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a b s t r a c t

Our aim is to transfer several foundational results from the modular representation theory
of finite groups to the wider context of profinite groups.We are thus interested in profinite
modules over the completed group algebra k[[G]] of a profinite group G, where k is a finite
field of characteristic p.

We define the concept of relative projectivity for a profinite k[[G]]-module. We prove a
characterization of finitely generated relatively projective modules analogous to the finite
casewith additions of interest to the profinite theory.We introduce vertices and sources for
indecomposable finitely generated k[[G]]-modules and show that the expected conjugacy
properties hold—for sources this requires additional assumptions. Finally we prove a direct
analogue of Green’s Indecomposability Theorem for finitely generated modules over a
virtually pro-p group.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Themodular representation theory of a finite group G attempts to describe themodules over the group algebra kG, where
k is a field of characteristic p dividing the order of G. Under these circumstances kG is not semisimple and the vast majority
of kG-modules are not completely reducible. Towards an understanding of these modules the important concept of relative
projectivity has been considered in some depth.

Modular representation theory seems very well suited for consideration in the wider context of profinite groups. If G is a
profinite group and k is a finite field, then there is a very natural profinite analogue of the group algebra for G, and hence of
the corresponding profinite modules. There is also a well-defined Sylow theory of profinite groups that in particular allows
us to consider analogues for p-subgroups. The close connection between a profinite object and its finite quotients allows us
to generalize several foundational results of modular representation theory to a much wider universe of groups.

We give here an indication of our approach and themain results. In Section 3we define the concept of relative projectivity
for a k[[G]]-module and prove a characterization of finitely generated relatively H-projective modules, where H is a closed
subgroup of G (Theorem 3.7). Of particular note in this characterization is the fact that a k[[G]]-module is relatively H-
projective if and only if it is relatively HN-projective for every open normal subgroup N of G. In Section 4 we introduce the
vertex of an indecomposable finitely generatedmodule, proving existence (Corollary 4.3) and uniqueness up to conjugation
in G (Theorem 4.6). Crucial in the proof of 4.6, and elsewhere, is the helpful fact that a finitely generated indecomposable
k[[G]]-module has local endomorphism ring (Proposition 4.4). In Section 5 we introduce the concept of source, but note that
this object seems less natural in the profinite category than it does in the finite case. We prove under additional hypotheses
that finitely generated sources are unique up to conjugation (Theorem 5.5). In the last section we prove an analogue of
Green’s indecomposability theorem for modules over the completed group algebra of a virtually pro-p group (Theorem 6.7).
To do this, we first show that an important characterization of absolutely indecomposable modules, known to hold for
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finite groups, also holds for virtually pro-p groups (Theorem 6.6). Finally, we answer the question of what happens when
the module in question is not necessarily absolutely indecomposable, showing that the induced summands are isomorphic
(Theorem 6.10). In many proofs we utilize a class of quotient modules known as coinvariants. These give a natural inverse
system for a module with some very useful properties, many of which are elucidated in Section 2.

It is hoped that in the future, results in the area will have number theoretic applications (to Iwasawa algebras or to Galois
theory, for instance) as well as being of interest from a purely algebraic perspective.

There are excellent books available covering the prerequisite material of this paper. For a detailed introduction to
profinite objects see [13], or for an explicitly functorial approach well suited to our needs see [9]. For the modular
representation theory of finite groups see [1,2] or the encyclopedic [4]. Our discussion will for the most part follow the
path laid out in the seminal paper [6] of Green, published almost exactly 50 years ago.

2. Preliminaries

Throughout our discussion let k be a finite field of characteristic p and let G be a profinite group. We define well-known
profinite analogues of the natural objects of modular representation theory. Denote by k[[G]] the completed group algebra of
G— that is, the completion of the abstract group algebra kGwith respect to the open normal subgroups of G. Since k is finite
and G is profinite, the completed group algebra k[[G]] is profinite. A profinite k[[G]]-module is a profinite additive abelian
group U together with a continuous map k[[G]] × U → U satisfying the usual module axioms. It follows from [9, 5.1.1] that
U is the inverse limit of an inverse system of finite quotient modules of U . If not explicitly stated, our modules are profinite
left modules.

Let H be a closed subgroup of G. IfW is a right k[[H]]-module and V is a left k[[H]]-module, then we denote byW⊗k[[H]]V
the completed tensor product of W and V over k[[H]] [9, 5.5]. This is the natural profinite analogue of the abstract tensor
product and satisfies most of the properties one would expect. If eitherW or V is finitely generated as a k[[H]]-module then
the completed tensor product and abstract tensor product coincide [9, 5.5.3(d)]. Now let V be a profinite k[[H]]-module and
define the induced k[[G]]-module V ↑G as k[[G]]⊗k[[H]]V with action from G on the left factor. If U is a k[[G]]-module then the
restricted k[[H]]-module U↓H is the module U with coefficients restricted to k[[H]].

A profinite k[[G]]-module U is said to be finitely generated if there is a finite subset {u1, . . . , un} of U with every element
of U a k[[G]]-linear combination of the elements u1, . . . , un. Thus U is the module abstractly generated by the given finite
subset, but by [13, 7.2.2] this module is in fact profinite.

Whenever U,W are profinite k[[G]]-modules, denote by Homk[[G]](U,W ) the k-module of continuous k[[G]]-module
homomorphisms from U to W . We sketch proofs for some properties of this object that do not seem to be explicitly
mentioned in the literature.

Lemma 2.1. Let U and W = lim
←−

IWi be profinite k[[G]]-modules. then there is a topological isomorphism

Homk[[G]](U,W ) ∼= lim
←−

i∈IHomk[[G]](U,Wi),

where each set of maps is given the compact-open topology.

Proof. Abstractly this is essentially the definition of inverse limit. Using basic properties of the compact-open topology it is
easily verified that the obvious isomorphism is a homeomorphism. �

Corollary 2.2. If U is a finitely generated profinite k[[G]]-module and W is a profinite k[[G]]-module, then Homk[[G]](U,W ) is
profinite.

If H is a closed subgroup of G (H ≤C G) the functor (−)↑GH is left adjoint to (−)↓GH . The unit η : 1→ (−)↑G↓H is given
by ηV (v) = 1⊗v and the counit ε : (−)↓H↑G→ 1 by εU(g⊗u) = gu. In particular we have the following:

Lemma 2.3. Let H ≤C G and V a k[[H]]-module. Having identified V with 1⊗k[[H]]V ⊆ V ↑G, every continuous k[[H]]-module
homomorphism V → U↓H extends uniquely to a continuous k[[G]]-module homomorphism V ↑G→ U.

The following result will also be of use. For the definition of a filter base see [13, 1.2].

Lemma 2.4. Let U be a k[[G]]-module and let {Wi | i ∈ I} be a filter base of open subgroups of G. Then U ↓W↑G∼= lim
←−

i U ↓Wi↑
G,

where W =


Wi.

Proof. This follows from [9, 5.2.2, 5.5.2, 5.8.1].

If U is a finitely generated k[[G]]-module then we can give a reasonably explicit inverse system for U using coinvariant
quotient modules. If N is a closed normal subgroup of G, then the coinvariant module UN is defined as k⊗k[[N]]U , where the
left factor k is the trivial k[[G]]-module. The action of G on UN is given by g(λ⊗u) = λ⊗gu. In tensor product notation we
usually denote UN by k⊗NU . The module UN can usefully be described as follows:

Lemma 2.5. UN together with the canonical projection map ϕN : U → UN is (up to isomorphism) the unique k[[G]]-module on
which N acts trivially and satisfying the following universal property:

Every continuous k[[G]]-module homomorphism ρ from U to a profinite k[[G]]-module X on which N acts trivially factors
uniquely through ϕN . That is, there is a unique continuous homomorphism ρ ′ : UN → X such that ρ ′ϕN = ρ .
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Note that N is in the kernel of the action of k[[G]] on UN , so that UN can be considered as a k[[G/N]]-module. It follows
that if N is open and U is finitely generated then UN is finite. From properties of the completed tensor product (which in this
case is the same as the abstract tensor product) it is also easy to check that the operation (−)N is a right exact functor from
the category of (finitely generated) k[[G]]-modules to the category of (finitely generated) k[[G/N]]-modules.

We collect here several properties of coinvariant modules. First a list of important technical details:

Lemma 2.6. Let G be a profinite group, N,M closed normal subgroups of G with N ≤ M and H a closed subgroup of G. Let U,W
be k[[G]]-modules and let V be a k[[H]]-module. Then

1. (UN)M is naturally isomorphic to UM .
2. (U ⊕W )N ∼= UN ⊕WN .
3. VH∩N is naturally a k[[HN/N]]-module.
4. (V ↑G)N ∼= VH∩N ↑

G/N .
5. UN ↓HN/N∼= (U↓HN)N .

Proof. The maps required for 1. are obtained by repeated use of the universal property 2.5. The remaining isomorphisms
are easily verified. �

We are primarily interested in coinvariant modules for the following reason:

Proposition 2.7. If U is a profinite k[[G]]-module, then {UN |N ▹O G} together with the set of canonical quotient maps forms a
surjective inverse system with inverse limit U.

Proof. It is clear that the maps ϕMN : UN → UM given by 1⊗Nu → 1⊗Mu whenever N ≤ M are well defined and give
an inverse system of the k[[G]]-modules UN . It is also clear that we have a compatible set of maps ϕN : U → UN given by
u → 1⊗Nu. We need only show that U is in fact the inverse limit. The maps ϕN are the components of a surjective map of
inverse systems, giving a continuous surjection u → (1⊗Nu) onto the limit by [9, 1.1.5], so we need only check that this
map is injective.

To do this we use the universal property 2.5. By definition U is profinite, so is the inverse limit of some inverse system
of finite quotient modules. Fix u ≠ 0 in U and some finite quotient module U/W in which the image of u is non-zero. Then
since U/W is finite some N ▹O Gmust act trivially on U/W , so that the quotient map U � U/W factors through UN via ϕN .
But if the image of u under the composition is non-zero then certainly the image of u under ϕN is non-zero, and so the image
of u in lim

←−
UN is non-zero. Thus, our map is injective and U ∼= lim

←−
NUN , as required. �

Lemma 2.8. Let G be a profinite group and U a non-zero profinite k[[G]]-module. Let N be a closed pro-p subgroup of G. Then
UN ≠ 0.

Proof. First suppose that G is a pro-p group. Since U is profinite it has a proper open submodule of finite index and hence
a maximal submodule U ′, so the module U/U ′ is simple. But U/U ′ is finite, so can be regarded as a module for the finite p-
group G/N0 for some N0 ▹O G. The only simple module over a finite p-group is k, so that U/U ′ ∼= k and we have a surjection
β : U � k. But every N ▹C G acts trivially on k, so that β factors through every UN , and thus UN ≠ 0 for each N ▹C G.

Now let G be a general profinite group. Since U ↓N is a non-zero module for the pro-p subgroup N , by the previous
paragraph 0 ≠ (U↓N)N ∼= UN ↓N . Hence UN ≠ 0. �

The above result is particularly useful when G is a virtually pro-p group so that G has a basis of open normal pro-p
subgroups. In this case the following result will be of the utmost importance:

Proposition 2.9. Let G be a virtually pro-p group and let U be an indecomposable finitely generated k[[G]]-module. Then there
exists some N0 ▹O G such that UN is indecomposable for every N ≤ N0.

Proof. We work within the cofinal (see [9, 1.1.9]) inverse system {UN , ϕMN} of coinvariant modules for which N is a pro-p
group. Since ϕMN is functorial and summands cannot have zero image by 2.8, we see that as we move up our system the
number of direct summands of the UN cannot increase. It follows that for some N0 ▹O G and any N ≤ N0 the number n of
indecomposable summands of UN is equal to the number of indecomposable summands of UN0 . We take the cofinal inverse
system of those N contained in N0

For each N , let sN be a set {XN,1, . . . , XN,n} of n indecomposable submodules of UN intersecting pairwise in 0 and having
the property that UN is equal to the (direct) sum XN,1 ⊕ · · · ⊕ XN,n. Denote by SN the set of all possible sN — a non-empty
finite set. We form a new inverse system of the finite sets SN via the maps ψMN : SN → SM given by

ψMN(sN) = ψMN({XN,1, . . . , XN,n}) = {ϕMN(XN,1), . . . , ϕMN(XN,n)}.

Since each SN is finite and non-empty the inverse limit of this system is non-empty by [9, 1.1.4]. We fix once and for all
some element (sN) of lim

←−
SN , and for each N we choose our direct sum decomposition of UN to be the one given to us by sN .

Recall thatwe are only considering thoseN▹OG contained inN0, so that eachUN maps ontoUN0 . Fix some indecomposable
summand XN0 of UN0 (an element of sN0 ) and for each N in our system define XN to be the unique element of sN with
ϕN0N(XN) = XN0 . It is now easy to check that {XN , ϕMN |XN } is an inverse system of submodules of the UN . Denote the inverse
limit of this system by X — a submodule of U .
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We want to show that X is a summand of U . For each N , we have a canonical inclusion map XN ↩→ UN , and these maps
give a map of inverse systems {XN} → {UN} in which each component splits. This corresponds to an injection ι : X ↩→ U .
For each N , let PN denote the finite, non-empty set of projection maps UN � XN splitting the corresponding component of
ι. The functoriality of (−)N gives us an inverse system of the PN , and an element of the limit is a map of inverse systems
corresponding to a splitting π : U → X of ι. Thus X is a direct summand of U . But X ≠ 0 since XN ≠ 0 and the maps ϕN |X
are surjective, so that since U is indecomposable we must have X = U . But now XN = ϕN(X) = ϕN(U) = UN for each N ,
and thus each UN is indecomposable, as required. �

3. Relative projectivity

Our main definition is completely analogous to the equivalent definition for finite groups.

Definition 3.1. Let G be a profinite group and let H ≤C G. Then a profinite k[[G]]-module U is relatively H-projective if
whenever we are given a diagram

U

V
β
✲✲ W

ϕ

❄

of profinite k[[G]]-modules and continuous k[[G]]-module homomorphisms, then there exists a continuous k[[G]]-module
homomorphism ρ : U → V with βρ = ϕ provided there is a k[[H]]-module homomorphism with this property.

As in the finite case, a projective module is precisely a 1-projective module in the definition above. Our goal for this
section is to obtain a characterization of relativelyH-projective finitely generated k[[G]]-modules analogous toD.G. Higman’s
characterization in the finite case, forwhich see [2, 3.6.4].Wewill also demonstrate twonewcharacterizations that are trivial
in the finite case but of great use in our more general setting.

Lemma 3.2. Let G be a profinite group and H a closed subgroup of G. If U is a profinite k[[G]]-module then the following are
equivalent:

1. U is relatively H-projective.
2. If ever a continuous k[[G]]-epimorphism V � U splits as a k[[H]]-module homomorphism, then it splits as a k[[G]]-module

homomorphism.
3. U is a direct summand of U↓H↑G.
4. U is a direct summand of a module induced from some profinite k[[H]]-module.

Proof. This is proved just as for finite groups so the details are omitted. At several points we require 2.3. �

We give now two very useful characterizations of finitely generated profinite k[[G]]-modules. As is standard, we write
U

W to mean that the profinite module U is isomorphic to a direct summand of the profinite module W — of course we
insist that the splitting maps are continuous.

Proposition 3.3. Let U be a finitely generated profinite k[[G]]-module, and H ≤C G. Then U is relatively H-projective if and only
if U is relatively HN-projective for every N ▹O G.

Proof. The ‘only if’ statement is clear.We need only show that ifU is relativelyHN-projective for eachN , thenU is relatively
H-projective.

By 2.4 we have U↓H↑G∼= lim
←−

N▹OG{U↓HN↑
G, ψMN}. We will form the required splitting homomorphisms as limits of maps

of inverse systems.
For each N ▹O G the identity map U ↓HN→ U ↓HN extends uniquely to a surjection πN : U ↓HN↑G� U by 2.3. By checking

commutativity of the relevant diagrams on U ↓HN it follows that {πN |N ▹O G} is a surjective map of inverse systems. This
map yields a continuous surjective homomorphism π : U↓H↑G→ U .

We note that the map U → U ↓HN↑G given by u → 1⊗u is a k[[HN]]-homomorphism, and that it splits πN . Hence, since
U is HN-projective, we have that πN splits as a k[[G]]-homomorphism. Let IN denote the non-empty set of k[[G]]-splittings
of the map πN .

Since U is finitely generated, we have that Homk[[G]](U,U ↓HN↑
G) is compact by 2.2. Since the map from

Homk[[G]](U,U ↓HN↑G) to Endk[[G]](U) given by α → πNα is continuous, the inverse image of idU , which is IN , is closed and
hence compact.

The maps IN → IM given by ιN → ψMN ιN whenever N ≤ M make the IN into an inverse system of non-empty compact
sets, and this system has a non-empty inverse limit by [9, 1.1.4]. By definition an element of this limit is a compatible map
of inverse systems {ιN} : U → {U↓HN↑G}. This map of systems yields a unique k[[G]]-homomorphism ι : U → U↓H↑G.
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Now by the functoriality of lim
←−

we have

πι = lim
←−

πN lim
←−

ιN = lim
←−

πN ιN = lim
←−

idU = idU

so that U
U↓H↑G, as required. �

We can refine this further into a condition relying only on the finite quotients UN . The following lemmawill help us here
and elsewhere:

Lemma 3.4. Let U,W be finitely generated profinite k[[G]]-modules and let N be a cofinal inverse system of open normal
subgroups of G.

• If UN

WN for each N ∈ N , then U
W.

• If UN ∼= WN for each N ∈ N , then U ∼= W.

Proof. For each N ∈ N , let PN denote the non-empty finite set of surjections πN : WN � UN that split. Whenever N ≤ M
define γMN : PN → PM by πN → (πN)M . This gives an inverse system of finite non-empty sets. Thus we have a non-empty
inverse limit, and we fix an element (πN) of this limit.

For each N we have a non-empty finite set IN of injections ιN : UN → WN splitting πN . As above we have a map IN → IM
since

πM(ιN)M = (πN)M(ιN)M = (πN ιN)M = idUM

and again we have an inverse system. An element (ιN) of the limit of this system is a splitting of (πN), and it follows that
U

W .
The second claim follows from the first by noting (for instance) that if each map πN is injective, then so is the limit

map π . �

Proposition 3.5. Let U be a finitely generated profinite k[[G]]-module, and H ≤C G. Then U is relatively H-projective if and only
if UN is relatively HN-projective for every N ▹O G.

Proof. Fix N ▹O G. If U is H-projective then U is HN-projective. Now the functoriality of (−)N ensures that

U
U↓HN↑G =⇒ UN

 (U↓HN↑G)N =⇒ UN

UN ↓HN↑
G

so that UN is HN-projective.
To show the converse, fix someM ▹O G. We take the cofinal inverse system of UN for N ▹O G and N ≤ M , noting that each

UN is relatively HM-projective. We will show that lim
←−

UN = U is relatively HM-projective.

By assumption we have UN

UN ↓HM/N↑
G/N for each N in our inverse system. But UN ↓HM/N↑

G/N∼= (U ↓HM↑G)N by 2.6, so
that for each N we have

UN

 (U↓HM↑G)N
and the claim now follows from 3.4. Thus U is HM-projective for eachM , and the result follows from 3.3. �

Definition 3.6. If H ≤O G and U,W are k[[G]]-modules, then the trace map

TrH,G : Homk[[H]](U↓H ,W ↓H)→ Homk[[G]](U,W )

is defined by

α →
−
s∈G/H

sαs−1.

For open H the properties of the trace map given in [2, 3.6.3] carry through just as for finite groups. We now complete
our characterization of finitely generated relatively H-projective k[[G]]-modules:

Theorem 3.7. Let G be a profinite group, let H ≤C G, and let U be a finitely generated profinite k[[G]]-module. Then the following
are equivalent:

1. U is relatively H-projective.
2. If ever a continuous k[[G]]-epimorphism V � U splits as a k[[H]]-module homomorphism, then it splits as a k[[G]]-module

homomorphism.
3. U is a direct summand of U ↓H↑G.
4. U is relatively HN-projective for every N ▹O G.
5. UN is relatively HN-projective for every N ▹O G.
6. U is a direct summand of a module induced from some profinite k[[H]]-module.
7. For every N ▹O G there exists a continuous k[[HN]]-endomorphism αN of U such that idU = TrHN,G(αN).

Proof. The equivalence of statements 1, 2, 3, 4, 5 and 6 follows from results above. That 6 implies 7 is shown as with the
finite proof [2, 3.6.4] after using the transitivity property X ↑G∼= X ↑HN↑G, where X is the k[[H]]-module coming from 6. The
proof that 7 implies 4 also mimics the finite case [2, 3.6.4]. �
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4. Vertices

Our definition for vertex is again in direct analogy with the corresponding definition when the group G is finite:

Definition 4.1. Let U be a finitely generated indecomposable profinite k[[G]]-module. A vertex Q of U is a closed subgroup
of Gwith respect to which U is relatively projective, but such that U is not projective relative to any proper closed subgroup
of Q .

Unlike in the finite case, we must check that a vertex of U exists. We do this using the following lemma, which is useful
in other situations:

Lemma 4.2. Let G be a profinite group and let W = {Wi | i ∈ I} be a filter base of closed subgroups of G. Let U be a finitely
generated profinite k[[G]]-module that is projective relative to each of the Wi. Then U is projective relative to W =


i∈I Wi.

Proof. By 3.3 it suffices to show thatU is relativelyWN-projective for arbitraryN▹OG, so fix some suchN . From [13, 0.3.1(h)]
we have

WN =


Wi


N =


WiN.

The set {WiN | i ∈ I} is finite and thus for someWi1, . . . ,Win ∈ W we have

WN = Wi1N ∩ · · · ∩WinN = (Wi1 ∩ · · · ∩Win)N.

But now by hypothesis there is some Wj ∈ W with Wj ⊆ Wi1 ∩ · · · ∩ Win so that WN = WjN for some j ∈ I . The result
follows. �

Corollary 4.3. If U is an indecomposable finitely generated profinite k[[G]]-module, then a vertex of U exists.

Proof. Demonstrating the existence of a vertex amounts to showing that the set I of closed subgroups of Gwith respect to
which U is relatively projective has a minimal element.

The set I is a partially ordered set when ordered by inclusion.We need only show that any chainJ in I has a lower bound
in I, and then Zorn’s lemma gives us that I has a minimal element Q . But from 4.2 it follows that U is projective relative to
R =


{H |H ∈ J}. Thus R is a lower bound for J and the result follows. �

Ourmain result for this section is that two vertices of a finitely generated indecomposable k[[G]]-moduleU are conjugate
by an element of G. To prove this we require that U have local endomorphism ring. This is known when G is virtually pro-p
[10, 2.1] but by observing that profinite modules are pure injective, we easily obtain the result for general G:

Proposition 4.4. Let G be a profinite group and let U be an indecomposable finitely generated k[[G]]-module. Then U has local
endomorphism ring.

Proof. Let E = Endk[[G]](U) be the ring of continuous k[[G]]-endomorphisms of U , and note that by [13, 7.2.2] this ring
coincides with the ring of abstract k[[G]]-endomorphisms of U . If W were an abstract summand of U then W would be
finitely generated and hence profinite. It follows that U is indecomposable as an abstract k[[G]]-module. A profinite module
is compact in the sense of [12] and so it follows from [12, Theorem 2] that U is pure-injective.

Now [5, 2.27] tells us that the abstract endomorphism ring of an abstract indecomposable pure-injective module is a
local ring. In particular, E is a local ring. �

The relevance of this proposition is the following well-known general result. We include a short proof for the reader’s
convenience.

Lemma 4.5. Let R be a ring with 1 and let U, V ,W be R-modules, where U has local endomorphism ring. If U
 (V ⊕W ), then

U
V or U

W.

Proof. Whenever X is isomorphic to a summand of V ⊕W , let πX , ιX denote splitting maps in the obvious way. We have

idU = πU(ιVπV + ιWπW )ιU = πU ιVπV ιU + πU ιWπW ιU

and since U has local endomorphism ring (so in particular the non-units form an additive group), one of the summands on
the right hand side (the first, say) is invertible. Thus idU = πU ιVπV ιUγ for some γ ∈ End(U), and now parenthesizing as
idU = (πU ιV )(πV ιUγ ) demonstrates that U

V . �

Theorem 4.6. Let G be a profinite group, U an indecomposable finitely generated k[[G]]-module, and let Q , R be vertices of U.
Then there exists x ∈ G such that Q = xRx−1.
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Proof. The module U is relatively R-projective so is relatively RN-projective for every open normal subgroup N of G. Fix
some such N . Since U

U↓RN↑G and U
U↓Q↑G we have that U is a direct summand of

U↓RN↑G↓Q↑G∼=


s∈Q\G/RN

s(U↓RN)↓Q∩sRNs−1↑
G

where the above sum (coming from the Mackey decomposition formula [11, 2.2]) makes sense since RN is open so the set
of double coset representatives is finite. But now since U has local endomorphism ring, 4.5 shows that

U
 s(U↓RN)↓Q∩sRNs−1↑G

for some s ∈ G. Thus U is relatively Q ∩ sRNs−1-projective. But Q is minimal, so we must have Q ⊆ sRNs−1.
Denote by CN the set of all s ∈ G such that Q ⊆ sRNs−1. Since CN is a union of sets of the form QgRN for appropriate

g ∈ G, it follows that each CN is closed in G. We thus have a collection of closed, non-empty sets {CN |N ▹O G} and we wish
to show that their intersection is non-empty. Let N1, . . . ,Nn be open normal subgroups of G. Then N1 ∩ · · · ∩ Nn ▹O G and
so by the previous argument CN1∩···∩Nn ≠ ∅. This means that there exists s ∈ G such that Q ⊆ sR(N1 ∩ · · · ∩ Nn)s−1 so that
certainly for each i ∈ {1, 2, . . . , n} we have Q ⊆ sRNis−1. So CN1∩···∩Nn ⊆ CN1 ∩ · · · ∩ CNn and thus CN1 ∩ · · · ∩ CNn ≠ ∅. By
compactness we now have


N CN is non-empty.

It follows that there is some x ∈ G such that

Q ⊆ xRNx−1 ∀N ▹O G
Q ⊆


{xRx−1N |N ▹O G}

Q ⊆ xRx−1 by [13, 0.3.3].

Repeating the same argument with Q and R interchanged, we find y ∈ G such that R ⊆ yQy−1.
But now Q ⊆ xRx−1 ⊆ (xy)Q (xy)−1. Since profinite groups are well behaved under conjugation it follows that

Q = (xy)Q (xy)−1, and so Q = xRx−1 as required. �

For the background Sylow theory we require for the following results see [13, Chapter 2].

Proposition 4.7. If H is a closed subgroup of a profinite group G containing a p-Sylow subgroup of G, then any finitely generated
profinite k[[G]]-module U is relatively H-projective.

Proof. Since U is finitely generated, by 3.3 we need only show that U is relatively HN-projective for any given N ▹O G.
Suppose we have a diagram as in 3.1 and a continuous k[[HN]]-module homomorphism ρ ′ : U → V making the diagram
commute. Since the supernatural number |G : H| is coprime to p, the finite number |G : HN| is non-zero in the field k. Hence
the continuous map

ρ = 1/|G : HN|
−

s∈G/HN

sρ ′s−1

is well defined, and as in the finite case we check that ρ is a k[[G]]-module homomorphism such that βρ = ϕ. �

Corollary 4.8. If U is a finitely generated indecomposable k[[G]]-module, then any vertex of U is a pro-p group.

Proof. By 4.7, U has a pro-p vertex, and now since the set of pro-p subgroups of G is closed under conjugation the result
follows from 4.6. �

5. Sources

For an indecomposable finitely generated module U over a finite group, there is attached to any vertex Q of U a finitely
generated indecomposable kQ -module S with the property that U

 S ↑G. This object is easily seen to be unique up to
conjugation by elements of NG(Q ). If G is a profinite or even a pro-p group, the corresponding notion of source seems
less natural, and even existence is not clear in general. None-the-less, we prove that if G is virtually pro-p and U is an
indecomposable finitely generated k[[G]]-module with vertex Q and finitely generated sources S and T , then S and T are
conjugate in NG(Q ).

The following simple lemma will prove key:

Lemma 5.1. Let G be a virtually pro-p group, let H be a closed subgroup of G and let V be a finitely generated indecomposable
k[[H]]-module. Then there exists a cofinal inverse system of N ▹O G for which each V ↑HN is indecomposable.

Proof. For any N ▹O Gwe have by 2.6 that

(V ↑HN)N ∼= VH∩N ↑
HN/N∼= VH∩N .

Since V ∼= lim
←−

N▹OGVH∩N it follows by 2.9 that there is a cofinal inverse system of N ▹O G for which VH∩N and thus (V ↑HN)N
is indecomposable. Now since we can choose our system of N to be pro-p we have by 2.8 that no non-zero summands of
V ↑HN can become zero on taking coinvariants, and so V ↑HN is indecomposable. �



760 J.W. MacQuarrie / Journal of Pure and Applied Algebra 215 (2011) 753–763

Recall that if V is a profinite k[[H]]-module forH ≤C G and x ∈ G thenwe denote by x(V ) the k[[xHx−1]]-module x⊗k[[H]]V
with action from xHx−1 given by

xhx−1(x⊗v) = x⊗hv.
The functor x(−) is exact. We include two technical facts about how conjugation interacts with induction and coinvariants:

Lemma 5.2. Let Q ≤C H ≤C G, let T be a k[[Q ]]-module, and let x ∈ G. Then

x(T )↑xHx
−1
∼= x(T ↑H).

Proof. This is easily checked. �

Lemma 5.3. Let H ≤C G, N ▹O G, and let T be a k[[H]]-module. Then

(x(T ))xHx−1∩N ∼= x(TH∩N).

Proof. If K is the kernel of the canonical map T � TH∩N then the result follows by conjugating the exact sequence
K → T → TH∩N by x. �

Definition 5.4. Let G be a profinite group and let U be a finitely generated indecomposable profinite k[[G]]-module with
vertex Q . A source of U is an indecomposable k[[Q ]]-module S such that U

 S↑G.
If G is a virtually pro-p group then our primary unanswered question is whether a finitely generated indecomposable

k[[G]]-modulewith vertexQ need be a summand ofV ↑GQ for some finitely generatedmoduleV . If not then even the existence
of a source for U is uncertain. If a finitely generated source exists then we have the following analogue to the well-known
result for finite groups:

Theorem 5.5. Let G be a virtually pro-p group and let U be a finitely generated indecomposable k[[G]]-module with vertex Q and
finitely generated source. If S, T are finitely generated k[[Q ]]-modules that act as sources of U, then S ∼= x(T ) for some x ∈ NG(Q ).

Proof. We work within a cofinal system of N ▹O G for which SQ∩N , TQ∩N , S ↑QN and T ↑QN are indecomposable — this is
allowed by 2.9 and 5.1. For any N in this system we have

U
 S↑G =⇒ U↓QN

 S↑G↓QN∼= 
z∈QN\G/Q

z(S)↓zQz−1∩QN↑
QN .

Since U
U ↓QN↑G we must have that some indecomposable summand X of U ↓QN has vertex conjugate to Q . If zQz−1 ∩ QN

is properly contained in zQz−1 the summands of z(S)↓zQz−1∩QN have vertex strictly smaller than a conjugate of Q , and so it
follows that for some z ∈ G with zQz−1 ⊆ QN we have X

 z(S)↓zQz−1∩QN↑QN= z(S)↑QN . Note also that

zQz−1 ⊆ QN =⇒ zQz−1N ⊆ QN =⇒ zQNz−1 = QN

so that z ∈ NG(QN).
Since z(S)↑QN∼= z(S↑QN) by 5.2 and S↑QN is indecomposable, it follows that z(S)↑QN is indecomposable and so for this z

we have

z(S)↑QN
U↓QN .

On the other hand U
 T ↑G, so

z(S)↑QN
 T ↑G↓QN∼= 

y∈QN\G/Q

y(T )↓yQy−1∩QN↑
QN

and by the same argument we find that z(S)↑QN∼= y(T )↑QN for some element y ∈ NG(QN).
Note that zQz−1/(zQz−1 ∩ N) ∼= zQNz−1/N ∼= QN/N . We will use this observation and 5.3 to transfer these results

from the setting of induced modules to the setting of coinvariant modules where we have the necessary tools to draw the
conclusions we require:

For each N ▹O G in our inverse system we have

z(S)↑QN ∼= y(T )↑QN

=⇒ (z(S)↑QN)N ∼= (y(T )↑QN)N
=⇒ z(S)zQz−1∩N ∼= y(T )yQy−1∩N

=⇒ z−1(z(S)zQz−1∩N)∼= z−1(y(T )yQy−1∩N)
=⇒ SQ∩N ∼= z−1y(T )(z−1y)Q (z−1y)−1∩N
=⇒ SQ∩N ∼= z−1y(TQ∩N).

Denote by CN the set of w ∈ NG(QN) such that SQ∩N ∼= w(TQ∩N). Since z−1y (which depends on N) satisfies these
conditions it follows that CN is non-empty. Each CN is also clearly closed in G. The theorem follows easily once we show the
intersection


N CN is non-empty.
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Certainly CN1∩···∩Nn ≠ ∅ for any finite set N1, . . . ,Nn. Let N1 ∩ · · · ∩ Nn = M and fixw ∈ CM . Now M ≤ Ni for each i and
so

SQ∩M ∼=w(TQ∩M)
=⇒ (SQ∩M)QM∩Ni

∼=w(TQ∩M)QM∩Ni
=⇒ SQ∩Ni

∼=w(TQ∩Ni)

by 2.6 so thatw ∈ CNi for each i, and sow ∈ CN1 ∩ · · · ∩ CNn . Thus, by compactness we have


N CN ≠ ∅.
Fix x ∈


N CN , so that for each N in our system we have

SQ∩N ∼= x(TQ∩N),
and since x ∈


N NG(QN) = NG(Q ), we can rewrite this isomorphism as

SQ∩N ∼= x(T )Q∩N
so that by 3.4 we have S ∼= x(T ), as required. �

6. Green’s indecomposability theorem

Green’s indecomposability theorem says that if V is a finitely generated absolutely indecomposablemodule for the group
algebra kH , where H is a subnormal subgroup of the finite group F of index a power of p, then the module V ↑F is also
absolutely indecomposable.We extend this result tomodules over the completed group algebra of a virtually pro-p group G.

Throughout this section let G be a virtually pro-p group and let U be an indecomposable finitely generated profinite
k[[G]]-module. By 2.8 and 2.9 we can choose a cofinal inverse system of N ▹O Gwith UN non-zero and indecomposable, and
we will work within this system throughout. All rings we consider have a 1. We do not allow 1 to equal 0.

For each N in our system let EN = Endk[[G]](UN), RN = rad(Endk[[G]](UN)) and ẼN = EN/RN . Each EN is a local ring and
thus ẼN is a finite division ring [4, 5.21] so is a finite field. It is clear that this field must contain k. Our aim for the next few
lemmas is to show that Endk[[G]](U)/rad(Endk[[G]](U)) ∼= lim

←−
ẼN .

Define maps ρMN : EN → EM whenever N ≤ M as follows: If αN ∈ EN then define ρMN(αN) = αM ∈ EM by αM(1⊗Mu) =
1⊗MαN(u). Each ρMN is a ring homomorphism.

Lemma 6.1. The map ρMN sends the radical RN of EN into RM , and thus induces a map ρ̃MN : ẼN → ẼM , which is a ring
homomorphism.
Proof. This is easily checked by noting that elements of the radical RN are precisely the nilpotent endomorphisms of UN . �

Observe that {EN , ρMN} is an inverse system of finite rings and {ẼN , ρ̃MN} is an inverse system of finite fields. Since field
homomorphisms are injective we can choose a cofinal inverse system of N for which every ẼN = k′, for some fixed finite
extension field k′ of k. From now on we will work inside this cofinal inverse system.

Define E = Endk[[G]](U), R = rad(E), Ẽ = Ẽ(U) = E/R. Note that using the universal property of (−)N a simple tweaking
of 2.1 shows that E ∼= lim

←−
NEN . Denote by ρN the map E → EN from the above limit. This is the map given by applying the

functor (−)N to the morphisms in E.
Lemma 6.2. The radical of E maps into the radical of EN under ρN , for each N.
Proof. Recall that the radical of E consists of all non-invertible endomorphisms of U . Fix an element α in the radical of E, so
that α is not an isomorphism. If α were surjective, then each αN would also be onto because (−)N is right exact. But then
each αN would be an isomorphism, and hence so would be α, contrary to assumption. It follows that α is not surjective. If
each ρN(α) = αN were onto then so would be α, so we can find some N0 ▹O Gwith αN0 not onto.

We note that for any N ′ ▹O G contained in N0, the corresponding αN ′ is not onto. Fix some arbitrary N ▹O G, and consider
L = N ∩ N0. Then αL is not onto since L ≤ N0, so that αL ∈ RL. But now by Lemma 6.1 this implies that αN ∈ RN as well, so
that the image of R in EN is contained inside RN . �

The endomorphism ring of U is local by Proposition 4.4, and thus Ẽ is a division ring.

Lemma 6.3. The division ring Ẽ is a finite field and is isomorphic to lim
←−

ẼN .

Proof. For each N we have canonical surjections γN : EN � EN/RN = ẼN , which give a map of inverse systems since for
N ≤ M the diagrams

EN
γN✲✲ ẼN

EM

ρMN

❄ γM✲✲ ẼM

ρ̃MN

❄

commute. This map of inverse systems gives a surjection of rings γ from E to lim
←−

ẼN .
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We note now since ρN(R) ⊆ RN for each N , that R ⊆ ker(γ ). Hence, we can factor out R to obtain a surjection from
E/R = Ẽ to lim

←−
ẼN . But this is now a surjection of division rings and hence an isomorphism of fields, as required. �

If F is a finite group, recall that a kF-module W is said to be absolutely indecomposable if the k′F-module k′ ⊗k W is
indecomposable for all field extensions k′ of k. By [4, 30.29], W is absolutely indecomposable if and only if Ẽ(W ) ∼= k. We
thus have the following immediate corollary to 6.3:

Corollary 6.4. If G is a virtually pro-p group and U is a finitely generated k[[G]]-module with corresponding Ẽ ∼= k, then U is the
inverse limit of an inverse system of finite absolutely indecomposable modules.

From [4, 7.14, 3.34, 30.27] we can make several important deductions. Firstly if F is a finite group and W is a finitely
generated kF-module, then W is absolutely indecomposable if and only if k′ ⊗k W is indecomposable for all finite field
extensions k′ of k. Secondly, ifW is not absolutely indecomposable then the extension l of the field k required for l⊗k W to
decompose does not depend directly on F orW , but only on the field Ẽ(W ). These facts ensure that the following definition
is appropriate:

Definition 6.5. A finitely generated profinite k[[G]]-module U is absolutely indecomposable if the k′[[G]]-module k′U =
k′⊗kU is indecomposable for all finite field extensions k′ of k.

Theorem 6.6. If G is a virtually pro-p group, then a finitely generated k[[G]]-module U is absolutely indecomposable if and only
if Ẽ ∼= k.

Proof. If Ẽ ∼= k then by 6.4, U is the inverse limit of a cofinal inverse system of absolutely indecomposable modules UN .
Suppose that k′ ⊗k U decomposes as X ⊕ Y for some finite extension field k′ of k and some X, Y ≠ 0. Then

k′ ⊗k UN ∼= (k′ ⊗k U)N ∼= (X ⊕ Y )N ∼= XN ⊕ YN .

But XN and YN are non-zero since N is pro-p, by 2.8, contradicting the absolute indecomposability of UN .
To show the forward implication, assume that Ẽ = k′ for k′ a finite field extension of k which properly contains k. Since

Ẽ ∼= lim
←−

ẼN we have a cofinal inverse system of modules UN for which ẼN = k′.
By the discussion prior to 6.5 there is a fixed finite extension field l of k for which each l⊗kUN decomposes. But

lim
←−

(l⊗kUN) ∼= l⊗klim
←−

UN = l⊗kU

since by [9, 5.5.2] complete tensoring commutes with lim
←−

and the actions of l and G carry through this isomorphism. Now
the contrapositive of 2.9 demonstrates that l⊗U decomposes, so that U is not absolutely indecomposable. �

We can now prove Green’s indecomposability theorem for virtually pro-p groups:

Theorem 6.7. Let G be a virtually pro-p group, let H ▹C G with G/H a pro-p group, and let V be a finitely generated absolutely
indecomposable k[[H]]-module. Then V ↑G is absolutely indecomposable.

Proof. Suppose for contradiction that V ↑G decomposes, so that V ↑G= X ⊕ Y for k[[G]]-modules X, Y ≠ 0. By 6.6 the
module V has corresponding Ẽ(V ) = k, so by 6.4 we can find some open normal pro-p subgroupN of Gwith VH∩N absolutely
indecomposable. Then

VH∩N ↑
G/N∼= (V ↑G)N = (X ⊕ Y )N ∼= XN ⊕ YN

where XN , YN ≠ 0 by 2.8, so that VH∩N ↑
G/N decomposes. But this decomposition contradicts Green’s indecomposability

theorem for finite groups [4, 19.23], and so V ↑G must be indecomposable.
For absolute indecomposability note that there is a cofinal inverse system of N ▹O G for which Ẽ(VH∩N ↑

G/N) ∼= k. But
VH∩N ↑

G/N∼= (V ↑G)N so that Ẽ((V ↑G)N) ∼= k for each N . Now V ↑G is absolutely indecomposable by 6.3 and 6.6. �

As for finite groups we have immediate corollaries:

Corollary 6.8. Let G be a virtually pro-p group, let H ≤C G be subnormal in G with |G : H| a (possibly infinite) power of p, and
let V be a finitely generated absolutely indecomposable k[[H]]-module. Then V ↑G is absolutely indecomposable.

Corollary 6.9. Let G be a pro-p group, let H ≤C G, and let V be a finitely generated absolutely indecomposable k[[H]]-module.
Then V ↑G is absolutely indecomposable.

Proof. Each G/N is a finite p-group so that HN/N is subnormal in G/N and the result follows as above. �

We include a virtually pro-p version of a variant of Green’s indecomposability theorem (for the finite case see [7], [3] or
[8]). It seems a pity that this result is not widely known for finite groups.

Theorem 6.10. Let H be a closed subgroup of a virtually pro-p group G and let V be a finitely generated indecomposable k[[H]]-
module. If either H is subnormal in G and of index some (possibly infinite) power of p, or G is pro-p, then the indecomposable
summands of V ↑G are isomorphic.
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Proof. If the module V ↑G is indecomposable then we are done. Otherwise write V ↑G= X ⊕ Y ⊕ Z with X, Y non-zero and
indecomposable. We will show that X ∼= Y .

Choose a cofinal inverse system of open normal pro-p subgroups N of G so that V itself and the indecomposable
summands of V ↑G remain indecomposable on taking coinvariants. Now for any such N we have

VH∩N ↑
G/N∼= (V ↑G)N ∼= XN ⊕ YN ⊕ ZN .

But VH∩N is a finitely generated indecomposable module over the finite group HN/N , and under either hypothesis given
above we have XN ∼= YN by [7]. It now follows immediately from 3.4 that X ∼= Y and we are done. �
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