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Abstract

We consider filtration consistent nonlinear expectations in probability spaces satisfying only the
usual conditions and separability. Under a domination assumption, we demonstrate that these nonlinear
expectations can be expressed as the solutions to Backward Stochastic Differential Equations with Lipschitz
continuous drivers, where both the martingale and the driver terms are permitted to jump, and the martingale
representation is infinite dimensional. To establish this result, we show that this domination condition is
sufficient to guarantee that the comparison theorem for BSDEs will hold, and we generalise the nonlinear
Doob–Meyer decomposition of Peng to a general context.
c⃝ 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Much work has been done regarding risk-averse decision making in various contexts. One
approach to this has been to assume that agents make decisions based on the ‘expectation’ of
a random outcome, but to allow this expectation to be nonlinear. This allows resolution of the
famous Allais and Ellsberg paradoxes (see [11]), while still retaining much of the flavour of
classical approaches.

A significant problem in this context is to guarantee that these nonlinear expectations are
time consistent, that is, that they can be consistently updated using new observations. As many
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nonlinear expectations are not time-consistent, it is useful to give representations for those which
are.

In [17] (see also [19]), Peng gives an axiomatic approach to these nonlinear expectations.
In [17], of particular interest are the ‘g-expectations’, which arise from the solutions to
Backward Stochastic Differential Equations (BSDEs). In [7], it is shown that every nonlinear
expectation satisfying a certain domination property must solve a BSDE. At the end of that paper
[7, Remark 7.1], the following comment is made.

“In this paper we have limited ourselves to treat the situation where the filtration
is generated by a Brownian motion. A natural question is whether our nonlinear
supermartingale decomposition approach can be applied to more general situations. A
general positive answer seems unlikely, due to the lack of comparison theorem for BSDEs
driven by discontinuous processes.”

In this paper, we answer this question in the affirmative, using the BSDEs and comparison
theorem in [4]. We show that all nonlinear expectations satisfying a domination property similar
to that in [7] can be represented by solutions to BSDEs. The domination property which we use is
sufficient to guarantee that a comparison theorem holds, and so this extension of [7] is possible.
We do this making no substantive assumptions on the probability space (we only assume the
usual conditions and that L2(FT ) is separable). Furthermore, even in the context of a Brownian
filtration, our results extend [7] to allow a countable number of independent Brownian motions.

Various other extensions of [7] are known. For the case of a Lévy filtration, a corresponding
result was obtained by Royer [21]. In discrete time, a stronger representation is also known
(see [3,5]). A more general result, restricted to the context of a Brownian filtration, is given by
Hu et al. [12]. This result uses a weaker domination property, which corresponds to considering
solutions to quadratic BSDEs. As no existence results for quadratic BSDEs are available in the
general context considered in [4], we are not yet able to encompass these cases.

Alternative approaches to the representation of nonlinear expectations exist, for example,
Bion-Nadal [1,2] has a representation for the penalty term of time-consistent convex risk
measures (which, up to a change of sign, can be seen to be equivalent to the nonlinear
expectations considered here). Similarly, in the Brownian filtration, Delbaen et al. [9] represent
these penalty terms using g-expectations. The approach of this paper is instead to give a
representation of the nonlinear expectation directly, which allows us to avoid any assumption
of convexity.

In this paper, we begin by summarising and generalising the results and approach of [4]
to BSDEs in general probability spaces. We then also reproduce the key results on filtration-
consistent expectations (without proof where the result is exactly as in [7]). We proceed to
generalise a result of [18], giving a Doob–Meyer type decomposition for g-expectations in
general probability spaces, and furthermore, for general nonlinear expectations satisfying our
domination property. Finally, using the previous results, we show that any nonlinear expectation
satisfying our domination property must equal a g-expectation.

2. BSDEs in general spaces

2.1. Existence of BSDE solutions

We here give the key results regarding BSDEs in general probability spaces. These are taken
without proof from [4]. For simplicity, we shall restrict our attention to the scalar case. As usual,
unless otherwise indicated, all (in-)equalities should be read as ‘up to evanescence’.
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Assumption 1. We shall henceforth assume that

(i) the usual conditions hold on our filtered probability space (Ω , F , {Ft }t∈[0,T ], P), and F0 is
the P-completion of the trivial σ -algebra {Ω , ∅},

(ii) L2(FT ) is separable, and
(iii) we have some (arbitrary) deterministic, strictly increasing process µ with µT < ∞.

Remark 1. The process µ will be used in the place of Lebesgue measure in our BSDE. The
assumption that F0 is trivial is not strictly necessary, but is used to simplify notation (as it implies
no martingale has a jump at zero).

Definition 1. For any nondecreasing process of finite variation µ, we define the measure induced
by µ to be the measure over Ω × [0, T ] given by

A → E


[0,T ]

IA(ω, t)dµ


.

Here A ∈ P , the predictable σ -algebra, IA is the indicator function of A, and the integral is taken
pathwise in a Stieltjes sense.

The following version of the martingale representation theorem (from [8], see also [14,16]) is
fundamental to our approach.

Theorem 1 (Martingale Representation Theorem; [8]). Suppose L2(FT ) is a separable Hilbert
space, with an inner product (X, Y ) = E[XY ]. Then there exists a finite or countable sequence
of square-integrable {Ft }-martingales M1, M2, . . . such that every square integrable {Ft }-
martingale N has a representation

Nt = N0 +

∞
i=1


]0,t]

Z i
ud M i

u

for some sequence of predictable processes Z i . This sequence satisfies

E


∞

i=0


]0,T ]

(Z i
u)2d⟨M i

⟩u


< +∞. (1)

These martingales are orthogonal (that is, E[M i
T M j

T ] = 0 for all i ≠ j ), and the predictable
quadratic variation processes ⟨M i

⟩ satisfy

⟨M1
⟩ ≻ ⟨M2

⟩ ≻ · · · ,

where ≻ denotes absolute continuity of the induced measures (Definition 1). Furthermore,
these martingales are unique, in that if N i is another such sequence, then ⟨N i

⟩ ∼ ⟨M i
⟩,

where ∼ denotes equivalence of the induced measures.

We shall denote by R∞ the set of countable sequences of real values.

Definition 2 (See [4]). We define the stochastic seminorm ∥ · ∥Mt on R∞ as follows. For each
i ∈ N, consider ⟨M i

⟩ as a measure on the predictable σ -algebra. Let ⟨M i
⟩ have the Lebesgue-

decomposition

⟨M i
⟩t = mi,1

t + mi,2
t ,
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where mi,1
t is absolutely continuous with respect to µ × P and mi,2

t is orthogonal to µ × P.
As they represent bounded measures on the predictable σ -algebra, both mi,1

t and mi,2
t will be

nondecreasing predictable processes. We define, for zt ∈ R∞,

∥zt∥
2
Mt

:=


i


(zi

t )
2 dmi,1

d(µ × P)


where zi

t ∈ R is the i’th element in zt and dmi,1

d(µ×P)
is a version of the Radon–Nikodym derivative

which is zero mi,2-a.e.

We note that, for any predictable, progressively measurable process Z taking values in R∞,
and in particular for processes satisfying (1), we have the inequality

E


A

∥Z t∥
2
Mt

dµt


≤ E


i


A
(Z i

t )
2d⟨M i

⟩t



= E


i


A

Z i
t d M i

t

2


= E


i


A

Z i
t d M i

t

2
 (2)

for any predictable set A ⊆ Ω×[0, T ]. (Note the latter equalities are simply the standard isometry
used in the construction of the stochastic integral, by the orthogonality of the M i .)

Definition 3. For any predictable process Z taking values in R∞ with (2) finite, any predictable
set A, for notational simplicity we shall write

A
Z t · d Mt :=


i


A

Z i
t d M i

t ,

Z t · 1Mt :=


i

Z i
t 1M i

t ,
A

Z2
t · d⟨M⟩t :=


i


A
(Z i

t )
2d⟨M i

⟩t .

Definition 4. We define the following spaces

H2
M =


Z : Ω × [0, T ] → R∞, predictable, E


]0,T ]

Z2
t · d⟨M⟩t


< +∞


,

S2
=


Y : Ω × [0, T ] → R, adapted, E


sup

t∈[0,T ]

(Yt )
2


< +∞


,

H2
µ =


Y : Ω × [0, T ] → R, progressive,


]0,T ]

E[(Yt )
2
]dµt < +∞


,

where two elements Z , Z̄ of H2
M are deemed equivalent if

E


[0,T ]

(Z t − Z̄ t )
2
· d⟨M⟩t


= 0,

two elements of S2 are deemed equivalent if they are indistinguishable, and two elements of H2
µ

are equivalent if they are equal µ × P-a.s.
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Remark 2. We note that H2
M is itself a complete metric space, with norm given by Z → E

]0,T ]
Z2

t · d⟨M⟩t


. Similarly for H2

µ. Note also that the martingale representations constructed

in Theorem 1 are unique in H2
M .

Theorem 2 (See [4]). Let g : Ω × [0, T ] × R × R∞
→ R be a predictable function such that

• E


]0,T ]
|g(ω, t, 0, 0)|2dµt


< +∞.

• There exists a quadratic firm Lipschitz bound on F, that is, a measurable deterministic
function ct uniformly bounded by some c ∈ R, such that, for all y, y′

∈ R, z, z′
∈ R∞,

all t > 0

|g(ω, t, y, z) − g(ω, t, y′, z′)|2 ≤ ct |y − y′
|
2
+ c∥z − z′

∥
2
Mt

dµ × dP−a.s.

and

ct (1µt )
2 < 1 for all t > 0.

Note that the variable bound ct need only apply to the behaviour of F with respect to y.

A function satisfying these conditions will be called standard. Then for any Q ∈ L2(FT ), the
BSDE with driver g

Yt −


]t,T ]

g(ω, u, Yu−, Zu)dµu +


]t,T ]

Zu · d Mu = Q (3)

has a unique solution (Y, Z) ∈ S2
× H2

M .

From this point onwards, for notational simplicity, we shall regard ω as implicit in the function
g, whenever this does not lead to confusion.

Remark 3. Note that the behaviour of g at t = 0 is irrelevant to the solution of the BSDE;
however we still obtain a solution with values (Yt , Z t ) for t ∈ [0, T ]. Note also that for any
y ∈ R, z, z′

∈ R∞, we know g(t, y, z) = g(t, y, z′) mi,2-a.e. for all i , by the definition of the
norm ∥ · ∥Mt .

2.2. The comparison theorem

Theorem 3 (Comparison Theorem, See [4]). Suppose we have two BSDEs corresponding to
standard coefficients and terminal values (g, Q) and (g′, Q′). Let (Y, Z) and (Y ′, Z ′) be the
associated solutions. Suppose that for some s, the following conditions hold:

(i) Q ≥ Q′ P-a.s.
(ii) µ × P-a.s. on [s, T ] × Ω ,

g(u, Y ′
u−, Z ′

u) ≥ g′(u, Y ′
u−, Z ′

u).

(iii) There exists a measure P̃ equivalent to P such that

Xr := −


]s,r ]

(g(u, Y ′
u−, Zu) − g(u, Y ′

u−, Z ′
u))dµu +


]s,r ]

(Zu − Z ′
u) · d Mu

is a P̃ supermartingale on [s, T ].

It is then true that Y ≥ Y ′ on [s, T ] × Ω , except possibly on some evanescent set. Furthermore,
this comparison is strict, that is, for any s and any A ∈ Fs such that Ys = Y ′

s P-a.s. on A, we
have Yu = Y ′

u on [s, T ] × A, up to evanescence.
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In light of this, we make the following definition (which is a strengthening of that in [4]).

Definition 5 (Balanced Drivers). If g is such that condition (iii) of Theorem 3 holds for any
special semimartingales Y, Y ′

∈ S2, (where Z and Z ′ are from the martingale representation
theorem applied to the martingale parts of Y and Y ′) then g shall be called balanced.

Using this definition, we can give a novel condition under which the comparison theorem will
hold.

Lemma 1. If

|g(t, y, z) − g(t, y, z′)|

∥z − z′∥
2
Mt

|(z − z′) · 1Mt | < 1

up to evanescence for all y ∈ R, all z, z′
∈ R∞, then g is balanced.

To prove this, we first need the following lemma, based on results of Lepingle and
Mémin [15], (see also [20]).

Definition 6 (Doléans-Dade Exponential). Let N be a local martingale. Then we shall write

E(N ; t) := exp(Nt − ⟨N c
⟩t/2)


0<s≤t

(1 + 1Ns) exp(−1Ns),

which is the solution E(N ; t) = Λt of the equation

Λt = 1 +


]0,t]

Λs−d Ns .

Lemma 2. Let N be a square-integrable martingale, with ⟨N ⟩ bounded. Then E(N ; ·) is a
martingale, and for any p > 0, E[|E(N ; T )|p

] < ∞.

Proof. It is clear that E(N ; ·) is a local martingale, by Lepingle and Mémin [15, Theorem II.2]
it is a square integrable martingale. It is easy to verify that

E2(N ; t) = 1 +


]0,t]

E2(N ; s−)d(2N + [N ])s = E(2N + [N ]; t).

As ⟨N ⟩ ≤ k for some k, we can write

E2(N ; t) = E(2N + [N ] − ⟨N ⟩ + ⟨N ⟩; t) ≤ ekE(2N + [N ] − ⟨N ⟩; t). (4)

We now see that Ñ := 2N + [N ] − ⟨N ⟩ = 2N + [N d
] − ⟨N d

⟩ and this is a local martingale,
hence

⟨Ñ c
⟩ = 2⟨N c

⟩ ≤ 2k

and

(1Ñ )2
= (31N − ∆⟨N d

⟩)2
≤ 18(1N )2

+ 2(∆⟨N d
⟩)2.

As N is square-integrable and ⟨N d
⟩ ≤ ⟨N ⟩ is bounded, Ñ is a square-integrable martingale.

Furthermore,

⟨Ñ d
⟩ ≤ 18⟨N d

⟩ + 2


0<u≤t

((∆⟨N d
⟩)2) ≤ 18⟨N d

⟩ + 2⟨N d
⟩
2

≤ 18k + 2k2,
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and we see that ⟨Ñ ⟩ ≤ 20k + 2k2, in particular, that this is a finite bound. Hence Ñ is a square-
integrable martingale with ⟨Ñ ⟩ bounded.

From [15, Theorem II.2], we see that E(Ñ ; t) is a square integrable martingale, and from (4)

E[(E(N ; T ))4
] ≤ e2k E[(E(Ñ ; T ))2

] < ∞.

We now iterate this process, noticing that Ñ satisfies the requirements of the lemma, and

hence if ˜̃N = 2Ñ + [Ñ ] − ⟨Ñ ⟩ (which is, by the same logic, a square integrable martingale with

⟨
˜̃N ⟩ bounded)

E[(E(N ; T ))8
] = E[(E(Ñ ; T ))4

] ≤ e2(20k+2k2)E[(E(
˜̃N ; T ))2

] < ∞.

Hence we obtain, after n iterations,

E[(E(N ; T ))2n
] < ∞

and by Jensen’s inequality, the result is proven for any finite p > 0. �

Proof of Lemma 1. Define

Nt =


]0,t]


g(u, Y ′

u, Zu) − g(u, Y ′
u, Z ′

u)

∥Zu − Z ′
u∥

2
Mu


(Zu − Z ′

u) · d Mu .

Let Λ be the process defined by the Doléans-Dade exponential

Λt = 1 +


]0,t]

Λu−d Nu = E(N ; t).

By the assumption of the lemma, we see that |1Nt | < 1, and so Λt is a strictly positive local
martingale. Furthermore, we know that N has predictable quadratic variation

⟨N ⟩t =


]0,t]


g(u, Y ′

u, Zu) − g(u, Y ′
u, Z ′

u)

∥Zu − Z ′
u∥

2
Mu

2

(Zu − Z ′
u)2

· d⟨M⟩u

=


]0,t]

(g(u, Y ′
u, Zu) − g(u, Y ′

u, Z ′
u))2

∥Zu − Z ′
u∥

2
Mu

dµu

≤ cµt

where c is the Lipschitz constant of g, and the second equality is by the construction of ∥ · ∥Mt

and Remark 3. By Lemma 2, this shows that Λ has moments of all orders, and is a true martingale
on [0, T ]. We can therefore define the measure P̃ by dP̃/dP = ΛT .

By Girsanov’s theorem (see [13, Theorem 3.11]), we see that

M̃ i
t = M i

t −


]0,t]

g(u, Y ′
u, Zu) − g(u, Y ′

u, Z ′
u)

∥Zu − Z ′
u∥

2
Mu

(Zu − Z ′
u)i d⟨M i

⟩u

is a P̃-local martingale. Hence

X t =


]0,t]

(Zu − Z ′
u) · d M̃u

= −


]0,t]

(g(u, Y ′
u, Zu) − g(u, Y ′

u, Z ′
u))dµu +


]0,t]

(Zu − Z ′
u) · d Mu

is a P̃-local martingale.
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Finally, by Hölder’s inequality, for any stopping time τ , any ϵ ∈ ]0, 2]

EP̃[X2−ϵ
τ ] = EP[ΛT X2−ϵ

τ ] ≤ EP[Λ2/ϵ
T ]

(ϵ/2)EP[X2
τ ]

1−ϵ/2,

which is uniformly bounded, by Lemma 2 and the fact X is P-square-integrable. It follows that
X is a true P̃-martingale. �

2.3. A scalar existence extension

As we are considering the case of scalar-valued BSDEs, it is useful to extend our existence
result beyond the firmly Lipschitz assumptions of [4], as this will enable us to use various
penalisation methods. The following theorem gives us such an extension, for the case of scalar
BSDEs.

Theorem 4. Let g : Ω × [0, T ] × R × R∞ be a predictable function such that

1. E


]0,T ]
g(t, 0, 0)2dµt


< +∞

2. g is Lipschitz, that is, there exists c ∈ R such that for any y, y′
∈ R, any z, z′

∈ R∞

|g(t, y, z) − g(t, y′, z′)|2 ≤ c(|y − y′
|
2
+ ∥z − z′

∥
2
Mt

) dµ × dP−a.s.

and furthermore, for all y ≠ y′, g satisfies
g(t, y, z) − g(t, y′, z)

y − y′


1µt ≤ 1 − (1 + c)−1.

Then for any Q ∈ L2(FT ), the BSDE with driver g (3) has a unique solution (Y, Z) ∈ S2
× H2

M .
Furthermore, if g is balanced (that is, condition (iii) of Theorem 3 is satisfied), then the
comparison theorem holds.

Proof. As g is Lipschitz with constant c and µ is a finite valued increasing function, there are at
most finitely many times t1, t2, . . . , tk such that c(1µt )

2
≥ 1 (and these times are deterministic).

Hence, between these times, we have a standard BSDE. We shall show that we can paste together
solutions at and between these times, specifically the following.

(i) For each ti , we can take any Yti ∈ L2(Fti ), and obtain a unique pair (Yti ∗, Z ti ) solving

Yti = Yti ∗ − g(ti , Yti ∗, Z ti )1µti + Z ti · 1Mti , (5)

where Yti ∗ ∈ L2(Fti −), Z ti is Fti −-measurable and Z ti · 1Mti ∈ L2(Fti ).
(ii) We can then use this value Yti ∗ as the terminal value for a BSDE on the interval [ti−1, ti [,

which has a unique solution, as our driver is standard (recalling that the behaviour of the
driver at the left-endpoint is unimportant for the BSDE solution).

(iii) The BSDEs we construct on [ti−1, ti [ satisfy limt↑ti Yt = Yti ∗ almost surely, so our solutions
satisfy Yti ∗ = Yti − up to evanescence.

Backward induction then yields that we have a solution to the BSDE on [0, T ]. Note that, as
{t1, . . . , tk} is finite, the processes we construct are appropriately predictable.

We first show that (i) our solution can be constructed at each problematic jump-time ti . At ti ,
we have Eq. (5), where (Yti ∗, Z ti ) are to be determined. Taking an expectation and difference,
we see that Z ti · 1Mti = Yti − E[Yti |Fti −]. As this is a martingale difference, by the martingale
representation theorem, we obtain a solution Z ti . Fixing Z ti at this solution, we then see that

E[Yti |Fti −] = Yti ∗ − g(ti , Yti ∗, Z ti )1µti .

Writing φ(y) := y − g(ti , y, Z ti )1µti , our assumptions on g show that φ is bi-Lipschitz with
constant (1 + c) and strictly increasing. Hence it has a strictly increasing bi-Lipschitz inverse,
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also with constant (1 + c). We therefore define Yti ∗ = φ−1(E[Yti |Fti −]). By Lipschitz continuity
and Jensen’s inequality, Yti ∗ ∈ L2(Fti −).

We now consider (ii), our BSDE on an interval ]ti−1, ti [. As g is standard on this interval,
g′

:= g(t, y, z)It≠ti is standard on ]ti−1, ti ]. Hence it has a solution (Y ′, Z ′) on [ti−1, ti ], with
Y ′

ti = Yti ∗. As we have a terminal value which is Fti −-measurable, it is easy to verify that our
solution will satisfy Z ′

ti ≡ 0. We see that this is identical to the BSDE with driver g written on
the interval ]ti−1, ti [, and so we can define our solution (Yt , Z t ) = (Y ′

t , Z ′
t ) for all t ∈ [ti−1, ti [.

Note that as Z ′
ti ≡ 0 and g′(ti , ·, ·) ≡ 0, we also have (iii), Y ′

ti − = Y ′
ti = Yti ∗.

For the comparison theorem, we immediately see that it holds on each interval [ti−1, ti [.
At ti , we have an essentially identical argument as that given in discrete time in [5, Theorems 3.2
and 3.5]. �

Remark 4. Note that, if g is Lipschitz continuous and nonincreasing in y, then it is easy to verify
that condition (2) holds.

2.4. Grönwall’s inequality

In [4], we also derive a version of Grönwall’s inequality, which shall be useful here.

Definition 7. Let ν be a càdlàg function of finite variation with 1νt < 1 for all t . The right-
jump-inversion of ν is defined by

ν̃t := νt +


0≤s≤t

(1νs)
2

1 − 1νs
,

and satisfies E(−ν; t) = E(ν̃; t)−1.

Definition 8. Let u, v be two measures on a σ -algebra A. We write du ≤ dv if u(A) ≤ v(A) for
all A ∈ A.

Lemma 3 (Backward Grönwall Inequality, See [4]). Let u be a process such that, for ν a
nonnegative Stieltjes measure with 1νt < 1 and α a ν̃-integrable process, u is ν-integrable
and

ut ≤ αt +


]t,T ]

usdνs,

then

ut ≤ αt + E(−ν; t)


]t,T ]

E(ν̃; s)αsd ν̃s .

If αt = α is constant, this simplifies to

ut ≤ αE(ν̃; T )E(ν̃; t)−1
= αE(−ν; t)E(−ν; T )−1.

3. Filtration consistent expectations

3.1. General nonlinear expectations

We now reproduce, for completeness, relevant definitions and results for filtration consistent
nonlinear expectations. These are given without proof where the argument of Coquet et al. [7]
carries over without change, or is standard.
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Definition 9. A nonlinear expectation is a functional E : L2(FT ) → R which satisfies strict
monotonicity:

if Q ≥ Q′ then E (Q) ≥ E (Q′), and

if Q ≥ Q′ and E (Q) = E (Q′) then Q = Q′

and preserves constants: E (c) = c for all constants c.

Definition 10. A nonlinear expectation is filtration consistent (or F -consistent) if for each
Q ∈ L2(FT ) and each t ∈ [0, T ] there exists a random variable Qt

∈ L2(Ft ) such that
E (IA Q) = E (IA Qt ) for all A ∈ Ft . Such a nonlinear expectation is called an F -expectation.

The following lemma proves that Qt is unique. We will write E (Q|Ft ) := Qt , and call this
the Ft -conditional F -expectation of Q.

Definition 11. An F -expectation E will be called translation invariant if

E (Q + R|Ft ) = E (Q|Ft ) + R for all R ∈ L2(Ft ), all Q ∈ L2(FT ).

It is called convex if, for any Q, Q′
∈ L2(FT ), any λ ∈ [0, 1],

E (λQ + (1 − λ)Q′) ≤ λE (Q) + (1 − λ)E (Q′).

It is called positively homogenous if, for any Q ∈ L2(FT ), any λ ≥ 0,

E (λQ) = λE (Q).

It is said to have the monotone convergence property if

E (lim
n

Qn) = lim
n

E (Qn)

for any increasing nonnegative sequence {Qn} ⊆ L2(FT ) with limn Qn ∈ L2(FT ).

Lemma 4 (See [7]). Let t ≤ T and Q1, Q2 ∈ L2(Ft ). If E (Q1 IA) = E (Q2 IA) for all A ∈ Ft ,
then Q1 = Q2.

Lemma 5 (See [7]). Let E be an F -expectation. Then the following properties hold for all
Q, Q′

∈ L2(FT ).

(i) For each 0 ≤ s ≤ t ≤ T, E (E (Q|Ft )|Fs) = E (Q|Fs), and in particular, E (E (Q|Ft )) =

E (Q).
(ii) For any t, for all A ∈ Ft , E (Q IA|Ft ) = IA E (Q|Ft ).

(iii) For any t, for all A ∈ Ft , E (Q IA + Q′ IAc |Ft ) = E (Q IA|Ft ) + E (Q′ IAc |Ft ).
(iv) For any t, if Q ≥ Q′, then E (Q|Ft ) ≥ E (Q′

|Ft ). If moreover E (Q|Ft ) ≥ E (Q′
|Ft ) for

some t, then Q = Q′.

Definition 12. For a given F -expectation E , a process Y ∈ S2 is called an E -supermartingale if
Ys ≥ E (Yt |Fs) a.s. for all s ≤ t . Similarly, Y is an E -submartingale if Ys ≤ E (Yt |Fs), and an

E -martingale if Ys = E (Yt |Fs).

Lemma 6 (See [7]). If E is convex and Y is an E -supermartingale, then −Y is an
E -submartingale. If E is convex and positively homogenous, then the sum of two E -
supermartingales is an E -supermartingale.
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Theorem 5 (Up/Downcrossing Inequalities, See [6]). Let E be a convex, translation invariant
and positively homogenous F -expectation with the monotone convergence property, and Y be an
E -submartingale. For any stopping time S ≤ T , let M(ω, Y S

; [α, β]) (resp. D(ω, Y S
; [α, β]))

denote the number of upcrossings (resp. downcrossings) of the interval [α, β] by Y on the interval
[0, S].

Then

E (M(ω, Y S
; [α, β])) ≤ (β − α)−1(E ((YS − α)+) − (Y0 − α)+)

E (D(ω, Y S
; [α, β])) ≤ −(β − α)−1 E (−(YS − β)+)

≤ (β − α)−1 E ((YS − β)+).

We shall use this result to prove the existence of càdlàg modifications to nonlinear martingales;
see Theorem 7.

3.2. g-expectations

Theorem 6 (See [4]). Let g be a balanced driver which satisfies

g(ω, t, y, 0) = 0, µ × P-a.s. (6)

Then the operator defined by

Eg(Q|Ft ) := Yt

where Y is the solution to a BSDE (3) with driver g, is a conditional F -expectation. Eg is called
the g-expectation.

Lemma 7 (See [4]). If a balanced driver g does not depend on y, then the g-expectation is
translation invariant. If g is convex (resp. positively homogenous), then Eg is convex (resp.
positively homogenous).

As in [7], we can now show that g-expectations are bounded operators.

Lemma 8. Let g be as in Theorem 6. Then for every real ϵ > 0, there exists a constant Cϵ such
that for every Q ∈ L2∨(1+ϵ)(FT ),

|Eg(Q)| ≤ Cϵ∥Q∥1+ϵ,

where ∥ · ∥1+ϵ is the standard norm in L1+ϵ(FT ).

Proof. Define the measure

dP̃
dP

= ΛT = E


]0,T ]

g(s, Ys−, Zs)

∥Zs∥
2
Ms

Zs · d Ms; T


.

Similarly as in the proof of Lemma 1, this is a stochastic exponential of the form considered
in Lemma 2. Hence P̃ is a probability measure and ΛT has finite pth moment, for any p.
By Girsanov’s theorem, Eg(Q) = EP̃[Q] = E[ΛT Q]. By Hölder’s inequality, we have
|Eg(Q)| ≤ ∥ΛT ∥1+ϵ−1∥Q∥1+ϵ , and the claim follows. �

3.3. E r expectations

We now consider a particularly useful class of g-expectations, which we call E r -expectations.
This class is based on that studied in [7]; however we here must generalise their approach to take
into account the infinite dimension and presence of jumps in the martingale M .
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Definition 13. Let r be a predictable process taking values in the space of real-valued countable
dimensional matrices R∞×∞, that is, r i j

t (ω) ∈ R for all i, j ∈ N.
We denote by rt zt the vector in R∞ with values (rt zt )

i
=


j r i j
t z j

t . (If z were thought of as
a column vector, then this would correspond to the classical matrix–vector product.)

The map z → r z is a linear operator on H2
M . We suppose that r is uniformly bounded in a

modified operator norm, which we denote ∥ · ∥Dt , that is, there is c ∈ R such that, for all t ,

∥rt∥
2
Dt

:= ess supω sup
z∈H2

M


∥rt (ω)zt∥

2
Mt

∥zt∥
2
Mt


= ess supω sup

{u∈R∞:∥u∥Mt =1}

{∥rt (ω)u∥
2
Mt

} < c.

The process r will be called uniformly balanced if

∥rt u∥Mt × |u · 1M | < 1

for all u ∈ R∞ with ∥u∥Mt = 1.
The set of all such uniformly balanced, uniformly bounded in ∥ · ∥Dt processes will be

denoted D.

Definition 14. A driver g will be called uniformly balanced if there exists a process r ∈ D such
that for any t, y, z, z′ of appropriate dimension,

|g(t, y, z) − g(t, y, z′)| ≤ ∥rt (z − z′)∥Mt

up to indistinguishability.

Lemma 9. A uniformly balanced driver is balanced.

Proof. We can see that, for any z, z′
∈ R∞,

|g(t, y, z) − g(t, y, z′)|

∥z − z′∥
2
Mt

|(z − z′) · 1Mt | ≤
∥rt (z − z′)∥Mt

∥z − z′∥
2
Mt

|(z − z′) · 1Mt |

=

rt
z − z′

∥z − z′∥Mt


Mt

 z − z′

∥z − z′∥Mt

· 1Mt

 .
Writing u =

z−z′

∥z−z′∥Mt
, the result is clear from Lemma 1. �

Definition 15. Let r ∈ D. We shall denote by E r the nonlinear expectation given by Eg with
g(t, y, z) = ∥rt z∥Mt .

Similarly, we define E −r to be the nonlinear expectation given by Eg with g(t, y, z) =

−∥rt z∥Mt .

Remark 5. As it is easy to show ∥rt z∥2
Mt

≤ sups(∥rs∥Ds )
2
∥z∥2

Mt
, the requirements for the

existence of solutions to the BSDE are satisfied. As r ∈ D, it is easy to show that g(t, z) =

∥rt z∥Mt is a uniformly balanced driver.

Lemma 10. E r is convex, positively homogenous and translation invariant, hence (as we shall
see that it has the monotone convergence property, Lemma 16) the up and downcrossing
inequalities of Theorem 5 apply.
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Proof. E r is a g-expectation with driver g(t, y, z) = ∥rt z∥Mt . It is clear that g is positively
homogenous, and by the triangle inequality it is subadditive. Hence, g is convex. We also see
that g does not depend on y, so the desired properties hold by Lemma 7. �

Similarly as in [7], we can now give a bound on the nonlinear expectation E r . However, we
must be careful to correctly deal with the jumps in the process.

Lemma 11. For any Q ∈ L2(FT ),

E[E r (Q|Ft )
2
] ≤ E[Q2

] exp


(sup
s

∥rs∥
2
Ds

)(µT − µt )


.

Proof. Let Yt = E r (Q|Ft ), so (Y, Z) is the solution of the BSDE

Yt −


]t,T ]

g(u, Yu−, Zu)dµu +


]t,T ]

Zu · d Mu = Q.

Let xs := (∥rs∥
−2
Ds

+ 1µs)
−1 > 0. From the differentiation rule, and the inequality ab ≤

xa2
+ x−1b2 for x > 0, we have

E[Y 2
t ] = E


Q2

+ 2


]t,T ]

∥rs Zs∥Ms Ys−dµs −


]t,T ]

Z2
s · d⟨M⟩s −


t<s≤T

∥rs Zs∥
2
Ms

(1µs)
2



≤ E


Q2

+


]t,T ]

xsY 2
s−dµs +


]t,T ]

(x−1
s − 1µs)∥rs Zs∥

2
Ms

dµs −


]t,T ]

Z2
s · d⟨M⟩s


.

(7)

From (2) and the definition of ∥ · ∥Dt , we see that

E


]t,T ]

(x−1
s − 1µs)∥rs Zs∥

2
Ms

dµs −


]t,T ]

Z2
s · d⟨M⟩s


= E


]t,T ]

∥rs∥
−2
Ds

∥rs Zs∥
2
Ms

dµs −


]t,T ]

Z2
s · d⟨M⟩s


≤ E


]t,T ]

∥Zs∥
2
Ms

dµs −


]t,T ]

Z2
s · d⟨M⟩s


≤ 0.

Hence (7) can be weakened to

E[Y 2
t ] ≤ E[Q2

] +


]t,T ]

xs E[Y 2
s−]dµs .

As xs1µs < 1, an application of the Backward Grönwall inequality (Lemma 3) yields

E[E r (Q|Ft )
2
] ≤ E[Q2

|Ft ]E(Ñ ; T )E(Ñ ; t)−1

where Nt =

]0,t] xudµu . Considering the continuous and discontinuous parts of N , we see that

its right-jump-inversion (Definition 7) is Ñt =

]0,t] ∥rs∥

2
Ds

dµs , and hence

E(Ñ ; T ) = E(Ñ ; t) exp


]t,T ]

∥rs∥
2
Ds

dµt

 
t<s≤T

(1 + 1Ñs)e
−1Ñs

≤ E(Ñ ; t) exp((µT − µt )(sup
s

∥rs∥
2
Ds

))

yielding the result. �
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3.4. E r -dominated expectations

We now consider those nonlinear expectations E which are ‘dominated’ by E r for some r ∈ D.
This property gives many useful results on the behaviour of E . Again, those results which carry
over from [7] are presented without proof.

Definition 16. For r ∈ D, we say that a nonlinear expectation E is dominated by E r if

E (Q + Q′) − E (Q′) ≤ E r (Q)

for all Q, Q′
∈ L2(FT ).

Lemma 12. If E is dominated by E r , then

E −r (Q) ≤ E (Q + Q′) − E (Q′) ≤ E r (Q)

for all Q, Q′
∈ L2(FT ).

Proof. As noted in [7], this is a simple consequence of the fact that E −r (Q) = −E r (−Q). �

Lemma 13. If E is dominated by E r for some r ∈ D, then for all ϵ > 0, E is a Lipschitz
continuous operator on L2∨(1+ϵ)(FT ), in the sense that there exists Cϵ such that

|E (Q) − E (Q′)| ≤ Cϵ∥Q − Q′
∥1+ϵ .

Proof. As noted in [7], this is a consequence of Lemmata 8 and 12. �

Remark 6. This lemma is suggestive of the fact that we could extend any such E to all of L p(FT )

for all p > 1. As any Q ∈ L p(FT ) can be approximated in ∥ · ∥p-norm by a sequence in
L2(FT ) (or indeed in L∞(FT )), we can define the expectation of Q simply as the limit of these
approximations. These limits are uniquely defined as we have continuity of the expectation in
this norm.

Lemma 14 (See [7]). For E an E r -dominated, translation invariant F -expectation,

E −r (Q|Ft ) ≤ E (Q|Ft ) ≤ E r (Q|Ft ).

Lemma 15 (See [7]). Let E and E ′ be two translation invariant F -expectations, both dominated
by E r for some r ∈ D. If

E (Q) ≤ E ′(Q)

for all Q ∈ L2(FT ), then

E (Q|Ft ) ≤ E ′(Q|Ft )

up to evanescence.

The following lemma and theorem guarantee useful properties of a dominated expectation in
our general setting.

Lemma 16. If E is dominated by E r for some r ∈ D, then E has the monotone convergence
property. In particular, E r has the monotone convergence property for all r ∈ D.

Proof. Simply take an increasing sequence in L2(FT ) with limit in L2(FT ), hence by classical
dominated convergence we have convergence in L2(FT ). The result follows from the continuity
established by Lemma 13. �
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Theorem 7. Let E be an F -expectation dominated by E r for some r ∈ D. Then an E -martingale
Y ∈ S2 has a càdlàg modification.

Proof. As Y is an E -martingale, we have that, for any t ≤ T

Yt = E (YT |Ft ) ≤ E r (YT |Ft )

and so Y is an E r -submartingale. As E r is convex, translation invariant, positively homogeneous
and has the monotone convergence property, we can apply Theorem 5 to see that Y almost surely
admits left and right limits.

Define the càdlàg process Y ′
t := lims↓t Ys = Yt+, this limit being almost surely well defined.

As we assume the usual conditions, Y ′ is adapted. For any t ≤ T , any A ∈ Ft , we have
Y ′

t IA = lims↓t Ys IA, taking the limit in L2 (which converges as Y ∈ S2). From Lemma 13,
we see that E (Y ′

t IA) = lims↓t E (Ys IA), but also, as Y is an E -martingale,

E (Ys IA) = E (E (Ys |Ft )IA) = E (Yt IA)

and so Y ′
t = Yt almost surely. �

4. Doob–Meyer decomposition for g-expectations

We now show that, for a g-expectation Eg , a Doob–Meyer decomposition holds. The method
of proof is based on those in [18] (see also [21]). However, it is complicated by the presence of
jumps in µ. We begin with an Eg-supermartingale Y with E[supt (Yt )

2
] < ∞. We wish to show

that Y can be written in the form

Yt = Y0 −


]0,t]

g(u, Yu−, Zu)dµu − At +


]t,T ]

Zu · d Mu,

for some nondecreasing càdlàg process A with A0 = 0.
Similar to [18], we shall use a sequence of penalised BSDEs. Consider the sequence of BSDEs

with terminal values Y n
T = YT , and drivers

f n(t, y, z) = g(t, y, z) + n(Yt− − y)+.

The solutions of these BSDEs will be denoted1 (Y n, Zn).

Lemma 17. The BSDEs with terminal values YT and drivers f n have solutions (Y n, Zn), which
satisfy

E (YT |Ft ) = Y 0
t ≤ Y n

t ≤ Y n+1
t ≤ Yt

and Y n
t ↑ Yt pointwise, up to evanescence. Furthermore {Y n

} is a uniformly bounded set in S2,
and Y n

·− → Y·− in H2
µ, that is,

E


]0,T ]

∥Y n
t− − Yt−∥

2dµt


→ 0.

Proof. As g is firmly Lipschitz continuous, we have solutions for f 0 by Theorem 2. For n > 0,
we can apply the same measure change argument as in [4, Theorem 6.1] to assume without loss
of generality that the Lipschitz constant of g with respect to y satisfies ct1µt < 1 − ϵ for some

1 Note that this is a slight abuse of notation, as Zn here refers not to the nth component of Z , but the R∞ valued
process which solves the BSDE with driver f n . We shall not need to refer to individual components of Z hereafter, and
so this should not lead to confusion.
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ϵ > 0, and furthermore, c > ϵ−1
− 1. Hence we see that f n satisfies the requirements for

Theorem 4. Therefore these equations have solutions (Y n, Zn).
By the comparison theorem (noting that f n is balanced as g is balanced), we can see that

Y n
t is nondecreasing in n for all t , and that Y 0

t = E (YT |Ft ). Also if Y n
t > Yt , then by

right continuity this must hold on some optional interval ]σ, τ ], with Yτ ≥ Y n
τ . However, on

]σ, τ ], Y n
t = Eg(Y n

τ |Ft ) ≤ E (Yτ |Ft ) ≤ Yt leading to a contradiction. Hence Y n
t ≤ Yt for all n,

and all t . Therefore we have, for all n and all t ,

E (YT |Ft ) = Y 0
t ≤ Y n

t ≤ Y n+1
t ≤ Yt .

Furthermore, suppose for some ϵ > 0, on some optional set A nonempty with positive
probability, we had Y n

t < Yt − ϵ for all n, all t ∈ A. Then E[

]0,T ]

n(Yt− − Y n
t−)+dµt ] → ∞,

hence Y n
0 → ∞, which is a contradiction. Therefore, by continuity, Y n

t ↑ Yt except possibly
on an evanescent set. By the dominated convergence theorem, it follows that Y n is a uniformly
bounded set in S2, and Y n

·− → Y·− in H2
µ. �

Lemma 18. Let An
t = n


]0,t](Ys− − Y n

s−)+dµs . Then there exists a constant C independent of

n such that E


]0,T ]
(Zn

t )2d⟨M⟩t


< C and E[(An

T )2
] < C.

Proof. From Ito’s formula applied to (Y n)2, we see that,

E[(Y n
t )2

] + E


]t,T ]

(Zn
u )2

· d⟨M⟩u


+ E

 
u∈]t,T ]

(g(u, Y n
u−, Zn

u )1µu + 1An
u)2



= E[Y 2
T ] + 2E


]t,T ]

Y n
u−(g(u, Y n

u−, Zn
u )dµu + d An

u)


and hence,

E


]t,T ]

(Zn
u )2

· d⟨M⟩u


≤ E[Y 2

T ] + 2E


]t,T ]

Y n
u−g(u, Y n

u−, Zn
u )dµu


+ 2E


]t,T ]

Y n
u−(d An

u)


. (8)

For c the Lipschitz constant of g, we also have

2E


]t,T ]

Y n
u−g(u, Y n

u−, Zn
u )dµu


≤ 4cE


]t,T ]

(Y n
u−)2dµu


+ (4c−1)E


]t,T ]

(g(u, Y n
u−, Zn

u ))2dµu


≤ 4cE


]t,T ]

(Y n
u−)2dµu


+ (4c−1)E


]t,T ]

(c(Y n
u−)2

+ c∥Zn
u∥

2
Mu

+ g(u, 0, 0)2)dµu


(9)

and

2E


]t,T ]

Y n
u−(d An

u)


≤ 2E[An

T (sup
u

|Y n
u−|)] ≤ 2E[sup

u
(Y n

u−)2
]
1/2 E[(An

T )2
]
1/2

≤ (16cµT + 8)E[sup
u

(Y n
u−)2

] + (16cµT + 8)−1 E[(An
T )2

]. (10)
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As (Y n)2
≤ (Y 0)2

+Y 2
∈ S2 and E


]t,T ]

∥Zn
u∥

2
Mu

dµu


≤ E


]t,T ]

(Zn
u )2

· d⟨M⟩u


, combining

(8)–(10), it follows that there is a constant C1 independent of n such that

E


]t,T ]

(Zn
u )2

· d⟨M⟩u


≤ C1 + (8cµT + 4)−1 E[(An

T )2
]. (11)

Furthermore, we also have

An
T = Y n

0 − Y n
T −


]0,T ]

g(u, Y n
u−, Zn

u )dµu +


]0,T ]

Zn
u · d Mu

≤ |Y0| + |YT | +


]0,T ]

|g(u, Y n
u−, Zn

u )|dµu +


]0,T ]

Zn
u · d Mu


from which, expanding (g(u, Y n

u−, Zn
u ))2 as in (9), it follows that there exists a constant C2

independent of n such that

E[(An
T )2

]

≤ 4E[(|Y0| + |YT |)2
] + 4µT E


]0,T ]

(g(u, Y n
u−, Zn

u ))2dµu


+ 2E


]0,T ]

Zn
u · d Mu

2


≤ C2 + (4cµT + 2)E


]t,T ]

(Zn
u )2

· d⟨M⟩u


. (12)

Combining (11) and (12) yields the result. �

We can now prove the convergence of our solutions. Unlike in [18,21], due to the use of left-
limits in the BSDE, we are able to prove the strong convergence of Zn in L2, rather than only in
L p for p < 2.

Theorem 8. A càdlàg Eg-supermartingale Y has a unique representation of the form

Yt = Y0 −


]0,t]

g(u, Yu−, Zu)dµu − At +


]0,t]

Zu · d Mu,

where Z is a process in H2
M and A is a predictable càdlàg nondecreasing process.

Proof. By Lemma 18, we know that {Zn
}n∈N is weakly compact in H2

M , and, defining gn
t :=

g(t, Y n
t−, Zn

t ), we see {gn
}n∈N is bounded and hence weakly compact in H2

µ. Therefore, by
extracting subsequences, we have the existence of weak limits Zn ⇀ Z and gn ⇀ g∞. For any
stopping time τ ≤ T , we also then have the weak convergence of the integrals


]0,τ ]

Zn
u · d Mu

and

]0,τ ]

gn
u dµu in L2(FT ). As

An
t = Y n

0 − Y n
t −


]0,t]

gn
u dµu +


]0,t]

Zn
u · d Mu

we also have the existence of a weak L2-limit

An
t ⇀ At = Y0 − Yt −


]0,t]

g∞
u dµu +


]0,t]

Zu · d Mu
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and clearly, A is a nondecreasing process with AT ∈ L2(FT ). By a result of Peng [18, Lemma
2.2], A is càdlàg. As Y is given, we see that Z is uniquely defined, and hence the sequence {Zn

}

(rather than a subsequence) must weakly converge.
We now write δnY = Y −Y n, δn Z = Z −Zn, δng = g∞

−gn and δn A = A− An . Considering
the dynamics of (δnY )2, from Itô’s formula we have

0 = E[(δnY )2
T ]

= E[(δnY )2
0] − 2E


]0,T ]

(δnY )u−((δng)udµu + d(δn A)u)


+ E


]0,T ]

(δn Z)2
u · d⟨M⟩u


+ E

 
u∈]0,T ]

((δng)u1µu + ∆(δn A)u)2



from which we obtain

E


]0,T ]

(δn Z)2
u · d⟨M⟩u


≤ 2E


]0,T ]

(δnY )u−((δng)udµu + d(δn A)u)


.

We then see that, by the Cauchy–Schwartz inequality, for C a bound on the norms of δng in H2
µ,

E


]0,T ]

(δnY )u−(δng)udµ


≤ E


]0,T ]

(δnY )2
u−

1/2

E


]0,T ]

(δng)2
udµu

1/2

≤ C E


]0,T ]

(δnY )2
u−

1/2

→ 0.

Also

E


]0,T ]

(δnY )u−d(δn A)u


= E


]0,T ]

(δnY )u−d Au


− E


]0,T ]

(δnY )u−d An
u


≤ E


]0,T ]

(δnY )u−d Au


≤ E[AT sup

u
{(δ0Y )u}]

≤ E[A2
T ] + E[sup

u
{(δ0Y )2

u}] < ∞

and so, by the Dominated convergence theorem,

E


]0,T ]

(δnY )u−d(δn A)u


≤ E


]0,T ]

(δnY )u−d Au


→ 0.

Hence we see that,

E


]0,T ]

(δn Z)2
u · d⟨M⟩u


→ 0.

Given this strong convergence, it is clear that gn
→ g∞ strongly in H2

µ, and that g∞
t =

g(t, Yt−, Z t ) P × µ-a.e., yielding the desired representation.
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To show uniqueness, suppose Y had two representations of this form. That is, suppose there
were processes Z1, Z2

∈ H2
M and A1, A2 predictable càdlàg and nondecreasing such that

Yt = Y0 −


]0,t]

g(u, Yu−, Z1
u)dµu − A1

t +


]0,t]

Z1
u · d Mu

= Y0 −


]0,t]

g(u, Yu−, Z2
u)dµu − A2

t +


]0,t]

Z2
u · d Mu .

As Yt is a special semimartingale, its martingale part is uniquely defined, so we see

]0,t] Z1

u ·

d Mu =

]0,t] Z2

u · d Mu up to evanescence, that is, Z1
= Z2 in H2

M . Consequently, g(u, Yu−, Z1
u)

= g(u, Yu−, Z2
u)µ × P-a.e., and we have the equality A1

t = A2
t , so the decomposition is

unique. �

To compare this with the classical Doob–Meyer decomposition, we have the following
corollary.

Corollary 1. Consider Eg a g-expectation, where g(u, z) does not depend on y (and, hence, Eg
is translation invariant). Then a càdlàg Eg-supermartingale Y in S2 has a unique decomposition
Y = Y0 + X − A, where A is a nondecreasing adapted càdlàg process with AT ∈ L2(FT ), and
X is a càdlàg Eg-martingale in S2 with X0 = 0.

Proof. From Theorem 8, we have the representation

Yt = Y0 −


]0,t]

g(u, Zu)dµu − At +


]0,t]

Zu · d Mu,

and note that

X t = −


]0,t]

g(u, Zu)dµu +


]t,T ]

Zu · d Mu

= XT +


]t,T ]

g(u, Zu)dµu −


]t,T ]

Zu · d Mu = Eg(XT |Ft )

is a g-martingale. �

We can now show that E r -domination implies that the drift (under P) of any E -martingale
must be µ-absolutely continuous.

Theorem 9. Let E be an F -expectation, E r -dominated for some r ∈ D. Let Y be a càdlàg
E -martingale. Then there exist unique predictable processes g ∈ H2

µ, Z ∈ H2
M such that

YT = Yt −


]t,T ]

gudµu +


]t,T ]

Zu · d Mu

up to indistinguishability. These processes satisfy |gu | ≤ ∥ru Zu∥Mu .

Proof. As E is E r -dominated, we know that

E −r (YT |Ft ) ≤ Yt ≤ E r (YT |Ft ) = −E −r (−YT |Ft ),

and so both Y and −Y are E −r -supermartingales. From the nonlinear Doob–Meyer
decomposition (Theorem 8), we can find nondecreasing càdlàg processes Ar , A−r and processes
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Zr , Z−r
∈ H2

M such that

Yt = Y0 +


]0,t]

∥ru Z−r
u ∥Mu dµu +


]0,t]

Z−r
u · d Mu − A−r

t

−Yt = −Y0 +


]0,t]

∥ru Zr
u∥Mu dµu +


]0,t]

Zr
u · d Mu − Ar

t .

(13)

As Y is a special semimartingale, its canonical decomposition (into martingale and predictable
finite-variation components) is unique (see [13, Def 4.22]). Hence we have


]0,t] Z−r

u · d Mu =

−

]0,t] Zr

u · d Mu up to indistinguishability, and furthermore Z−r
= −Zr in H2

M . Taking the sum
of the two equations in (13), we have

0 = 2


]0,t]
∥ru Zr

u∥Mu dµu − A−r
t − Ar

t .

Differentiating yields

d(Ar
+ A−r )u = 2∥ru Zr

u∥Mu dµu

and, as both Ar and A−r are nondecreasing, we see that they are both absolutely continuous with
respect to µ. Therefore, as A−r

T ∈ L2(FT ), we can write d A−r
t = a−r

t dµ for some a−r
∈ H2

µ.
Defining gu := −∥r Z−r

u ∥Mu + a−r
u , we have

Yt = Y0 −


]0,t]

gudµu +


]0,t]

Z−r
u d Mu .

This g is unique among predictable processes in H2
µ, again by the uniqueness of the canonical

decomposition of a special semimartingale. Furthermore, as A−r and Ar are nondecreasing, we
have that 0 ≤ a−r

≤ 2∥ru Zr
u∥Mu , and so |gu | ≤ ∥ru Zu∥Mu . �

Theorem 10. Let E be as in Theorem 9, and Y and Y ′ be two càdlàg E -martingales, with
associated processes g, g′ and Z , Z ′. Then

|gt − g′
t | ≤ ∥rt (Z t − Z ′

t )∥Mt

up to evanescence.

Proof. As all of Y, −Y, Y ′ and −Y ′ are E −r -supermartingales, by Lemma 6 we know that
δY := Y − Y ′ and −δY are both E −r -supermartingales. By precisely the same argument as
in Theorem 9, we can find predictable processes gδ

∈ H2
µ, Z δ

∈ H2
M such that

δYt = δY0 −


]0,t]

gδ
udµu +


]0,t]

Z δ
u · d Mu

and |gδ
t | ≤ ∥rt Z δ

t ∥Mt up to evanescence. However, we also have

δYt = δY0 −


]0,t]

(gu − g′
u)dµu +


]0,t]

(Zu − Z ′
u) · d Mu

and uniqueness of the canonical decomposition of δYt yields

|gt − g′
t | = |gδ

t | ≤ ∥rt Z δ
t ∥Mt = ∥rt (Z t − Z ′

t )∥Mt . �
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5. E r -dominated Doob–Meyer decomposition

We shall need to extend our decomposition to the case where E is E r -dominated for some
r ∈ D, but where we do not know a priori that it is a g-expectation.

We need the following generalisation of our existence result. A more general result than
this is possible (where n(Yt− − yt−)+ is replaced by an appropriately Lipschitz function with
sufficiently bounded upward jumps). Obtaining this extension directly is unnecessary given
the representation we shall prove further on (Theorem 13), which implies these results are
equivalently given by Theorem 8.

Theorem 11. Consider E any translation invariant F -expectation, E r -dominated for some r ∈

D. For any Q ∈ L2(FT ), any càdlàg E -supermartingale Y in H2
µ with YT = Q, the equation

Y n
t = E


Q + n


]t,T ]

(Yu− − Y n
u−)+dµu

Ft


has a unique càdlàg solution in H2

µ.

Proof. Our approach is similar to that in Theorem 4. For any s < t , any Q′
∈ L2(Ft−), define a

mapping

ΦQ′

]s,t[ : H2
µ → H2

µ, y → E


Q′
+ n


]s,t[

(Yu− − yu−)+dµu

Fs


.

For any two approximations y, y′
∈ H2

µ, define δy = y − y′ and δΦ(y) = ΦQ′

]s,t[(y) − ΦQ′

]s,t[(y′).
Then as E is E r -dominated, and r is assumed to be bounded (as it is uniformly balanced), it is
easy to show (see [7, Lemma 6.1] and use Lemma 11)

E[(δΦ(y))2
] ≤ E


nE r


]s,t[

|δy|udµu

Fs

2


≤ n2e
(sup

u
∥ru∥

2
Du

)(µt−−µs )
E


]s,t[

|δy|udµu

2


≤ n2e
sup

u
∥ru∥

2
Du

µT
(µt− − µs)E


]s,t[

|δy|
2
udµu


.

As µ is summable, using the result of [4, Lemma 6.1], we can find a finite set {0 =

t1, t2, . . . , tm = T } where n2esupu ∥ru∥
2
Du

µT (µti+1− − µti ) < 1 for all i . Hence we have a
contraction on each of the subintervals ]ti , ti+1[. Therefore, for any Y n

ti+1−
= Q′

∈ L2(Fti+1−),
we can solve our equation uniquely back to time ti .

At each ti , we shall solve the equation directly. Suppose we have a solution Y n
u for all u ≥ ti .

In particular, we have the value Y n
ti ∈ L2(Fti ). Then we have the equation

Y n
ti − = E


Yti + n(Yti − − Y n

ti −)+1µti |Fti −


which, by translation invariance of E , gives

Y n
ti − =


1

1 + n1µti
E

Y n

ti + n1µti Yti −|Fti −


∧ E (Y n
ti |Fti −).
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Note as n1µti > 0, Y n
ti − is clearly in L2(Ft−). Therefore, at each time ti , we can take our

solution Y n
ti ∈ L2(Fti ), and obtain a unique value Y n

ti − ∈ L2(Fti −).
Using backward induction and alternating between the contraction mapping approach and the

direct approach yields a unique solution. It is then straightforward to verify (as in Theorem 4)
that this solution is càdlàg and in H2

µ. �

Lemma 19. For Y, Y n as in Theorem 11,

E (Q|Ft ) = Y 0
≤ Y n

≤ Y n+1
≤ Y.

Proof. That Y n
≥ Y 0

= E (Q|Ft ) is easy from the monotonicity of E .
Suppose Y n

t > Y n+1
t with positive probability. By right continuity, there exists an optional

interval A =]σ, τ ], nonempty with positive probability, such that Y n
t ≥ Y n+1

t on ]σ, τ [ and
Y n

τ ≥ Y n+1
τ . On A, note that (Y − Y n)+ ≤ (Y − Y n+1)+, and hence for any t ∈ A,

IAY n
t = E


IAY n

τ +


]t,τ ]

nIA(Yu− − Y n
u−)+dµu

Ft


≤ E


IAY n+1

τ +


]t,τ ]

(n + 1)IA(Yu− − Y n+1
u− )+dµu

Ft


= IAY n+1

t

which gives a contradiction. Hence Y n
≤ Y n+1. A similar argument applies with Y n+1 replaced

by Y . �

Lemma 20. For Y n as in Theorem 11, Y n has a representation

Y n
t = Y n

0 −


]0,t]

gn
u dµu − An

t +


]0,t]

Zn
u · d Mu

for some gn
∈ H2

µ, Zn
∈ H2

M and An
t nondecreasing, predictable and càdlàg with A0 = 0 and

AT ∈ L2(FT ). Furthermore, |gn
u | ≤ ∥ru Zn

u∥Mu , and there exists a constant C independent of n
such that E[(An

T )2
] < C and E[


]0,T ]

(Zn)2
u · d⟨M⟩u] < C.

Proof. Define An
t =


]0,t] n(Yu − Y n

u )+dµu . As Y n
+

]0,t] n(Yu − Y n

u )+dµu is a E -martingale,
we have from Theorem 9 the existence of gn and Zn with the required inequality between them.

For the required bound on E[(An
T )2

] and E[

]0,T ]

(Zn)2
u · d⟨M⟩u], as |gn

t | < ∥rt Zn
t ∥Mt , where

r ∈ D, we can precisely repeat the argument of Lemma 18. �

Theorem 12. Let E be a translation invariant F -expectation, which is E r -dominated for some r.
A càdlàg E -supermartingale Y has a representation of the form

Yt + At = E (YT + AT |Ft )

where A is a nondecreasing, predictable and càdlàg process with AT ∈ L2(FT ).

Proof. As in the proof of Theorem 8, we see that the An and Zn terms constructed in Lemma 20
are uniformly bounded, and so must weakly converge. As |gn

u | ≤ ∥ru Zn
u∥Mu , we can again see

that the argument of Theorem 8 will hold, and so Zn converges strongly in H2
M . Therefore gn

converges strongly in H2
µ, and hence An

t converges strongly in L2(Ft ). By Lemma 13, we can
pass to the L2-limit in the equation Y n

t + An
t = E (Y n

T + An
T |Ft ), and the theorem is proven. �
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Remark 7. Unlike in Theorem 8, we have not here shown that the representation is unique. This
is not a cause for concern, as uniqueness will follow from Theorem 13, from which we see that
the processes A constructed in Theorem 12 and Corollary 1 are identical.

6. Representation as a g-expectation

We can now prove our main result, that any translation invariant F -expectation which is
E r -dominated for some r ∈ D, must be a g-expectation.

Theorem 13. Consider a translation invariant F -expectation E , which is E r -dominated for
some r ∈ D. Then there exists a unique function g : Ω × [0, T ] × R∞

→ R satisfying
E[

]0,T ]

(g(t, 0))2dµt ] < ∞ such that

E (Q) = Eg(Q)

for all Q ∈ L2(FT ). Furthermore, g(t, 0) = 0 for µ-almost all t and g is uniformly balanced
(and hence Lipschitz).

Proof. For each z ∈ R∞, we consider the forward equation

dY z
t = −∥rt z∥Mt dµt + z · d Mt ; Y z

0 = 0.

We then see that Y z is an E r -martingale, and hence an E -supermartingale.
From Theorem 12, there exists a nondecreasing, predictable and càdlàg process Az with

Az
0 = 0 and Az

T ∈ L2(FT ) such that

Y z
t + Az

t = E (Y z
T + Az

T |Ft ). (14)

By Theorem 9, given Az , there is a unique g(z; ·) : Ω × [0, T ] → R predictable such that

Y z
t + Az

t = Y z
T + Az

T +


]t,T ]

g(z; u)dµu −


]t,T ]

Z z
u · d Mu

and |g(z; t)| ≤ ∥rt Z z
∥Mt .

As we also know

Y z
t = Y z

T +


]t,T ]

∥ruz∥Mu dµu −


]t,T ]

z · d Mu

we see that

Az
t ≡ ∥rt z∥Mt −


]0,t]

g(z; u)dµu, Z z
≡ z.

In particular, this implies |g(z; t)| ≤ ∥rt z∥Mt . From Theorem 10, we also see that for any
z, z′

∈ R∞, |g(z; t)− g(z′
; t)| ≤ ∥rt (z − z′)∥Mt . Hence, for each t, g(·; t) is uniformly Lipschitz

continuous and uniformly balanced, as a function of z.
We can see that, for any 0 ≤ r ≤ t ≤ T ,

Y z
t + Az

t = Y z
r + Az

r −


]r,t]

g(z; u)dµu +


]r,t]

z · d Mu .

Because of translation invariance, we have

E


−


]r,t]

g(z; u)dµu +


]r,t]

z · d Mu

Fr


= 0.
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Let {Ai }
N
i=1 ⊂ Fr be a partition of Ω , and let zi ∈ R∞. From Lemma 5, and the fact g(0, t) ≡ 0,

it follows that

E


−


]r,t]

g


i

IAi zi ; u


dµu +


]r,t]


i

IAi zi


· d Mu

Fr


= 0.

Hence, by the continuity of E given in Lemma 13 and the fact that g is Lipschitz in z, we have,
for any Z ∈ H2

M ,

E


−


]r,t]

g (Zu; u) dµu +


]r,t]

Zu · d Mu

Fr


= 0.

For any Q ∈ L2(FT ), now solve the BSDE with driver g. As g is Lipschitz, this has a unique
solution (Y, Z), and by the definition of g-expectation, Eg(Q) = Y0. On the other hand, we also
have

E (Q) = E


Y0 −


]0,T ]

g (Zu; u) dµu +


]0,T ]

Zu · d Mu


= Y0 + E


−


]0,T ]

g (Zu; u) dµu +


]0,T ]

Zu · d Mu


= Y0

and so Eg(Q) = Y0 = E (Q) for all Q ∈ L2(FT ).
To show uniqueness of the representation, we note that as we now know that E has some

representation as a g-expectation, we know from Corollary 1 that the process Az which satisfies
(14) is unique. Hence Theorem 9 guarantees the uniqueness of the process gz , and hence of the
driver of the BSDE. �

7. Conclusion

We have extended the results of [7,18] to a general setting. This directly answers the question
raised by Remark 7.1 of [7]; we have given a nonlinear Doob–Meyer decomposition theorem for
g-expectations, and have shown that every F -expectation satisfying a dominance relation can be
expressed as a g-expectation. Our only assumption on the probability space is that L2(FT ) is
separable.

The exact nature of this dominance relation is quite interesting in this context. One can think
of the dominance relation in [7] as being needed to guarantee that the induced driver of the
BSDE exists, and is Lipschitz continuous. Our assumption guarantees both these properties, and
furthermore that the driver can be integrated with respect to the (arbitrary) Stieltjes measure µ,
and that it satisfies the conditions to be uniformly balanced, and so a comparison theorem will
hold. Neither of these properties appears in [7], as in they assume that µ is always Lebesgue
measure (a reasonable assumption, as all martingales have absolutely continuous quadratic
variation), and all martingales are continuous (so the comparison theorem holds automatically).
However, if our filtration is generated by finitely many Brownian motions, as in [7], then our
result corresponds precisely to theirs. Furthermore, our result will also encompass the case of a
filtration generated by countably many independent Brownian motions.

As D contains a wide range of processes, our assumption that E is E r -dominated for some
r ∈ D has particular implications for those cases where the BSDE can be written in the form
(c.f. [10])

dYt = −g(t, Z t )dµt + Z t d M ′
t + d Nt
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for some finite-dimensional martingale M ′, where N is a martingale orthogonal to M ′. From the
perspective of the Davis–Varaiya martingale representation theorem, this means that the BSDE
driver looks only at a finite dimensional subspace of the space of S2-martingales. Looking from
the perspective of the F -expectation, this is equivalent to stating that E (Q+ NT ) = E (Q) for any
Q and any P-martingale N orthogonal to M ′ with N0 = 0. In this context, if E is E r -dominated
for some r ∈ D, we can find a degenerate matrix r ′

∈ D such that E is E r ′

-dominated, and the
representation will follow.

If we compare our results with the Lévy case considered by Royer [21], we see that our
condition ‘g is uniformly balanced’ is equivalent to her ‘assumption Aγ ’. Royer shows that
assumption Aγ is satisfied by the BSDEs generated by nonlinear expectations, and we similarly
show that the induced g is uniformly balanced.

If we compare with earlier results in discrete time [3,5], we see that we have again shown an
equivalence between BSDE solutions and translation invariant nonlinear expectations. Unlike in
discrete time, we require the further assumption of E r -domination to ensure that the continuous-
time generator is adequately Lipschitz continuous, and so our results lack the complete generality
of those in discrete time.

Further work on this area may allow us to extend away from the assumption of translation
invariance (see [5] in discrete time), and towards quadratic BSDEs (see [12] in the Brownian
case). A further extension would also be to allow µ to be a stochastic finite-variation process.
These results will require further extension of the existence results of BSDEs in general
filtrations.
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