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Static negative energies near a domain wall
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Abstract

We show that a system of a domain wall coupled to a scalar field has static negative energy density at certain distances from
the domain wall. This system provides a simple, explicit example of violation of the averaged weak energy condition and the
quantum inequalities by interacting quantum fields. Unlike idealized systems with boundary conditions or external background
fields, this calculation is implemented precisely in renormalized quantum field theory with the energy necessary to support the
background field included self-consistently.
 2003 Elsevier Science B.V.
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1. Introduction

In the absence of any restriction on the matter
stress-energy tensorT µν , general relativity permits
the construction of arbitrary spacetime geometries.
One simply writes down the desired geometry and
solves Einstein’s equation in reverse to determineT µν .
Thus it appears that the feasibility of producing exotic
situations such as closed timelike curves (however,
see [1,2]) and superluminal travel depends on whether
energy conditions restrictT µν . In particular, if one
assumes the weak energy condition,TµνV

µV ν � 0
for all timelike vectorsV µ, or equivalently that no
observer sees negative energy density, then one can
show that superluminal travel [3] and the construction
of closed timelike curves [4–6] are impossible.
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The weak energy condition is obeyed by the usual
classical fields,1 but quantum fields can violate it. Per-
haps the simplest example of weak energy condition
violation is a superposition of the vacuum and a single
mode with 2 photons. The negative energy densities
are confined to particular regions of space and partic-
ular periods of time. In this system, and in any system
made from free fields [8], the energy density satisfies
the averaged weak energy condition,

(1)
∫
G

TµνV
µV ν � 0,

where the integral is taken over a complete timelike
geodesicG with tangent vectorV µ. This energy
density also satisfies quantum inequalities [9] of the

1 It is, however, violated by non-minimally coupled scalar fields
[7].
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form

(2)
∫

ρ(x, t)W(t) dt � −ct−d
0 ,

whereρ = T00, W is a window function of widtht0,
d is the number of spacetime dimensions, andc is
a constant depending ond , the type of field being
considered, and the particular shape ofW .

On the other hand, the best-known system exhibit-
ing negative energy density is the Casimir problem.
Casimir [10] computed the energy density of the quan-
tum electromagnetic vacuum between perfectly con-
ducting plates separated by a distanced and found

(3)ρ = − π2

720d4
.

Laboratory measurements [11] of the force associated
with this energy have found good agreement with
Casimir’s result. While a question has been raised [12]
whether the energy density between metal plates (as
opposed to idealized perfect conductors) is actually
negative, it does appear to be so [13] as long as the
separation of the plates is large enough. Since the
negative energy density in the Casimir effect is static,
it can be averaged for arbitrarily long times. Thus
the Casimir effect violates the averaged weak energy
condition and the quantum inequalities.

One way to think of the Casimir effect is as the
energy of the electromagnetic vacuum with specified
boundary conditions or with interaction with fixed
materials. In that model, the electromagnetic field
energy is subject to “difference quantum inequalities”
[14], which restrict the energy density to be not
much more negative than that in the vacuum with the
specified conditions. However, one can also think of
the Casimir effect as the energy of a system of coupled
fields, including both the electromagnetic field and the
fields of the matter that makes up the plates. In that
case, the Casimir system is just a particular excitation
of some interacting quantum fields above the vacuum.
It contains static negative energy densities and is not
restricted by any quantum inequality, because those
apply only to free fields.

Unfortunately, the actual Casimir system is quite
complicated, and to be certain to understand it one
must take into account many effects associated with
physical metals, such as the true dispersion relation
and surface roughness. This Letter demonstrates the

same phenomenon of static negative energy density in
a simpler system, consisting only of two scalar fields
in 2+ 1 dimensions. Negative energies have appeared
previously in calculations of quantum energy densi-
ties (see, for example [15]); our emphasis here is that
the complete energy density, including the energy re-
quired to support the background field, is negative in a
self-consistent approximation with definite renormal-
ization conditions.

2. Model

In order to have a system of scalar fields that is
static and does not dissipate, we will use a topological
defect. For simplicity of calculation and similarity
to the Casimir problem we will use a domain wall,
and to decrease the number of divergences requiring
renormalization we will work in 2+1 dimensions. We
thus define a real scalar fieldχ to form the domain
wall and a second real scalar fieldφ whose interactions
with χ will produce the negative energy density. The
Lagrangian is

(4)L= 1

2

[
∂µχ∂

µχ + ∂µφ∂
µφ +U(χ,φ)

]
,

with

(5)

U(χ,φ) = λ
(
χ2 − η2)2 +m2(1− χ2/η2)φ2 + βφ4.

With β > m4/(4λη4) we find thatU is positive
definite, and the classical ground state is given by
φ = 0 andχ = η or χ = −η. If we specify different
vacua forx → ∞ and x → −∞, we find a static
classical domain wall solution. Taking the wall to lie
on they axis, we find

(6)χ(x) = η tanh(x/a),

where a = 1/(
√
λη). The wall is invariant under

translations and boosts in they direction. It has
classical energy density

(7)ρ(x) = 2λη4 sech4(x/a).

Now we quantize our fields. If we work in the
regime wherem � √

λη, the back reaction due to
the quantizedφ will have a negligible effect on the
domain wall. We can thus consider the domain wall,
for the purposes of the calculation, to provide a fixed
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background potential forφ. The effective Lagrangian
is then

(8)Lφ = 1

2

[
∂µφ∂

µφ − V (x)φ2],
where the potential

(9)V (x) = m2(1− χ2/η2) = m2 sech2(x/a)

acts as a position-dependent mass term forφ. Quantiz-
ingχ produces a correction to the shape of the domain
wall and to its energy, but the energy density still falls
exponentially as one goes away from the center of the
wall. The change of shape will affect the Casimir en-
ergy associated withφ, but only at higher order, which
we will not consider here [16].

3. A simple argument

We would like to show that a negative energy
density exists somewhere. The energy density in the
background potential can be calculated exactly, and
we will do so below, but a detailed calculation is
not necessary to demonstrate the existence of negative
energy densities.

Suppose that instead of the background potential
we had a perfectly reflecting boundary atx = 0, i.e.,
φ(0) = 0. Then the computation would be straightfor-
ward and the energy density atx would be

(10)ρφ(x) = − 1

32πx3
.

In this computation the main contribution to the
energy density atx comes from those modes whose
wavelengthλ is similar tox. If we takex sufficiently
large, then we will be interested in largeλ, and for
sufficiently largeλ, any potential barrier is perfectly
reflecting.2 Therefore, for sufficiently largex, the
energy inφ approaches the form of Eq. (10). To this
energy we must add the energy of theχ field, given in
the classical approximation by Eq. (7), from which

(11)ρχ (x) ∼ e−4|x|/a.
Even if we take into account quantum corrections to
the domain wall profile, we still expectρχ to decline

2 The only exceptions to this rule are potentials with a bound
state precisely at threshold [17,18], which include reflectionless
potentials. We will not consider this exceptional case.

exponentially away from the wall becauseχ is a
massive field.

Thus the positive energy density associated with the
wall declines exponentially, while the negative energy
density associated withφ declines only as a power law.
For large enoughx, the negative energy will dominate,
and the total energy will approach the form of Eq. (10).

4. Calculation

The general calculation of the Casimir energy
density for a scalar field with a background potential
will be presented elsewhere [19]. The energy density
can be computed from the Green’s function for the
given potential in scattering theory,

ρ(x) = − 1

8π

∞∫
0

dκ

[
2κ3G(x,x, iκ)− κ2 + V (x)

2

(12)− κ
d2

dx2G(x,x, iκ)

]
,

whereG(x,x ′, k) is the Green’s function that satisfies

−G′′(x, x ′, k)+ V (x)G(x, x ′, k)− k2G(x,x ′, k)
(13)= δ(x − x ′)

and has only outgoing waves (∼ eik|x|) at infinity.
The problem of the potential of Eq. (9) can be

solved exactly. The normal modes are associated
Legendre functions and the Green’s function is

G(x,x ′, k)
= a

2
"(1 + s − ika)"(−s − ika)

(14)× Pika
s

(
tanh(x>/a)

)
Pika
s

(− tanh(x</a)
)
,

wherex< andx> are, respectively, the smaller and the
larger ofx andx ′, Pµ

ν (x) is the associated Legendre
function defined as in [20] for−1 < x < 1, ands =
(
√

1− 4m2a2 − 1)/2. We have

G(x,x, iκ)

= a

2
"(1 + s + κa)"(−s + κa)

(15)× P−κa
s

(
tanh(x/a)

)
P−κa
s

(− tanh(x/a)
)
.

If we put Eq. (15) into Eq. (13) and introduce the
dimensionless variablesq = κa andy = x/a and the
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Fig. 1. Energy density in the wall (dotted) and the fieldφ (dashed) and the total energy density (solid) in units whereη = 1 for parametersλ = 1
andm2 = 0.1. For sufficiently large values ofx, the total energy density is negative.

parameterv = m2a2, we get

− 1

8πa3

(16)

×
∞∫

0

dq

[
"(1+ s + q)"(−s + q)

(
q3 − q

2

d2

dy2

)

× (
P−q
s (tanhy)P−q

s (− tanhy)
)

− q2 + v

2
sech2 y

]
.

We are concerned with the regime wherem is small
compared to the inverse width of the wall, 1/a, so
v � 1. Fig. 1 shows the energy density in the case
where v = 0.1. For y � 3, the energy density is
negative, as predicted above.

5. Discussion

We have shown a specific example of two inter-
acting scalar fields whose energy density is static and
negative in certain regions. Since the system is static,
one can average over as much time as one chooses,
and thus the system violates the averaged weak en-
ergy condition and the quantum inequalities. From
this system (as from the Casimir effect with physical
plates) one sees that the averaged weak energy condi-
tion and the quantum inequalities are simply not cor-

rect in the case of interacting fields, so the failure of
attempts to prove them is not due merely to technical
reasons.

The present system does, however, satisfy the
averaged null energy condition, given by Eq. (1) with
V µ null, which is sufficient to rule out superluminal
travel and the construction of time machines. It is
obeyed because if the geodesic runs parallel to the
domain wall, then the positive pressure cancels the
negative energy density andTµνV µV ν = 0, while if
the geodesic is not parallel to the wall it must cross
through the region of high positive energy. It is not
clear at this point whether some similar arrangement,
such as a domain wall in 3+1 dimensions with a hole,
might violate the averaged null energy condition for
certain geodesics.
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