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Abstract

In this paper it is shown that every irreducible vertex algebra of countable dimension is
nondegenerate in the sense of Etingof and Kazhdan and that every simple vertex operator algebra
is nondegenerate.
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1. Introduction

In one of their series papers on quantization of Lie bialgebras [6], Etingof and Kazhdan
introduced and studied certain fundamental notions of braided vertex operator algebra and
guantum vertex operator algebra. While studying the axiomatic properties of braided (and
guantum) vertex operator algebras, they introduced a notion of nondegeneracy of a vertex
operator algebra. A vertex operator algebtas said to be nondegenerate if for every
positive integem the linear mapz,, from V®" @ C((z1)) - -- ((zx)) 10 V((z1)) - - - ((zn))
defined by

Z(wP @ @v" ® f) = fY (oW z) - Y (0", z)1
is injective. It was proved therein that in their definition of the notion of braided vertex

operator algebra, if the classical limit vertex operator algebra is nondegenerate, two of
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the main axioms (the quantum Yang—Baxter equation and the unitarity condition) are
automatically satisfied, and that in their notion of quantum vertex operator algebra, the
main axiom (the hexagon relation) is equivalent to a certain natural associativity property.
In view of this, nondegeneracy is very useful in the study of braided (and quantum) vertex
operator algebras.

Let g be a finite-dimensional Lie algebra equipped with a nondegenerate symmetric
invariant bilinear form(-, -). Denote byg the associated affine Lie algebra (without the
degree operator added). Associated to the affine Lie algelrad a complex number
one has a vertex (operator) algeta¢, 0), whose underlying vector space is a certain
generalized Verma module or Weyl module for the affine Lie alggboélevel ¢ (cf. [7,
10,16,17]). It was proved in [6] that (¢, 0) is an irreducibleg-module, thenV (¢, 0)
is nondegenerate. Notice that the irreducibility\gf(¢, 0) as ag-module amounts to the
irreducibility of V;(¢, 0) as a module for the vertex (operator) algebfds, 0). We also
notice that for a general vertex operator algebrgequipped with a conformal vector)
the irreducibility of the adjoint modul® amounts to the simplicity of the vertex operator
algebraV. In view of this, one may conjecture thgeeneralsimple vertex operator algebras
are nondegenerate. In this paper, we shall prove that this conjecture is indeed true.

Inthe literature, there are certain results closely related to the injectivity of the fpaps
In [4], among other results it was proved thaViis a simple vertex operator algebra aid
is an irreducibleV-module, ther¥ (v, z)w # 0 for 0#£ v € V, 0# w € W. Furthermore,
among other results it was proved in [5] that the linear Miafiewed as a map froml @ W
to W((z)) is injective. In view of this, one might guess that ideas in [4,5] and [6] would
be highly valuable for proving the conjecture. Indeed, part of our proof uses some of their
ideas.

Notice that in the notion of vertex operator algebra used in [6], no conformal vector and
no Z-grading are assumed. A vertex operator algebra in the sense of [6] is often called a
vertex algebra. In this paper we consider a general vertex al@elifar anyV-modulew
and any positive integer we define a linear mag)” from V& @ W ® C((z1)) - - - ((zn))

to W((z1)) -+ ((zn)) by
Z’!:V (U(l) R ® U(”) Quw® f) — fY(U(l), Zl) ... Y(U(”)’ Zn)w~

It follows from [8] that V®"+D © C((z1))---((z»)) is a natural vertex algebra with

Ve @ W ® C((z1))---((zn)) as a module. We first prove that the vector subspace
kerzW of V® @ W ® C((z1))---((z»)) is a submodule. To describe submodules of
Ve @ W ® C((z1)) - - - ((z)) We slightly generalize the result of [8] on the irreducibility

of tensor product modules for tensor product vertex operator algebras in the context of
vertex algebras of countable dimension. Using this, we show thetig of countable
dimension and irreducible in the sense tiats an irreducibleV-module and ifW is a
V-module, then any submodule " @ W ® C((z1)) - - - ((z)) is of the formV®" @ U,
whereU isaV @ C((z1)) - - - ((zn))-submodule oW ® C((z1)) - - - ((z»)). Then it follows

that kerz)V = 0. From this we show that every irreducible vertex algebra of countable
dimension is nondegenerate. In particular, this implies that every simple vertex operator
algebra in the sense of [9] and [8] is nondegenerate.
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2. Themain results

We here recall the notion of nondegeneracy of a vertex algebra from [6] and prove
that every irreducible vertex algebra of countable dimension is nondegenerate and that
every simple vertex operator algebra is nondegenerate. In the course of proving our main
results we also extend a result of Frenkel, Huang and Lepowsky on the irreducibility of
tensor product modules for tensor product vertex operator algebras in the context of vertex
algebras of countable dimension.

Throughout this paper, vector spaces are considered over thediatl complex
numbers. In this paper we use the standard formal variable notations and conventions
(see [8,9]) and we use the following definition of the notion of vertex algebra ([14]; cf. [1,
4,8,9,16]):

Definition 2.1. A vertex algebras a vector spac® equipped with a linear map, called the
vertex operator map
Y:V — (EndV)[[z,z71]].
vi> Y(,2)=Y vzt (v, €EndV) (2.1)

nez

and equipped with a distinguished vecfioe V, called thevacuum vectagrsuch that the
following axioms hold: Fou,v e V,

upv =0 forn sufficiently large (2.2)
Y(1,2)=1; (2.3)

forveV,
Y(v,2)1€ V[[z]] and Y(v,2)1];—0(=v-11) =v; (2.4)

and foru,v eV,

zola<¥)m, )Y (v, 22) - z018<ZZ_ZZl)Y(v, x2)Y (u, x1)
0 —<0

=zilé(Z1Z_ZZ°>Y(Y(u,zo)v,zz) (2.5)

(theJacobi identity.

Remark 2.2. In the literature, there are variant definitions of the notion of vertex algebra
(cf. [1,4,13,16]). It was proved in [16] that the definition given in [1] is equivalent to the
current definition (with ground field). The definition used in [6] and [13] (where the
vacuum vector is denoted lxy), whose defining axioms had been proved before to give
rise to an equivalent definition (see [4,8,11,16]), is also equivalent to the current definition.
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For a vertex algebrd/, the vertex operator mapy is a linear map fromV to
Hom(V, V((z))). The mapY can be considered as a linear map froh® V to V((z)).
Following [6], we alternatively denote this map b¥(z). Define a linear operatdP €
EndV by

D) =v_s1 <= <iY(v, z)l) ) (2.6)
dz z=0

Then (cf. [14])

[D.Y(u,2)]=Y(Du,z)= diZY(u,z), (2.7)
Y(u,z2)v=ePYw,—z)u foru,veV. (2.8)

We also have
Yu,2)1=e¢Pu  foruev. (2.9)

It was proved ([4,16], cf. [8,9]) that the Jacobi identity is equivalent to the following
weak commutativity and associativifyor anyu, v € V, there exists a nonnegative integer
k such that

(21— 22" Y (u, 20) Y (v, 22) = (21 — 22)" Y (v, 22) Y (w, 20); (2.10)
and for anyu, v, w € V there exists a nonnegative integesuch that
(z0+22)'Y (u, 20+ 22)Y (v, 220w = (20 + 22)'Y (¥ (1, 20)v, z2) w. (2.11)

A V-module[14,16] is a vector spac® equipped with a linear may from V to
(EndW)[[z, z~1]1] such that all the axioms defining the notion of vertex algebra that make
sense hold. That s, the truncation condition (2.2), the vacuum property (2.3) and the Jacobi
identity (2.5) hold.

The notion of ideal is defined in the obvious way; an ideal of a vertex algéhsa
subspace/ such thatu,,v, v,u € U for all v e V, u € U. Every vertex algebr& has
trivial ideals 0 andv.

Definition 2.3. A vertex algebra/ is said to besimpleif there is no nontrivial ideal an®
is said to berreducibleif V is an irreduciblé/-module.

Clearly, an irreducible vertex algebra is simple, but simple vertex algebras are not
necessarily irreducible. For example, the vertex algebra constructed in [1] from the
commutative associative algeb€{x] with the standard derivation is simple, but not
irreducible. On the other hand, simple vertex operator algebras in the sense of [9] and [8]
are always irreducible because any submodul€ &f an ideal (cf. [8]).
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Let V be a vertex algebra, fixed throughout this sectiBallowing [6], for a positive
integern, we define a linear map

Zy:VE @C((z1) -+ ((zn)) = V((z0) -+ (@),
W0 f > fr® ) - v,z (2.12)
In [6], Z, was defined as
Z,=Y(z)(1®Y () - (1* '@ ¥ () (1®" ® 1). (2.13)
The following notion is due to Etingof and Kazhdan [6]:

Definition 2.4. A vertex algebraV is said to benondegeneraté the linear mapsz, are
injective for all positive integers.

Remark 2.5. Consider the case= 1. Forv e V, f € C((z)), we have
Ziw® )= fY(v,2)1= fePv =¢P fu.

Let 7 be the natural embedding & ® C((z)) into V((z)). ThenZy = ¢*Pr. It follows
immediately thatZ; is injective.

Now, let W be aV-module. Fom > 1, we define a linear map

ZV Ve QW ®C((z) - ((z) = WD)+ ((zn)),
W evouwe f fY(P z) - Y™ z)w  (2.14)

for v, ..., 0™ eV, we W, feCz1) - ((zn). Notice thatC((z1))---((zn))

is a unital commutative associative algebra (which is in fact a field) and that for
any vector spacd/, U((z1))---((zn)) is a C((z1))---((zn))-module. It is clear that
Z,YV is C((z1)) - - - ((zp))-linear whereV® @ W @ C((z1))---((z,)) is considered as a
C((z1)) - - - ((zn))-module in the obvious way. LeE, be the embedding o¥®" into
v@r+D defined by

E,(0V® - ©vW)=1Pg...0v" o1 (2.15)
Then
Z,=2YE,. (2.16)
In the literature, there are certain results which are closely related to the injectivity of

linear mapsZ{". The following result is due to Dong and Mason [5] while the particular
case is due to Dong and Lepowsky [4]:
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Proposition 2.6. Let V be a simple vertex operator algebra and i&tbe an irreducible
V-module. Leb™D, ..., v e V be nonzero vectors and let?, ..., w™ € W be linearly
independent vectors. Then

r

DY@ 2w £0 in W((z). (2.17)

i=1
In particular,

Yw,2)w#0 forO£veV, 0£weW. (2.18)

Remark 2.7. Proposition 2.6 exactly asserts tifaviewed as a linear map fromi @ W to
W((z)) is injective.

From [8], for any positive integer, V®"+1 has a natural vertex algebra structure and
for V-modulesWy, ..., W11, W1 ® - -- ® W,41 has a naturaV ®+Y-module structure.
For 1<i <n+1, letw; be the embedding df into V®+1):

iV —> V®(n+1),

v > 180D gy @ 190+ (2.19)

Let U be any subspace o¥1 ® --- ® W,41. Itis clear (cf. [8]) thatU is a submodule if
andonlyiffori=1,...,n+ 1,

Y(mi(v),2)U CU((z)) forallveV. (2.20)
Note that any commutative associative algebra with identity is naturally a vertex algebra.
Then from [8],V®+D @ C((z1)) - - - ((zn)) is a vertex algebra. Now we state our first and

key result:

Proposition 2.8. Let W be anyV-module. For any positive integer, subspacéerz is
a vV®rth @ C((z1)) -+ ((zx))-submodule oF " @ W ® C((z1)) - - ((zn)).

For convenience we first prove the following simple fact:
Lemma 2.9. Let U be a vector space and let

[z, z0) € U((zD) -+ - ((zn)). (2.21)

Assume that there exist nonnegative integgr$or 1 <i < j < n such that

( [T @- Z,/)k’-’)f(zl, <oz =0, (2.22)

1<i<j<n

Thenf(z1,...,2,) =0.
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Proof. The key issue here is the cancellation law. From [9], for any three formal series
A, BandC,if ABC, AB andBC all exist (algebraically), then

A(BC) = (AB)C = ABC. (2.23)

A= ] G@-zp™,  B= [] @-2p%.  C=fGu....%)
where we use the usual binomial expansion convention (cf. [9]). Then it follows

immediately from (2.22) thaf (z1,...,z,) =0. O

Proof of Proposition 2.8.. SinceZ is alreadyC((z1)) - - - ((z4))-linear, what we must
proveisthatfoi =1,...,n+ 1,

Y (7 (v), z) kerz)  (kerz))((z)) forveV. (2.24)

That is, we must prove that X € V" @ W ® C((z1)) - - - ((zn)) With Z¥ (X) = 0, then
fori=1,...,n+1,

z) (Y(mi(v),z)X)=0 forallveV. (2.25)
We shall prove this in four steps.

Claim1: Fori =n + 1, (2.25) holds.
Let

X = Z W@ u @uwf ® f, (2.26)
ai, By

(afinite sum). We shall use this generalfor the whole proof. Then

> AY @ za) Y (W z)wf = 2 (X) =0. (2.27)
o, By

Letv € V. By the weak commutativity there exists a nonnegative intégeich that
(z—z)"Y (0, Y (', z) = (z — 2"V ('™, 21)Y (v, 2) (2.28)

for all of the indicesi ande;. Multiplying (2.27) by (z — z1)* - - (z — z,)¥Y (v, 2) (from
left) and then using (2.28) we get

G-z =z Y f Y zr) Y (" z) Y (v, 2w =0, (2.29)
ai,B.y
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In view of Lemma 2.9 we have

Z ny(ulal, Zl) o Y(unan, Zn)Y(U’ 2wf =0. (2.30)
a;,B.y

ThusZ) (Y (ma41(v), 2)X) =0.
Claim2. Fori = n, (2.25) holds. From (2.27), using (2.28) we get

n—1
(l_[(z —Zi)k) D RY (@ za) Y (TPt 2, )Y (0, )Y (W, 20)wP =0,
i=1

o, B,y
(2.312)

In view of Lemma 2.9 we have
Z ny(ul‘”, Zl) ... Y(u(n—l)dn—l’ Zn—l)Y(U, z)Y(u”“",zn)wﬁ =0. (2.32)
a;, By

By the weak associativity, there exists a honnegative integech that
o+ 20)' Y (v, 20+ 20) Y (", 20)wP = (20 + 2)'Y (¥ (v, 20", 24 )w” (2.33)

for all of the indicesy,, and g, (which are finitely many). Then

(z0+ zn)’ Z f,,Y(ul‘“, z1) - Y(u("_l)“"—l, zn-1)Y (Y (v, z)u" ™, z,,)w/3
o, By
= (z0+ Zn)l Z ny(Mlal, Zl) - Y(u(n*l)an—l’ anl)Y(U, 0+ Zn)Y(Mna", Zn)wﬂ
o, B,y
=0. (2.34)

By Lemma 2.9 we get

Z ny(ulal, Zl) .. Y(u(n*l)an—l7 anl)Y(Y(U, ZO)Mna",Zn)wﬂ =0. (2.35)
o, By

Thatis,Z (Y (7w, (v), 2)X) = 0.

Claim3. kerz) is stable under the natural action$f. (Note that the symmetric group
S, acts naturally orV®" @ W ® C((z1)) - - - ((zn)), the domain ofz}V )

It suffices to prove that ke is stable under the actions of transpositions, 1, for
i=1...,n—1 LetX ekerZ) and writeX as in (2.26). By the weak commutativity
there exists a nonnegative integesuch that

(i — zieD) Y (W, )Y (u, zig1) = (2 — 24D Y (u, 2ig) Y (0, 7). (2.36)
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for all of the indices ande;. Then

(@i — 2+ Z) (i X) = (@i — 240 Z) (X) = 0. (2.37)
In view of Lemma 2.9, we havZ,Z"(cr,»(iJrl)X) =0. That is, kenZ,Z" is stable under the
action ofo;(;41) fori = 1,...,n. Therefore ke is S,-stable.

Claim4. For 1< i < n, (2.25) holds.
Let o be the transposition that exchangesgith »n. Then we have

Y(n,-(v), z)X = cr(Y(n',,(v), z)cr(X)) forveV. (2.38)
By Claim 3,0 (X) € kerZ,Z". Furthermore, by Claim 2 we have
Y (7 (v), 2)0 (X) € (kerZ, ) ((2)).
By Claim 3 again we get
o (Y (), 2)0 (X)) € (kerzZ))((2)).
Therefore
Z,YV (Y(m(v), z)X) = Z,YV (a (Y(nn(v), z)a(X))) =0.
This proves Claim 4, completing the proof
Let W be a nonzerd -module. Noticing thatfor 8 w ¢ W, 0£ f € C((z1)) - - - ((zn)),
Z,‘:V(1®”®w®f)=fY(l,Zl)---Y(l,zn)w=fw#0, (2.39)
we have
kerZ) #V®" @ W ® C((z1)) - - - ((zn))- (2.40)
If we can prove thatV® @ W ® C((z1))---((zx)) is an irreducible V®"+D) g
C((z1)) - - - ((zn))-module, in view of Proposition 2.8 we willimmediately have Zé{Y =0.
When V is a simple vertex operator algebra awdis an irreducibleV-module, it fol-
lows from [8] thatV®" @ W is an irreducibleV®”+D_-module. But it is not clear if
this is still true if V is just an irreducible vertex algebra. Motivated by this we next
determine all the submodules " @ W ® C((z1))---((z»)) for the vertex algebra
Vet @ C((z1)) - -+ ((z»)) with V an irreducible vertex algebra antd a general (not

necessarily irreducibleY -module. In this direction we first prove the following simple
result (for which we have no reference):
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Lemma 2.10. Let A; and A, be associative algebras with identity element andUgt
and Uz be modules forA;1 and Ao, respectively. Assume thaf; is irreducible and
Ends, Uy =C. Thenanyd; ® Az-submodule of/1 ® Uz is of the formUy ® U,, whereU,,
is an Ao-submodule ot/2. Furthermore, ifUs is irreducible, then/; ® Us is irreducible.

Proof. Fix a basis{ui, | @ € I} for U1. Let U be a nonzerid1 ® Az-submodule of
U1 ® Us. Letu be any nonzero element 6f. Then

U=uUly QU1+ -+ iy, U2,

whereuss, ..., up, are (finitely many) nonzero vectors lfp. SinceU1 is irreducible and
Ends, U1 =C, in view of the density theorem (cf. [12]), there exiate A, such that

auly, #0 and auzy,;, =0 fori=2,...,r.
Then
O#auiy, Quor=@®Nuel.

Since Uy is irreducible, we havedjauiy, = Ur. ThusUz ® u21 = (A1a @ Du C U.
Similarly, we havel/1 Q ug; C U fori =2,...,r. Set

Ué(u) = Aouz1+ -+ Auy- C Ua.
(Notice thatuy;’s are uniquely determined hy) Then
ueUi®Uyu)CU.

Setting

Up= > Ujw)C Uz, (2.41)
O#£uelU

we getU = Uy ® U,, completing the proof. O
Closely related to Lemma 2.10 is the following result which can be found in [3], or [2]:

Lemma 2.11. Let A be an associative algebra with identity and l&étbe an irreducible
A-module of countable dimension. Thendy U = C.

We now apply Lemma 2.11 to vertex algebras.

Lemma 2.12. Let V be a vertex algebra of countable dimension and Wétbe an
irreducible V-module. TherW is of countable dimension ariehdy W = C.
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Proof. Let w be any nonzero element &f. It was proved in [5] and [15] that the linear
span of vectors,,w for v € V, m € Z is a submodule oW . Consequently,

W =spanfv,w |veV, meZ}.

Then we see at once th@at has countable dimension. Furthermore Adie the subalgebra
of EndW, generated by all the operatarg for v € V, m € Z. Then A acts irreducibly
on W and Endd W = Endy W. In view of Lemma 2.11 we have Epd¥ = C. Thus
Endy W=Endy W=C. O

The following result slightly generalizes the corresponding result of [8]:

Proposition 2.13. Let Vi,...,V, be vertex algebras of countable dimension and let
Wi, ..., W, be irreducible modules foVy, ..., V., respectively. TheW/1 ® --- ® W, is
an irreducibleV; ® - - - ® V,.-module with

EndV1®...®Vr(W1 ®---QW,)= C.

Proof. In view of Lemma 2.12, we have EpdW; = C for i = 1,...,r. In particular,
Proposition holds for = 1. Forr = 2, first it follows from Lemma 2.10 that/; @ W»
is an irreducibleéV; ® Vo-module. Then by Lemma 2.12, Engyv, (W1 @ W2) = C. Now,
Proposition follows immediately from induction erand the assertion fer=2. O

Now we are ready to prove our main result:

Theorem 2.14. Let V be an irreducible vertex algebra of countable dimension andiet
be any nonzerd -module. Then for every positive integethe linear mag," is injective.
Furthermore, every irreducible vertex algebvaof countable dimension is nondegenerate.

Proof. In view of Proposition 2.8, for any positive integer kerz? is a v+l @
C((z1)) - - - ((zn))-submodule ofV ®* @ W ® C((z1)) - - - ((z)). It follows from Proposi-
tion 2.13 thatV ®" is an irreducible/ ®"-module and that Engk. V®* = C. Let A1 be the
subalgebra of End®", generated by all the operatarg for u € V®*, m € Z. ThenAz
acts irreducibly orV®" and End, V®" = C. In view of Lemma 2.10, we have

kerz)/ =v® @uU,
whereU isaV ® C((z1)) - - - ((zx))-submodule oW ® C((z1)) - - - ((zn)). Let
F=wmi® fi+---+wQfr
be a generic element @f, wherews, ..., w, are linearly independent vectors Wi and

fi € C((z1)) - - - ((za))- Then we havd®" @ F € kerZ), so that

frwi - frw, =Y fiY(Lz) YL )w =2 (1% @ F) =0. (2.42)
i=1
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Consequently,f; = 0 for i = 1,...,r. This proves thatU = 0, so keiZ)’ = 0.
Furthermore, sinc&, = ZY E,, whereE,, is the embedding o¥/ ®" into v+ 7,
must be injective. This proves th&tis nondegenerate.O

It follows from the definition of the notion of vertex operator algebra [8,9] that any
vertex operator algebra in the sense of [9] and [8] has countable dimension. We also know
that a simple vertex operator algebra is irreducible. Then we immediately have

Coroallary 2.15. Let V be a simple vertex operator algebra in the sensgdfand[8] and
let W be a nonzerd/-module. Then for every positive integerthe linear mapz) is
injective. Furthermore, every simple vertex operator algebrs nondegenerate.

We also immediately have the following generalization of Proposition 2.6:

Corollary 2.16. Let V be an irreducible vertex algebra of countable dimension andiet
be any(not necessarily irreducibjenonzeroV -module. Then for each positive integer
the linear map

F/ v @W — W((z1) - ((zn))
defined by
FnW(v(l) ® v euw)= Y(v(l), z1) - Y (v, z,)w (2.43)
is injective.

Remark 2.17. Results of this paper can be appropriately generalized in terms of
intertwining operators [8]. In fact, the corresponding result of [4] was formulated in terms
of intertwining operators in the more general context of generalized vertex algebras.
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