considering numerical examples. Concluding remarks are given in Section 7.

2. Properties of Legendre wavelets

2.1. Wavelets and Legendre wavelets

Wavelets constitute a family of functions constructed from dilation and translation of a single function called themother
wavelet. When the dilation parameter ‘a’ and the translation parameter ‘b’ vary continuously, we have the following family
of continuous wavelets as:

ψa,b (t) = |a|−
1
2 ψ


t − b
a


, a, b ∈ R, a ≠ 0.

If we restrict the parameters a and b to discrete values as a = a−k
0 , b = nb0a−k

0 , a0 > 1, b0 > 0 and n, k positive integers,
we have the following family of discrete wavelets:

ψk,n (t) = |a|−
1
2 ψ


ak0t − nb0


where ψk,n (t) form a basis of L2(R). In particular, when a0 = 2 and b0 = 1 then ψk,n (t) forms an orthonormal basis.

Legendre wavelets ψnm (t) = ψ

k, n̂,m, t


have four arguments: n̂ = 2n − 1, n = 1, 2, 3, . . . , 2k−1, k can assume any

positive integer,m is the order of Legendre polynomials and t is the normalized time. They are defined in [23] on the interval
[0, 1) as

ψnm(t) =



m +

1
2
2

k
2 Pm


2kt − n̂


, for

n̂ − 1
2k

≤ t ≤
n̂ + 1
2k

,

0, otherwise
(2)

wherem = 0, 1, 2, . . . ,M − 1, n = 1, 2, 3, . . . , 2k−1. The coefficient

m +

1
2 is for orthonormality, the dilation parameter

is a = 2−k and translation parameter is b = n̂2−k.
Here Pm(t) are well-known Legendre polynomials of order m which are defined on the interval [−1, 1], and can be

determined with the aid of the following recurrence formulas:

P0(t) = 1, P1(t) = t

Pm+1(t) =


2m + 1
m + 1


t Pm(t)−


m

m + 1


Pm−1(t), m = 1, 2, 3, . . . .

2.2. Function approximation

A function f (t) defined over [0, 1)may be expanded as

f (t) =

∞
n=1

∞
m=0

c nm ψnm(t) (3)

where cnm = ⟨ f (t), ψnm(t)⟩, in which ⟨·, ·⟩ denotes the inner product. If the infinite series in Eq. (3) is truncated, then
Eq. (3) can be written as

f (t) ∼=

2k−1
n=1

M−1
m=0

c nm ψnm(t) = CT ψ(t),

where C and ψ(t) are 2k−1M × 1 matrices given by

C =

c10, c11, . . . , c1M−1, c20, . . . , c2M−1, . . . , c2k−10, . . . , c2k−1M−1

 T , (4)

ψ(t) =

ψ10(t), ψ11(t), . . . , ψ1M−1(t), ψ20 (t) , . . . , ψ2M−1(t), . . . , ψ2k−10 (t) , . . . , ψ2k−1M−1(t)

T
. (5)
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3. Solution of Bratu-type equations

Consider the Bratu-type equation given in Eq. (1).
Define the integral operator L (·) =

 x
0

 x
0 (·) dx dx.

Applying L to both sides of Eq. (1) yields

u(x)+ λ

 x

0

 x

0
eu dx dx = 0. (6)

Let F (x, u(x)) =
 x
0 eu(x) dx

Eq. (6) implies u(x) + λ
 x
0 F (t, u(t)) dt = 0.

Thus we have

u(x) = −λ

 x

0
F (t, u(t)) dt. (7)

Let u(x) = CT ψ(x).
Therefore we have

CT ψ(x) = −λ

 x

0
F


t, CT ψ(t)


dt. (8)

We now collocate Eq. (8) at 2k−1M points at xi as

CT ψ (xi) = −λ

 xi

0
F


t, CT ψ(t)


dt. (9)

Suitable collocation points are zeros of Chebyshev polynomials

xi = cos

(2i + 1) π/2kM


, i = 1, 2, . . . , 2k−1M.

In order to use the Gaussian integration formula for Eq. (9), we transfer the intervals [0, xi] into the interval [−1, 1] by
means of the transformation

τ =
2
xi

t − 1.

Eq. (9) may then be written as

CT ψ (xi) = −λ
xi
2

 1

−1
F

xi
2
(τ + 1) , CT ψ

xi
2
(τ + 1)


dτ .

By using the Gaussian integration formula, we get

CT ψ (xi) ≈
−λ xi
2

s
j=1

wj F
xi
2


τj + 1


, CT ψ

xi
2


τj + 1


, i = 1, 2, . . . , 2k−1M, (10)

where τj’s are s zeros of Legendre polynomials, and Ps+1 and wj are its corresponding weights. The idea behind the above
approximation is the exactness of the Gaussian integration formula for polynomials of degree not exceeding 2s + 1. Here
the weightwj can be identified with the help of the formulawj =

 1
−1

s
j=0,j≠i


τ−τj
τi−τj


dτ .

Eq. (10) gives 2k−1M nonlinear equations which can be solved for the elements of C in Eq. (7) by the Newton iterative
method.

4. Existence of uniqueness and convergence analysis.

In this section, we discuss the theoretical analysis of uniqueness and convergence of our approach.

Theorem 4.1. Uniqueness theorem
Eq. (1) has a unique solution whenever 0 < α < 1, where α = Lλx.

Proof. Eq. (1) can be written in the form u(x) = −λ
 x
0 F (t, u(t)) dt such that the nonlinear term F(u) is Lipschitz

continuous with | F(u)− F(v)| ≤ L |u − v|.
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Let u and u∗ be two different solutions for Eq. (1).u − u∗
 =

−λ  x

0
F (t, u(t)) dt − λ

 x

0
F


t, u∗(t)


dt

u − u∗
 =

− λ  x

0


F(u)− F


u∗


dt


= λ

 x

0


F(u)− F


u∗


dt

u − u∗
 ≤ λ

 x

0

F(u)− F

u∗

 dt ≤ Lλ
 x

0

u − u∗
 dt

≤ Lλ
u − u∗

 x.
This implies that |u − u∗| (1 − Lλx) ≤ 0

i.e.
u − u∗

 (1 − α) ≤ 0 where α = Lλx.

As 0 < α < 1, |u − u∗| = 0, implies u = u∗ and this completes the proof. �

Theorem 4.2. Convergence theorem
The series solution (3) of problem (1) using LWM converges towards u(x).

Proof. Let L2(R) be the Hilbert space and let ψk,n (t) = |a|−
1
2 ψ


ak0t − nb0


where ψk,n (t) form a basis of L2(R). In

particular, when a0 = 2 and b0 = 1, ψk,n (t) forms an orthonormal basis.
Let u(x) =

M−1
i=1 C1i ψ1i(x)where C1i = ⟨u(x), ψ1i(x)⟩ for k = 1 and ⟨., .⟩ represents an inner product.

u(x) =

n
i=1

⟨u(x), ψ1i(x)⟩ ψ1i (x) .

Let us denote ψ1i(x) as ψ(x).
Let αj = ⟨u(x), ψ(x)⟩.
Define the sequence of partial sums {Sn} of


αj ψ


xj

; let Sn and Sm be arbitrary partial sums with n ≥ m. We are going

to prove that {Sn} is a Cauchy sequence in Hilbert space.
Let Sn =

n
j=1 αj ψ


xj


⟨u(x), Sn⟩ =


u(x),

n
j=1

αj ψ

xj


=

n
j=1

αj

u(x), ψ


xj


=

n
j=1

αj αj

=

n
j=1

αj
2 .

We will claim that ∥Sn − Sm∥
2

=
n

j=m+1

αj
2 for n > m.

Now n
j=m+1

αj ψ

xj


2

=


n

i=m+1

αi ψ (xi) ,
n

j=m+1

αj ψ

xj


=

n
i=m+1

n
j=m+1

αi αj

ψ (xi) , ψ


xj


=

n
j=m+1

αj αj

=

n
j=m+1

αj
2

i.e. ∥Sn − Sm∥
2

=
n

j=m+1

αj
2 for n > m.
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From Bessel’s inequality, we have


∞

j=1

αj
2, is convergent and hence

∥Sn − Sm∥
2

→ 0 asm, n → ∞.

i.e. ∥Sn − Sm∥ → 0 and {Sn} is a Cauchy sequence and it converges to say ‘s’.
We assert that u(x) = s.
Infact,

S − u(x), ψ

xj


=

S, ψ


xj


−

u(x), ψ


xj


=


Lt

n→∞
Sn , ψ


xj


− αj

= Lt
n→∞


Sn, ψ


xj


− αj

= αj − αj

⇒

S − u(x), ψ


xj


= 0.

Hence u(x) = S and
n

j=1 αj ψ

xj

converges to u(x) and this completes the proof. �

As the convergence has been proved, consistency and stability are ensured automatically.

5. Error estimation

In this part, an error estimation for the approximate solution of Eq. (7) is discussed. Let us consider en(x) = u(x) − u (x)
as the error function of the approximate solution u (x) for u(x), where u(x) is the exact solution of Eq. (7).

u(x) = −λ
 x
0 F (t, u(t)) dt + Hn (x)where Hn (x) is the perturbation term.

Hn(x) = u(x)+ λ

 x

0
F (t, u(t)) dt. (11)

We proceed to find an approximation en (x) to the error function en(x) in the same way as we did before for the solution
of the problem. Subtracting Eq. (11) from Eq. (7), the error function en(t) satisfies the problem.

en(x)+ λ

 x

0
F (t, en(t)) dt = −Hn(x). (12)

It should be noted that in order to construct the approximate en (x) to en(x), only Eq. (12) needs to be recalculated in the
same way as we did before for the solution of Eq. (7).

6. Illustrative examples

Using the method presented in this paper, we solve three examples and the results have been compared with the exact
solution.

Example 1. Consider the initial value problem

u
′ ′

− 2eu = 0, 0 < x < 1

u(0) = u′(0) = 0.
(13)

We solve Eq. (13) by the method discussed in this paper with k = 1,M = 7 and s = 6.
Integrating (13), we get x

0

 x

0
u′′ dx = 2

 x

0

 x

0
eu dx

u = 2
 x

0

 x

0
eu dx

u = 2
 x

0
(t − x) eu dt.

Let u(x) = CT ψ(x) = c10ψ10+c11ψ11+c12ψ12+· · ·+c16ψ16; then the above equation is transformed into the following
form

CT ψ (xi) = xi

 1

−1
F1

xi
2
(τ + 1) , CT ψ

xi
2
(τ + 1)


dτ − x2i

 1

−1
F2

xi
2
(τ + 1) , CT ψ

xi
2
(τ + 1)


dτ .
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Fig. 1. The exact and LWM solutions of Example 1.

By using the Gaussian integration formula, we get

CT ψ (xi) ≈ xi
s

j=1

wj F1
xi
2


τj + 1


, CT ψ

xi
2


τj + 1


− x2i

s
j=1

wj F2
xi
2


τj + 1


, CT ψ

xi
2


τj + 1


where F1 (t, u(t)) = t eu ; F2 (t, u(t)) = eu.

Here we get a system of equations involving 7 variables and solving them by Newton’s iterative formula with the aid of
MATLAB, we get the values

C10 = 4.44306612088, C11 = 5.18825114824, C12 = 1.26840807332,
C13 = 0.13846668820, C14 = −0.01710306349, C15 = 0.00010334260, C16 = 0.00000002605.
u(x) = 4.44306612088ψ10 + 5.18825114824ψ11 + 1.26840807332ψ12 + · · · + 0.00000002605ψ16

= 0.0000009x + x2 + 0.00000004x3 + 0.16667x4 + 0.000000032x5 + 0.044444x6 + · · ·

≈ −2 ln (cos x)
which is the exact solution. Fig. 1 shows that the Legendre wavelet solution is very nearest to the exact solution.

Example 2. Consider the initial value problem

u′′
− π2eu = 0, 0 < x < 1

u(0) = 0; u′(0) = π.
(14)

We solve Eq. (14) with k = 1,M = 5 and s = 6.
Integrating (14), we get x

0

 x

0
u′′ dx = π2

 x

0

 x

0
eu dx

u = πx + π2
 x

0

 x

0
eu dx

u = πx + π2
 x

0
(t − x) eu dt.

By using the Gaussian integration formula, we get

CT ψ (xi) ≈ πx +
π2xi
2

s
j=1

wj F1
xi
2
(τ + 1) , CT ψ

xi
2
(τ + 1)


−
π2x2i
2

s
j=1

wj F2
xi
2
(τ + 1) , CT ψ

xi
2
(τ + 1)


, i = 1, 2, . . . , 2k−1M,

where F1 (t, u(t)) = teu ; F2 (t, u(t)) = eu .
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Fig. 2. The exact and LWM solutions of Example 2.

Solving this system of 5 variables by using Newton’s iterative formula and with the aid of MATLAB, the approximate
solution of (14) is

3.141492653 x − 4.934488044x2 + 25.83609656x3 − 16.23278151x4 + · · · .

which is very close to the exact solution u(x) = − ln(1− sin πx ). Fig. 2 shows that the Legendre wavelet solution coincides
with the exact solution.

Example 3. Consider the initial value problem

u′′
+ π2e−u

= 0, 0 < x < 1

u(0) = 0; u′(0) = π.
(15)

We solve Eq. (15) by the method discussed in this paper with k = 1,M = 5 and s = 6.
Integrating (15), we get x

0

 x

0
u′′ dx = −π2

 x

0

 x

0
e−u dx

u = πx − π2
 x

0

 x

0
e−u dx

u = πx − π2
 x

0
(t − x) e−u dt

By using the Gaussian integration formula, we get

CT ψ (xi) ≈ πx −
π2xi
2

s
j=1

wj F1
xi
2
(τ + 1) , CT ψ

xi
2
(τ + 1)


+
π2x2i
2

s
j=1

wj F2
xi
2
(τ + 1) , CT ψ

xi
2
(τ + 1)


, i = 1, 2, . . . , 2k−1M,

where F1 (t, u(t)) = t e−u
; F2 (t, u(t)) = e−u

Solving this system of 4 variables by Newton’s iterative formula and with the help of MATLAB, the approximate solution
of (15) is

3.141492653x − 4.934488044 x2 + 5.167219313x3 + 8.116390753x4 + · · · .

This solution is very close to the exact solution u(x) = ln(1 + sin πx ). Fig. 3 shows that the Legendre wavelet solution
coincides with the exact solution.
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Fig. 3. The exact and LWM solutions of Example 3.

7. Conclusion

In thiswork,we have presented the Legendrewaveletmethod (LWM) for solving initial value problems of Bratu-type. The
properties of the Legendre wavelets together with the Gaussian integration method are used to reduce the problem to the
solution of nonlinear algebraic equations. The sufficient condition that guarantees a unique solution to the given problem is
obtained. The convergence study is reliable enough to estimate the error of the Legendre wavelet method solution. As the
convergence had been proved, consistency and stability are ensured automatically. Illustrative examples reveal the validity
and applicability of the technique. Furthermore, since the basis of Legendre wavelets are polynomial, the values of integrals
for the nonlinear integral equations of the form in Eq. (6) are calculated approximately close to the exact solutions.
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