
Theoretical Computer Science 396 (2008) 35–49
www.elsevier.com/locate/tcs

Combinatorial Gray codes for classes of pattern
avoiding permutations

W.M.B. Dukesa, M.F. Flanaganb, T. Mansourc,∗, V. Vajnovszkid

a Science Institute, University of Iceland, Reykjavı́k, Iceland
b Institute for Digital Communications, The University of Edinburgh, The King’s Buildings, Mayfield Road,

Edinburgh EH9 3JL, Scotland, United Kingdom
c Department of Mathematics, University of Haifa, 31905 Haifa, Israel

d LE2I UMR CNRS 5158, Université de Bourgogne B.P. 47 870, 21078 DIJON-Cedex, France

Received 16 April 2007; received in revised form 21 November 2007; accepted 8 December 2007

Communicated by E. Pergola

Abstract

The past decade has seen a flurry of research into pattern avoiding permutations but little of it is concerned with their exhaustive
generation. Many applications call for exhaustive generation of permutations subject to various constraints or imposing a particular
generating order. In this paper we present generating algorithms and combinatorial Gray codes for several families of pattern
avoiding permutations. Among the families under consideration are those counted by Catalan, large Schröder, Pell, even-index
Fibonacci numbers and the central binomial coefficients. We thus provide Gray codes for the set of all permutations of {1, . . . , n}

avoiding the pattern τ for all τ ∈ S3 and the Gray codes we obtain have distances 4 or 5.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Gray codes; Pattern avoiding permutations; Generating algorithms

1. Introduction

A number of authors have been interested in Gray codes and generating algorithms for permutations and their
restrictions (unrestricted [10], with given ups and downs [14,18], involutions, and fixed-point free involutions [24],
derangements [5], permutations with a fixed number of cycles [2]) or their generalizations (multiset permutations [13,
23]). A recent paper [12] presented Gray codes and generating algorithms for the three classes of pattern avoiding
permutations: Sn(123, 132), Sn(123, 132, p(p − 1) . . . 1(p + 1)), and permutations in Sn(123, 132) which have
exactly

(n
2

)
− k inversions. In [6] a general technique is presented for the generation of Gray codes for a large

class of combinatorial families; it is based on the ECO method and produces objects by their encoding given by

∗ Corresponding author. Tel.: +972 4824 0705; fax: +972 4824 0024.
E-mail addresses: dukes@raunvis.hi.is (W.M.B. Dukes), mark.flanagan@ieee.org (M.F. Flanagan), toufik@math.haifa.ac.il (T. Mansour),

vvajnov@u-bourgogne.fr (V. Vajnovszki).

0304-3975/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2007.12.002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82796627?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:dukes@raunvis.hi.is
mailto:mark.flanagan@ieee.org
mailto:toufik@math.haifa.ac.il
mailto:vvajnov@u-bourgogne.fr
http://dx.doi.org/10.1016/j.tcs.2007.12.002

36 W.M.B. Dukes et al. / Theoretical Computer Science 396 (2008) 35–49

the generating tree (in some cases the obtained encodings can be translated into the objects). Motivated by these
papers, we investigate the related problem for several new classes of pattern avoiding permutations.

More specifically, we give combinatorial Gray codes for classes of pattern avoiding permutations which are counted
by Catalan, Schröder, Pell, even-index Fibonacci numbers and the central binomial coefficients; the Gray codes we
obtain have distances 4 or 5. Our work is different from similar work for combinatorial classes having the same
counting sequence, see for instance [6,22]. Indeed, as Savage [21, Section 7] points out: ‘Since bijections are known
between most members of the Catalan family, a Gray code for one member of the family gives implicitly a listing
scheme for every other member of the family. However, the resulting list may not look like Gray codes, since bijections
need not preserve minimal changes between elements’.

Some direct constructions for Sn(231) exist but are, however, not Gray codes. For example, Bóna [8, Section
8.1.2] provides an algorithm for generating Sn(231). This algorithm is such that the successor of the permutation
π = (n, n − 1, . . . 2, 1, 2n + 1, 2n, 2n − 1, . . . , n + 2, n + 1) is π ′

= (1, 2, . . . , n − 1, 2n + 1, n, n + 1, . . . , 2n). The
number of places in which these two permutations differ is linear in n.

In Section 2 we present a combinatorial Gray code for Sn(231) with distance 4. In Section 3 we present a Gray
code for the Schröder permutations, Sn(1243, 2143), with distance 5. In Section 4 we present a general generating
algorithm and Gray codes for some classes of pattern avoiding permutations and discuss its limits.

The techniques we will use are: in Sections 2 and 3 reversing sublists [20]; in Section 3 combinatorial bijections
[12]; and in Section 4 generating trees [6].

Throughout this paper, it is convenient to use the following notation. The number cn =
1

n+1

(2n
n

)
is the nth Catalan

number. The large Schröder numbers rn are defined by r0 = 1 and for all n > 0,

rn = rn−1 +

n∑
k=1

rk−1rn−k . (1.1)

Let A(1) = 0, B(1) = 0 and for all i > 1,

A(i) = c0 + . . . + ci−2, and (1.2)

B(i) = r0 + . . . + ri−2. (1.3)

The parity of these numbers will be extremely important in proving the Gray code properties of the generating
algorithms for permutations we define later on in the paper. However, the parity of A(i) and B(i) are not explicitly
used in the algorithms. Note that for all 0 < k ≤ 2n , A(2n

+ k) is odd iff n is even. One can easily show that B(i) is
odd iff i = 2. For two permutations σ = σ1σ2 . . . σn and τ = τ1τ2 . . . τn in Sn , the metric d(σ, τ) is the number of
places in which they differ; and we denote by σ ◦ τ (or more compactly as στ) their product, that is, the permutation
π in Sn with πi = τσi for all i , 1 ≤ i ≤ n. In particular, when σ is the transposition (u, v), then (u, v) ◦ τ is the
permutation π with πi = τi for all i , except that πu = τv and πv = τu .

2. A Gray code for Sn(231)

Note that if (π(1), . . . , π(cn)) is an ordered list of elements of Sn(231) such that d(π(i), π(i + 1)) ≤ 4, then
the operations of reverse, complement and their composition provide lists for Sn(132), Sn(213) and Sn(312),
respectively, which preserve the distance between two adjacent permutations.

2.1. Generating 231-avoiding permutations

First we introduce some general notation concerning the list Dn that our algorithm will generate and then provide
the necessary proofs to show that Dn is the desired object.

For every n ≥ 0, let Dn denote a list consisting of cn entries, each of which is some permutation of {1, . . . , n}. The
j th entry is denoted Dn (j). In order that we may copy such a list, either in its natural or reversed order, we define Di

n
to be Dn if i is odd, and Dn reversed if i is even, for every positive integer i . Thus Di

n(j) = Di+1
n (cn + 1 − j) for

all 1 ≤ j ≤ cn .
By Dn (j) + l we shall mean Dn(j) with every element incremented by the value l. Concatenation of lists is

defined in the usual way, concatenation of any permutation with the null permutation yields the same permutation, i.e.
[τ, ∅] = [∅, τ] = τ .

W.M.B. Dukes et al. / Theoretical Computer Science 396 (2008) 35–49 37

Table 1
The Gray code D6 for the set S6(231) given by relation (2.1) and produced by
Algorithm 1

612345
621345
613245
632145
631245
621435
612435
614235
614325
643125
643215
641325
642135
641235
631254
632154
613254
621354
612354
612534
612543
621543

621534
615234
615324
615243
615432
615423
654123
654213
654132
654321
654312
651432
651423
651243
652143
653124
653214
651324
652134
651234
165234
165324

165243
165432
165423
162543
162534
162354
163254
164235
164325
162435
163245
162345
126345
126435
126354
126543
126534
216534
216543
216354
216435
216345

312645
312654
321654
321645
132645
132654
213654
213645
123645
123654
123465
213465
132465
321465
312465
214365
124365
142365
143265
431265
432165
413265

421365
412365
512346
521346
513246
532146
531246
521436
512436
514236
514326
543126
543216
541326
542136
541236
154236
154326
152436
153246
152346
215346

215436
125436
125346
123546
213546
132546
321546
312546
412356
421356
413256
432156
431256
143256
142356
124356
214356
312456
321456
132456
213456
123456

Permutations are listed column-wise and changed entries are in bold.

The list Dn is defined recursively as follows; D0 consists of a single entry which contains the null permutation that
we denote as ∅. For any n ≥ 1,

Dn =

n⊕
i=1

ci−1⊕
j=1

cn−i⊕
k=1

[
Dn+i−1

i−1 (j), n,D j+A(i)+1
n−i (k) + (i − 1)

]
, (2.1)

where A(i) is defined in Eq. (1.2) and ⊕ denotes the concatenation operator, e.g.

2⊕
i=1

2⊕
j=1

(f (i, j)) = (f (1, 1), f (1, 2), f (2, 1), f (2, 2)).

Lemma 2.1. The list Dn contains all 231-avoiding permutations exactly once.

Proof. Every permutation π ∈ Sn(231) may be decomposed as π = τnσ , where τ ∈ Si−1(231) and σ is a 231-
avoiding permutation on the set {i, . . . , n − 1} which is order-isomorphic to a σ ′

∈ Sn−i . In Dn , n assumes the
positions i = 1, 2, . . . , n. For each position i of n, τ runs through Di−1 alternately forwards and backwards, forwards
the last time. For each τ , σ runs through Di−1 + (i − 1) alternately forwards and backwards, backwards the first time
(see Table 1). The result follows by strong induction on n. �

Lemma 2.2. For all n ≥ 2,

Dn(1) = n123 · · · (n − 1) and Dn(cn) = 123 · · · n.

Proof. The proof proceeds by induction on n. We have D0 = ∅. Assume that the result holds for each i =

0, 1, 2, . . . n − 1. Then by Eq. (2.1), Dn(1) corresponds to the expression with i = 1, j = 1 and k = 1;

Dn(1) = n D1+A(1)+1
n−1 (1) = n D2

n−1(1) = n Dn−1(cn−1) = n123 · · · (n − 1).

The last entry Dn(cn) corresponds to the expression in Eq. (2.1) with i = n, j = ci−1 and k = cn−i ;

Dn(cn) = D2n−1
n−1 (cn−1) n = 123 · · · n. �

38 W.M.B. Dukes et al. / Theoretical Computer Science 396 (2008) 35–49

Theorem 2.3. For each q ∈ {1, 2, . . . cn − 1}, Dn (q) differs from its successor Dn(q + 1) by a rotation of two, three
or four elements.

Proof. The proof proceeds by induction. The result holds trivially for n = 1 sinceD1 consists of a single permutation.
Assume that the result holds for Di for each i = 1, 2, . . . n − 1. From Eq. (2.1), there are 3 cases:

(i) The current permutation corresponds to (i; j; k = t) and the next permutation corresponds to (i; j; k = t + 1),
where t ∈ {1, 2, . . . cn−i − 1}. Therefore

Dn(q) = Dn+i−1
i−1 (j) n D j+A(i)+1

n−i (t) + (i − 1)

Dn(q + 1) = Dn+i−1
i−1 (j) n D j+A(i)+1

n−i (t + 1) + (i − 1),

and by the induction hypothesis,

d(Dn(q),Dn(q + 1)) = d(Dn−i (t),Dn−i (t + 1)) ≤ 4.

(ii) The current permutation corresponds to (i, j = t, k = cn−i) and the next permutation corresponds to
(i; j = t + 1; k = 1), where t ∈ {1, 2, . . . ci−1 − 1}. Therefore

Dn (q) = Dn+i−1
i−1 (t) n Dt+A(i)+1

n−i (cn−i) + (i − 1)

Dn (q + 1) = Dn+i−1
i−1 (t + 1) n Dt+A(i)+2

n−i (1) + (i − 1).

Since Dt+A(i)+1
n−i (cn−i) = Dt+A(i)+2

n−i (1), the induction hypothesis gives

d(Dn(q),Dn(q + 1)) = d(Di−1(t),Di−1(t + 1)) ≤ 4.

(iii) The current permutation corresponds to (i = t; j = ci−1; k = cn−i) and the next permutation corresponds to
(i = t + 1; j = 1; k = 1), where t ∈ {1, . . . n − 1}. Therefore

Dn (q) = Dn+t−1
t−1 (ct−1) n Dct−1+A(t)+1

n−t (cn−t) + (t − 1)

Dn (q + 1) = Dn+t
t (1) n D1+A(t+1)+1

n−t−1 (1) + t.

This divides into four cases, where in each case we use Lemma 2.2 and the fact that A(t + 1) = A(t) + ct−1:
(a) If n + t is odd and ct−1 + A(t) + 1 = A(t + 1) + 1 is odd, then

Dn(q) = 1 2 3 . . . (t − 1) n t (t + 1) . . . (n − 1)

Dn(q + 1) = 1 2 3 . . . (t − 1) t n (t + 1) . . . (n − 1).

Here Dn(q + 1) is obtained from Dn(q) via a single transposition of elements at positions (t, t + 1).
(b) If n + t is odd and ct−1 + A(t) + 1 is even, then

Dn(q) = 1 2 . . . (t − 1) n (n − 1) t (t + 1) . . . (n − 2)

Dn(q + 1) = 1 2 . . . (t − 1) t n (n − 1) (t + 1) . . . (n − 2),

for all t ≤ n−3. HereDn(q+1) is obtained fromDn(q) via a rotation of the 3 elements at positions (t, t+1, t+2).
If t = n − 2 then

Dn(q) = 1 2 . . . (n − 3) n (n − 1) (n − 2) and

Dn(q + 1) = 1 2 . . . (n − 3) (n − 2) n (n − 1).

These permutations differ by a rotation of the 3 elements at positions (n − 2, n − 1, n). If t = n − 1 then

Dn(q) = (n − 2) 1 2 . . . (n − 3) n (n − 1) and

Dn(q + 1) = (n − 1) 1 2 . . . (n − 3) (n − 2) n.

These permutations differ by a rotation of the 3 elements at positions (1, n − 1, n).
(c) If n + t is even and ct−1 + A(t) + 1 is odd, then

Dn(q) = (t − 1) 1 2 . . . (t − 2) n t (t + 1) . . . (n − 1) and

Dn(q + 1) = t 1 2 . . . (t − 2) (t − 1) n (t + 1) . . . (n − 1)

W.M.B. Dukes et al. / Theoretical Computer Science 396 (2008) 35–49 39

Algorithm 1 Pseudocode for generating SN (231) using Eq. (2.1). The list
Dn is computed for each 1 ≤ n ≤ N . Here DR

n denotes the reversal of list Dn .
set D0 to a 1 × 0 matrix
set D1 := [1]

for n := 2 to N do
τ state := n (mod 2) {1 means forwards and 0 means backwards}
σ state := 0
for i := 1 to n do

for l := 1 to i − 1 do
if τ state = 0 then

τ =: DR
i−1 (l)

else
τ := Di−1 (l)

end if
for r := 1 to cn−i do

if σ state = 0 then
σ := DR

n−i (r) + (i − 1)

else
σ := Dn−i (r) + (i − 1)

end if
new row:= [τ, n, σ]
Append new row to Dn

end for
σ state := σ state + 1 (mod 2)

end for
τ state := τ state + 1 (mod 2)

end for
end for

for all t ≥ 3. Here Dn (q + 1) is obtained from Dn(q) via a rotation of the 3 elements at positions (1, t, t + 1).
The degenerate cases t = 1, 2 are dealt with in the same manner as those at the end of part (b).
(d) If n + t is even and ct−1 + A(t) + 1 is even, then

Dn(q) = (t − 1) 1 2 . . . (t − 2) n (n − 1) t (t + 1) . . . (n − 2)

Dn(q + 1) = t 1 2 . . . (t − 2) (t − 1) n (n − 1) (t + 1) . . . (n − 2),

for all 3 ≤ t ≤ n − 3. Here Dn (q + 1) is obtained from Dn(q) via a rotation of the 4 elements at positions
(1, t, t + 1, t + 2). The degenerate cases t = 1, 2, n − 2, n − 1 are dealt with in the same manner as those at the
end of part (b). �

In Table 1 is given the list D6 obtained by relation (2.1). The alert reader will note that there is no rotation of 4
elements in Table 1. Such a rotation is first observed when n = 7 and t = 3 (the permutation 2176345 becomes
3127645).

3. A Gray code for Schröder permutations

The permutations Sn(1243, 2143) are called Schröder permutations and are just one of the classes of permutations
enumerated by the Schröder numbers mentioned in the Introduction. Let Sn be the class of Schröder paths from (0, 0)
to (2n, 0) (such paths may take steps u = (1, 1), d = (1, −1) and e = (2, 0) but never go below the x-axis). This
class Sn is enumerated by rn , see for instance [9].

In what follows, we will present a recursive procedure for generating all Schröder paths of length n. This procedure
has the property that if the paths in Sn are listed as (p1, p2, . . .), then the sequence of permutations (ϕ(p1), ϕ(p2), . . .)

40 W.M.B. Dukes et al. / Theoretical Computer Science 396 (2008) 35–49

is a Gray code for Sn+1(1243, 2143) with distance 5. First we briefly describe Egge and Mansour’s [9, Section 4]
bijection ϕ : Sn 7→ Sn+1(1243, 2143).

Let p ∈ Sn and let si be the transposition (i, i + 1).

Step 1. For all integers a, m with 0 ≤ a, m < n, if either of the points ((8m + 1)/4, (8a + 5)/4) or
((8m + 5)/4, (8a + 1)/4) is contained in the region beneath p and above the x-axis, then place a dot at
that point. For such a dot, with coordinates (x, y), associate the label si where i = (1 + x − y)/2. Let j = 1.

Step 2. Choose the rightmost dot that has no line associated with it (with label sk , say). Draw a line parallel to the
x-axis from this dot to the leftmost dot that may be reached without crossing p (which has label sl , say).
Let σ j = sksk−1 . . . sl , where si , applied to a permutation π , exchanges πi with πi+1. If all dots have lines
running through them, then go to step 3. Otherwise increase j by 1 and repeat step 2.

Step 3. Let ϕ(p) = σ j . . . σ2σ1(n + 1, n, . . . , 1).

Example 3.1. Consider the path p ∈ S6 in the diagram.

The dots indicate the points realized in Step 1 and the lines joining them indicate how each of the σ ’s are formed.
We have σ1 = s6s5, σ2 = s4s3s2s1, σ3 = s3s2s1 and σ4 = s2. So

ϕ(p) = σ4σ3σ2σ1(7, 6, 5, 4, 3, 2, 1)

= s2 s3s2s1 s4s3s2s1 s6s5(7, 6, 5, 4, 3, 2, 1)

= (5, 2, 4, 6, 7, 1, 3).

3.1. Generating all Schröder paths

There are many ways to recursively generate all Schröder paths of length n. In what follows, we give one such
procedure for generating the list Sn . This list has the property that the corresponding permutations, under the bijection
ϕ, are a Gray code for Schröder permutations of distance 5.

As in Section 2, we will use the convention that for any integer i , S i
n = Sn if i is odd and S i

n is Sn reversed, if i is
even. Entry j of Sn is denoted Sn(j). In this notation we will have

S i
n(j) =

{
Sn(j) if i is odd,
Sn(rn + 1 − j) if i is even.

Define S0 to be the list consisting of the single null Schröder path, denoted ∅. For all n ≥ 1, the paths are generated
recursively via

Sn =

rn−1⊕
i=1

(eSn−1(i)) ⊕

n⊕
i=1

ri−1⊕
j=1

rn−i⊕
k=1

(
uSn+i

i−1 (j) dS j+B(i)+1
n−i (k)

)
. (3.1)

Sn starts with Sn−1 with each path preceded by e. There follow all the Schröder paths beginning with u. Let d be the
partner of this u (the d that returns the path to the x-axis). Then d assumes positions i = 2, 4, 6, . . . , 2n in the path.
For each i , we have the paths in u α d β, where α runs through Si−1 alternately forwards and backwards, backwards
the last time, and for each α, β runs through Sn−i alternately forwards and backwards, backwards the first time.

Furthermore, we define Φn(j) := ϕ(Sn(j)) and

Φn :=

rn⊕
j=1

Φn(j). (3.2)

W.M.B. Dukes et al. / Theoretical Computer Science 396 (2008) 35–49 41

Table 2
The lists S3 and Φ3

n S3(n) Φ3(n)

1 eee 4321
2 eeud 4312
3 eudud 4132
4 eude 4231
5 euudd 4123
6 eued 4213
7 udued 2413
8 uduudd 1423

n S3(n) Φ3(n)

9 udude 2431
10 ududud 1432
11 udeud 3412
12 udee 3421
13 udee 3241
14 uedud 3142
15 uuddud 1342
16 uudde 2341

n S3(n) Φ3(n)

17 uuedd 2134
18 uuuddd 1234
19 uuded 2314
20 uududd 1324
21 ueudd 3124
22 ueed 3214

Table 3
The lists S4 and Φ4

n S4(n) Φ4(n)

1 eeee 54321
2 eeeud 54312
3 eeudud 54132
4 eeude 54231
5 eeuudd 54123
6 eeued 54213
7 eudued 52413
8 euduudd 51423
9 eudude 52431

10 eududud 51432
11 eudeud 53412
12 eudee 53421
13 eudee 53241
14 euedud 53142
15 euuddud 51342
16 euudde 52341
17 euuedd 52134
18 euuuddd 51234
19 euuded 52314
20 euududd 51324
21 eueudd 53124
22 eueed 53214
23 udueed 35214
24 udueudd 35124
25 uduududd 15324
26 uduuded 25314
27 uduuuddd 15234
28 uduuedd 25134
29 uduudde 25341
30 uduuddud 15342

n S4(n) Φ4(n)

31 uduedud 35142
32 ududee 35241
33 ududee 35421
34 ududeud 35412
35 udududud 15432
36 ududude 25431
37 ududuudd 15423
38 ududued 25413
39 udeued 45213
40 udeuudd 45123
41 udeude 45231
42 udeudud 45132
43 udeeud 45312
44 udeee 45321
45 uuddee 34521
46 uuddeud 34512
47 uuddudud 14532
48 uuddude 24531
49 uudduudd 14523
50 uuddued 24513
51 uedued 42513
52 ueduudd 41523
53 uedude 42531
54 uedudud 41532
55 uedeud 43512
56 uedee 43521
57 ueede 43251
58 ueedud 43152
59 ueuddud 41352
60 ueudde 42351

n S4(n) Φ4(n)

61 uududde 24351
62 uududdud 14352
63 uudedud 34152
64 uudede 34251
65 uuuddde 23451
66 uuudddud 13452
67 uueddud 31452
68 uuedde 32451
69 uueedd 32145
70 uueuddd 31245
71 uuududdd 13245
72 uuudedd 23145
73 uuuudddd 12345
74 uuueddd 21345
75 uuudded 23415
76 uuuddudd 13425
77 uuedudd 31425
78 uudeed 32415
79 uudeed 34215
80 uudeudd 34125
81 uudududd 14325
82 uududed 24315
83 uuduuddd 14235
84 uuduedd 24135
85 ueuedd 42135
86 ueuuddd 41235
87 ueuded 42315
88 ueududd 41325
89 ueeudd 43125
90 ueeed 43215

For example, we have S1 = (e, ud) and S2 = (ee, eud, udud, ude, uudd, ued). Thus Φ1 = (21, 12) and
Φ2 = (321, 312, 132, 231, 123, 213). The paths and permutations S3, Φ3, S4 and Φ4 are listed in Tables 2 and 3.
For two paths p1, p2 ∈ Sn , we write d(p1, p2) for the number of places in which the two paths differ when each e is
replaced by rr where r represents (1, 0); e.g. d(e, ud) = 2 and d(ued, eud) = 2.

Lemma 3.2. Eq. (3.1) generates all Schröder paths of length n.

Proof. This is routine by induction. The first concatenation operator forms all paths that begin with step e. If a path
does not begin with e, then it does not touch the x-axis for the first time until (2i, 0). A path of this form is uniquely
expressed as uαdβ where α ∈ Si−1 and β ∈ Sn−i . �

Lemma 3.3. For all n ≥ 1, Sn(1) = en and Sn(rn) = uen−1d.

42 W.M.B. Dukes et al. / Theoretical Computer Science 396 (2008) 35–49

Proof. By Eq. (3.1) we have that S1(1) = e and S1(2) = ud; so the result is true for n = 1. Assume it to be true for
all m ≤ n − 1. Then Sn(1) = eSn−1(1) = e en−1

= en .
Similarly, Sn(rn) corresponds to Eq. (3.1) with i = n, j = rn−1, k = r0, thus

Sn(rn) = uS2n
n−1(rn−1) d = u en−1 d = u en−1 d.

Hence by induction the result is true for all n ≥ 1. �

Under the bijection ϕ, we thus have

Corollary 3.4. For all n > 0,

Φn(1) = (n + 1) n . . . 1,

Φn(rn) = n . . . 1 (n + 1).

Theorem 3.5. For each 1 ≤ q < rn , Sn(q) differs from Sn(q + 1) in at most 5 places and d(Φn(q),Φn(q + 1)) ≤ 5.

Proof. This proof follows by strong induction and analyzing the different successors that occur in Eq. (3.1). The
statement in the Theorem holds for n = 0 because there is only one permutation. We assume that the statement in the
Theorem holds true for all 0 ≤ i ≤ n − 1. From Eq. (3.1) there are five cases to consider:

(i) If 1 ≤ q < rn−1 − 1, then Sn(q) = eSn−1(q) and Sn(q + 1) = eSn−1(q + 1). This gives

d(Sn(q),Sn(q + 1)) = d(Sn−1(q),Sn−1(q + 1)),

which is ≤ 5 by our hypothesis. Thus

Φn(q) = (n + 1)Φn−1(q) and

Φn(q + 1) = (n + 1)Φn−1(q + 1),

and so d(Φn(q),Φn(q + 1)) ≤ 5.
(ii) If q = rn−1 then by Eq. (3.1) with (i = 1; j = 1; k = 1) and Lemma 3.3 we have

Sn(rn−1) = eSn−1(rn−1) = e u en−2 d and

Sn(rn−1 + 1) = u dS2
n−1(1) = u d u en−2 d.

Thus d(Sn(rn−1),Sn(rn−1 + 1)) = d(euen−2d, uduen−2d) = 2. The corresponding permutations are

Φn(rn−1) = (n + 1) (n − 1) (n − 2) . . . 2 1 n and

Φn(rn−1 + 1) = (n − 1) (n + 1) (n − 2) . . . 2 1 n,

so that d(Φn(rn−1),Φn(rn−1 + 1)) = 2 ≤ 5.
(iii) If Sn(q) corresponds to (i; j = ri−1; k = t) for some 1 ≤ t < rn−i in Eq. (3.1) then

Sn(q) = uSn+i
i−1 (ri−1) dS j+B(i)+1

n−i (t) and

Sn(q + 1) = uSn+i
i−1 (ri−1) dS j+B(i)+1

n−i (t + 1),

and the distance of the two paths is no greater than 5, by the induction hypothesis. Therefore

Φn(q) = a ◦ (n + 1, . . . , n + 2 − i, ϕ(S j+B(i)+1
n−i (t))) and

Φn(q + 1) = a ◦ (n + 1, . . . , n + 2 − i, ϕ(S j+B(i)+1
n−i (t + 1))),

where

a =

{
si si−1 . . . s1, if n + i even,

si−1 . . . s1si si−1 . . . s1, if n + i odd.

Using the fact that if d(b, b′) ≤ x , then d(a ◦ b, a ◦ b′) ≤ x , we have by the induction hypothesis
d(Φn(q),Φn(q + 1)) ≤ 5.

W.M.B. Dukes et al. / Theoretical Computer Science 396 (2008) 35–49 43

(iv) If Sn(q) corresponds to Eq. (3.1) with triple (i; j = t; k = rn−i), where 1 ≤ t < ri−1, then the successor
Sn(q + 1) corresponds to Eq. (3.1) with triple (i; j = t + 1; k = 1). Consequently,

Sn(q) = uSn+i
i−1 (t) dS t+B(i)+1

n−i (rn−i) and

Sn(q + 1) = uSn+i
i−1 (t + 1) dS t+B(i)+2

n−i (1).

Since S t+B(i)+1
n−i (rn−i) = S t+B(i)+2

n−i (1), the result for Sn follows by the induction hypothesis applied to Sn+i
i−1 .

Now if t + B(i) + 2 is odd, then

Φn(q) = ϕ̂(uSn+i
i−1 (t) d) i (i − 1) . . . 1 and

Φn(q + 1) = ϕ̂(uSn+i
i−1 (t + 1) d) i (i − 1) . . . 1,

where ϕ̂(uSn+i
i−1 (t) d) is ϕ(uSn+i

i−1 (t) d) with every element incremented by i . Since d(Sn+i
i−1 (t),Sn+i

i−1 (t +1)) ≤ 5,
we have that d(Φn(q),Φn(q + 1)) ≤ 5. The case where t + B(i) + 2 is even is handled in a similar manner with
the suffix i(i − 1) . . . 1 replaced by (i − 1) . . . 1(i + 1).

(v) If Sn(q) corresponds to Eq. (3.1) with triple (i = t; j = ri−1; k = rn−i), where 1 ≤ t < n, then Sn(q + 1)

corresponds to Eq. (3.1) with triple (i = t + 1; j = 1; k = 1). Consequently

Sn(q) = uSn+t
t−1 (rt−1) dSrt−1+B(t)+1

n−t (rn−t) and

Sn(q + 1) = uSn+t+1
t (1) dS1+B(t+1)+1

n−t−1 (1).

This divides into 4 subcases depending on the parity of the numbers n + t and rt−1 + B(t) + 1 = B(t + 1) + 1.
Each case is easily resolved by applying Lemma 3.3.

(a) If n + t is even and B(t + 1) + 1 is even, then

Sn(q) = uS2
t−1(rt−1) dS2

n−t (rn−t) = u et−1 d en−t and

Sn(q + 1) = uSt (1) dSn−t−1(1) = u et d en−t−1,

which differ in two positions. This gives

Φn(q) = n (n − 1) . . . (n − t + 1) (n + 1) (n − t) (n − t − 1) . . . 1 and

Φn(q + 1) = n (n − 1) . . . (n − t) (n + 1) (n − t − 1) . . . 1,

for all 1 ≤ t ≤ n − 1. The two permutations differ by transposing the elements at positions (t + 1, t + 2).
(b) If n + t is odd and B(t + 1) + 1 is odd, then

Sn(q) = uSt−1(rt−1) dSn−t (rn−t) = u uet−2d d uen−t−1d and

Sn(q + 1) = uS2
t (1) dS2

n−t−1(1) = u uet−1d d uen−t−2d,

which differ in five positions. This gives

Φn(q) = (n − 1) · · · (n − t + 2)(n − t)n(n + 1)(n − t − 1) · · · 1(n − t + 1) and

Φn(q + 1) = (n − 1) · · · (n − t + 1)(n − t − 1)n(n + 1)(n − t − 2) · · · 1(n − t),

for all 2 ≤ t ≤ n − 2. These two permutations differ in five places (a transposition of the positions (t − 1, n)

and a cycle of three elements at positions (t, t + 1, t + 2)). For t = 1 we have

Φn(q) = n (n + 1) (n − 1) (n − 2) . . . 1 and

Φn(q + 1) = (n − 1) n (n + 1) (n − 2) . . . 1,

which differ by a cycle of three elements at positions (1,2,3). Similarly, for t = n − 1 we have

Φn(q) = (n − 1) . . . 1 (n + 1) n and

Φn(q + 1) = (n − 1) . . . 1 n (n + 1),

which differ by transposing the entries in positions (n, n + 1).

44 W.M.B. Dukes et al. / Theoretical Computer Science 396 (2008) 35–49

(c) If n + t is odd and B(t + 1) + 1 is even, then

Sn(q) = uSt−1(rt−1) dS2
n−t (rn−t) = u uet−2d d en−t and

Sn(q + 1) = uS2
t (1) dSn−t−1(1) = u uet−1d d en−t−1.

Thus Sn(q + 1) differs from Sn(q) in four positions. This gives

Φn(q) = (n − 1) . . . (n − t + 1) n (n + 1) (n − t) . . . 1 and

Φn(q + 1) = (n − 1) . . . (n − t) n (n + 1) (n − t − 1) . . . 1,

for all t ≥ 2. The two permutations differ in three places (a rotation of three elements at positions
(t, t + 1, t + 2)). The degenerate case t = 1 is handled in the same manner as in part (a).

(d) If n + t is even and B(t + 1) + 1 is odd, then

Sn(q) = uS2
t−1(rt−1) dSn−t (rn−t) = u et−1 d uen−t−1d and

Sn(q + 1) = uSt (1) dS2
n−t−1(1) = u et d u en−t−2 d.

Thus Sn(q + 1) differs from Sn(q) in five positions. This gives

Φn(q) = n(n − 1) · · · (n − t + 2)(n − t)(n + 1)(n − t − 1) · · · 1(n − t + 1)

and

Φn(q + 1) = n(n − 1) · · · (n − t + 1)(n − t − 1)(n + 1)(n − t − 2) · · · 1(n − t),

for all t ≤ n − 2. The two permutations differ in four places (the two disjoint transpositions of elements at
positions (t, n + 1) and (t + 1, t + 2)). The degenerate case t = n − 1 is handled in the same manner as in
part (a). �

The lists S3, Φ3, S4 and Φ4 are given in Tables 2 and 3. Note that, unlike Φn , the list Sn is a circular Gray code;
its first and last element have distance at most five. The choice of a Gray code for Schröder paths is critical in our
construction of a Gray code for Sn(1243, 2143) since Egge and Mansour’s bijection ϕ, generally, does not preserves
distances. For instance d(en, uen−1d) = 2 but ϕ(en) = (n + 1)n . . . 1 differs from ϕ(uen−1d) = n . . . 1(n + 1) in
all positions. Also, there already exists a distance-5 Gray code for Schröder paths [22] but it is not transformed into
a Gray code for Sn(1243, 2143) by a known bijection. Finally, as in the previous section, both Gray codes presented
above can be implemented in exhaustive generating algorithms.

4. Regular patterns and Gray codes

Here we present a general generating algorithm and Gray codes for permutations avoiding a set of patterns T ,
provided T satisfies certain constraints. The operations of reverse, complement and their composition extend these
to codes for T c, T r and T rc. Our approach is based on generating trees; see [1,6,7,25] and the references therein.
In [6] a general Gray code for a very large family of combinatorial objects is given; objects are encoded by their
corresponding path in the generating tree and often it is possible to translate the obtained codes into codes for objects.
The method we present here is, in a way, complementary to that of [6]: it works for a large family of patterns and
objects are produced in ‘natural’ representation. It is also easily implemented by efficient generating algorithms. Its
disadvantage is, for example, that it gives a distance-5 Gray code for S(231), and so is less optimal than the one given
in Section 2; and it does not work for T = {1243, 2143} (the set of patterns considered in Section 3) since T does not
satisfy the required criteria.

We begin by explaining the generating tree technique in the context of pattern avoidance. The sites of π ∈ Sn
are the positions between two consecutive entries, as well as before the first and after the last entry; and they are
numbered, from right to left, from 1 to n +1. For a permutation π ∈ Sn(T), with T a set of forbidden patterns, i is an
active site if the permutation obtained from π by inserting n + 1 into its i th site is a permutation in Sn+1(T); we call
such a permutation in Sn+1(T) a son of π . Clearly, if π ∈ Sn+1(T), by erasing n + 1 in π one obtains a permutation
in Sn(T); or equivalently, any permutation in Sn+1(T) is obtained from a permutation in Sn(T) by inserting n + 1
into one of its active sites. The active sites of a permutation π ∈ Sn(T) are right justified if the sites to the right of

W.M.B. Dukes et al. / Theoretical Computer Science 396 (2008) 35–49 45

Fig. 1. (a) The generating tree induced by the call of Gen Avoid(1,2) for n = 4 and with χ defined by: χ(1, k) = k + 1 and χ(i, k) = i if i 6= 1.
It corresponds to the forbidden pattern T = {321}. The active sites are represented by a dot. (b) The first four levels of the generating tree induced
by the definition (4.2) with the same function χ ; they yield the lists Ci (321) for the sets Si (321), 1 ≤ i ≤ 4. This tree is the Gray-code ordered
version of the one in (a). Permutations in bold have direction down and the others direction up.

any active site are also active. We denote by χT (i, π) the number of active sites of the permutation obtained from π

by inserting n + 1 into its i th active site.
A set of patterns T is called regular if for any n ≥ 1 and π ∈ Sn(T)

• π has at least two active sites and they are right justified;
• χT (i, π) does not depend on π but only on the number k of active sites of π ; in this case we denote χT (i, π) by

χT (i, k).

In what follows we shall assume that T is a regular set of patterns. Several examples of regular patterns T , together
with their respective χ functions, are given at the end of this section.

Now we will describe an efficient (constant amortized time) generating algorithm for permutations avoiding a
regular set of patterns; then we show how we can modify it to obtain Gray codes. If n = 1, then Sn(T) = {(1)};
otherwise Sn(T) = ∪π∈Sn−1(T){σ ∈ Sn | σ is a son of π}. An efficient implementation is based on the following
considerations and its pseudocode is given in Algorithm 2. The permutation obtained from π ∈ Sn−1(T) by inserting
n into its first (rightmost) active site is πn. Let σ (resp. τ) be the permutation obtained from π by inserting n into the
i th (resp. (i + 1)th) active site of π . In this case τ is obtained by transposing the entries in positions n − i + 1 and
n − i of σ . In addition, if χT (i, k) is calculable, from i and k, in constant time, then the obtained algorithm, Gen Avoid
(Algorithm 2), runs in constant amortized time. Indeed, this algorithm satisfies the following properties:

• the total amount of computation in each call is proportional with the number of direct calls produced by this call,
• each non-terminal call produces at least two recursive calls (i.e., there is no call of degree one), and
• each terminal call (degree-zero call) produces a new permutation,

see for instance [19] and Fig. 1(a) for an example.
Now we show how one can modify the generating procedure Gen Avoid sketched above in order to produce a

Gray-code listing. We associate to each permutation π ∈ Sn(T)

• a direction, up or down, and we denote by π1 the permutation π with direction up and by π0 the permutation π

with direction down. A permutation together with its direction is called directed permutation.

46 W.M.B. Dukes et al. / Theoretical Computer Science 396 (2008) 35–49

• a list of successors, each of them a permutation in Sn+1(T). The first permutation in the list of successors of π1

has direction up and all others have direction down. The list of successors of π0 is obtained by reversing the list of
successors of π1 and then reversing the direction of each element of the list.

Let π ∈ Sn(T) with k successors (or, equivalently, k active sites), and Lk be the unimodal sequence of integers

Lk =

{
1, 3, 5, . . . , k, (k − 1), (k − 3), . . . , 4, 2 if k is odd
1, 3, 5, . . . , (k − 1), k, (k − 2), . . . , 4, 2 if k is even.

(4.1)

This list is very important in our construction of a Gray code; it has the following critical properties, independent of k:
it begins and ends with the same element, and the difference between two consecutive elements is less than or equal
to 2.

For a permutation π with k active sites, the list of successors of π1, denoted by φ(π1), is a list of k directed
permutations in Sn+1(T): its j th element is obtained from π by inserting n + 1 in the Lk(j)th active site of π ; and as
stated above, the first permutation in φ(π1) has direction up and all others have direction down. Also we extend φ in
a natural way to lists of directed permutations: φ(π(1), π(2), . . .) is simply the list φ(π(1)), φ(π(2)), This kind
of distribution of directions among the successors of an object is similar to that of [26].

Let dn = card(Sn(T)) and define the list

Cn(T) = Cn =

dn−1⊕
q=1

φ(Cn−1(q)) (4.2)

where Cn(q) is the qth directed permutation of Cn , anchored by C1 = (1)1. We will show that the list of permutations
in Cn (regardless of their directions) is a Gray code with distance 5 for the set Sn(T). With these considerations in
mind we have

Lemma 4.1.

• The list Cn contains all T -avoiding permutations exactly once;
• The first permutation in Cn is (1, . . . , n) and the last one is (2, 1, 3, . . . , n).

Lemma 4.2. If π i is a directed permutation in Cn (that is, π is a length n permutation and i ∈ {0, 1} is a direction),
then two successive permutations in φ(π i), say σ and τ , differ in at most three positions.

Proof. Since φ(π0) is the reverse of φ(π1) it is enough to prove the statement for i = 1; so suppose that i = 1. Let
σ and τ be the permutations obtained by inserting n + 1 in the Lk(j)th and Lk(j + 1)th active site of π , respectively,
for some j . Since |Lk(j) − Lk(j + 1)| ≤ 2, d(σ, τ) ≤ 3. �

Let π i
∈ Cn and `(π i) denote the first (leftmost) element of the list φ(π i), `2(π i) = `(`(π i)), and `s(π i) =

`(`s−1(π i)). Similarly, r(π i) denotes the last (rightmost) element of the list φ(π i), and r s(π i) is defined analogously.
For π i

∈ Cn let dir(π i) = i ∈ {0, 1}. By the recursive application of the definition of the list φ(π i) we have the
following lemma.

Lemma 4.3. If π i
∈ Cn , then dir(`s(π i)) = 1 and dir(r s(π i)) = 0 for any s ≥ 1.

Proof. `(π i), the first successor of π i has direction up for any i ∈ {0, 1}, and generally dir(`s(π i)) = 1 for s ≥ 1.
Similarly, r(π i), the last successor of π i has direction down for any i ∈ {0, 1}, and dir(r s(π i)) = 0 for s ≥ 1. �

Lemma 4.4. If σ, τ ∈ Sn(T) and d(σ, τ) ≤ p, then, for s ≥ 1,

d(r s(σ 0), `s(τ 1)) ≤ p.

Proof. r(σ 0) = (σ, (n + 1))0 and `(τ 1) = (τ, (n + 1))1. Induction on s completes the proof. �

Theorem 4.5. Two consecutive permutations in Cn differ in at most five positions.

W.M.B. Dukes et al. / Theoretical Computer Science 396 (2008) 35–49 47

Table 4
The Gray-code list C5(321) for the set S5(321) given by
relation (4.2) and with succession function χ in Section 4.1

12345
12534
51234
15234
12354
14253
14523
14235
41253

45123
41523
41235
12453
12435
31425
31452
34125
34512

34152
31254
35124
31524
31245
13425
13452
13254
13524

13245
23145
23514
23154
23451
23415
21435
21453
24135

24513
24153
21354
25134
21534
21345

Permutations are listed column-wise in 14 groups; each group
contains the sons of a same permutation in S4(321), see Fig. 1
b. In bold are permutations with direction down and the others
with direction up.

Algorithm 2 Pseudocode for generating permutations avoiding a set T of regular
patterns characterized by the succession function χ(i, k). After the initialization of
π by the length 1 permutation [1], the call of Gen Avoid(1, 2) produces Sn(T). Its
ordered version, as described in Section 4, produces distance-5 Gray codes.
procedure Gen Avoid(si ze, k)

if si ze = n then
Print(π)

else
si ze := si ze + 1
π := [π, si ze]
Gen Avoid(si ze, χ(1, k))
for i := 1 to k − 1 do

π := (si ze − i + 1, si ze − i) ◦ π

Gen Avoid(si ze, χ(i + 1, k))
end for
for i := k − 1 to 1 by −1 do

π := (si ze − i + 1, si ze − i) ◦ π

end for
end if

end procedure

Proof. Let σ i and τ j be two consecutive elements of Cn . If there is a πm
∈ Cn−1 such that σ i , τ j

∈ φ(πm), then,
by Lemma 4.2, σ and τ differ in at most three positions. Otherwise, let πm be the closest common ancestor of σ i

and τ j in the generating tree, that is, π is the longest permutation such that there exists a direction m ∈ {0, 1} with
σ i , τ j

∈ φ(φ(. . . φ(πm) . . .)). In this case, there exist αa and βb successive elements in φ(πm) (so that α and β differ
in at most three positions) and an s ≥ 1 such that σ i

= r s(αa) and τ j
= `s(βb).

If s = 1, then σ and τ are obtained from α and β by the insertion of their largest element in the first or second
active site, according to a and b; in these cases σ and τ differ in at most five positions. (Actually, if a = b, then σ and
τ differ as α and β, that is, in at most three positions.)

If s > 1, by Lemma 4.3, dir(r(αa)) = · · · = dir(r s(αa)) = 0 and dir(`(βb)) = · · · = dir(`s(βb)) = 1. Since
r(αa) and `(βb) differ in at most five positions, by Lemma 4.4, so are σ and τ . �

The first and last permutations in Cn have distance two, so Cn is a circular Gray code, see Table 4. The generating
algorithm Gen Avoid sketched in the beginning of this section and presented in Algorithm 2 can be easily modified
to generate the list Cn(T) for any set of regular patterns: it is enough to change appropriately the order among its
successive recursive calls by endowing each permutation with a direction as described above; see also Fig. 1.

48 W.M.B. Dukes et al. / Theoretical Computer Science 396 (2008) 35–49

4.1. Several well-known classes of regular patterns

Below we give several classes of regular patterns together with the χ function. For each class, a recursive
construction is given in the corresponding reference(s); it is based (often implicitly) on the distribution of active
sites of the permutations belonging to the class. It is routine to express these recursive constructions in terms of χ

functions and check the regularity of each class.
Classes given by counting sequences:

(i) 2n−1 [4].
T = {321, 312}, χT (i, k) = 2

(ii) Pell numbers [4].

T = {321, 3412, 4123}, χT (i, k) =

{
3 if i = 1
2 otherwise

(iii) even-index Fibonacci numbers [4].

- T = {321, 3412}, χT (i, k) =

{
k + 1 if i = 1
2 otherwise

- T = {321, 4123}, χT (i, k) =

{
3 if i = 1
i otherwise

(iv) Catalan numbers [17,25].
- T = {312}, χT (i, k) = i + 1

- T = {321}, χT (i, k) =

{
k + 1 if i = 1
i otherwise

(v) Schröder numbers [11].

- T = {4321, 4312}, χT (i, k) =

{
k + 1 if i = 1 or i = 2
i otherwise

- T = {4231, 4132}, χT (i, k) =

{
k + 1 if i = 1 or i = k
i + 1 otherwise

- T = {4123, 4213}, χT (i, k) =

{
k + 1 if i = k − 1 or i = k
i + 2 otherwise

(vi) central binomial coefficients
(2n−2

n−1

)
[11].

- T = {4321, 4231, 4312, 4132}, χT (i, k) =

k + 1 if i = 1
3 if i = 2
i otherwise

- T = {4231, 4132, 4213, 4123}, χT (i, k) =

{
3 if i = 1
i + 1 otherwise.

Variable length patterns:

(a) T = {321, (p + 1)12 . . . p}, χT (i, k) =

k + 1 if i = 1 and k < p
p if i = 1 and k = p
i otherwise.

See for instance [7,4]. If p = 2, then we retrieve the case (i) above; p = 3 corresponds to T = {321, 4123} in case
(iii); and p = ∞ corresponds to T = {321} in case (iv).

(b) T = {321, 3412, (p + 1)12 . . . p}, χT (i, k) =

k + 1 if i = 1 and k < p
p if i = 1 and k = p
2 otherwise.

See for instance [4]. If p = 2, then we retrieve the case (i) above; if p = 3, the case (ii); and p = ∞ corresponds
to T = {321, 3412} in case (iii).

(c) T = ∪τ∈Sp−1{(p + 1)τp}.

χT (i, k) =

{
k + 1 if k < p or i > k − p + 1
i + p − 1 otherwise.

See [3,15,16]. If p = 2, then we retrieve the case T = {312} in point (iv) above; and p = 3 corresponds to
T = {4123, 4213} in point (v).

W.M.B. Dukes et al. / Theoretical Computer Science 396 (2008) 35–49 49

Acknowledgments

The authors kindly thank the anonymous referees for their helpful suggestions which have greatly improved
the accuracy and presentation of this work. The first two authors would also like to thank Toast, Dublin, for their
hospitality during the preparation of this document.

References

[1] Silvia Bacchelli, Elena Barcucci, Elisabetta Grazzini, Elisa Pergola, Exhaustive generation of combinatorial objects by ECO, Acta Inform.
40 (8) (2004) 585–602.

[2] Jean-Luc Baril, Gray code for permutations with a fixed number of cycles, Discrete Math. 30 (13) (2007) 1559–1571.
[3] Elena Barcucci, Alberto Del Lungo, Elisa Pergola, Renzo Pinzani, Permutations avoiding an increasing number of length-increasing forbidden

subsequences, Discrete Math. Theor. Comput. Sci. 4 (1) (2000) 31–44.
[4] Elena Barcucci, Antonio Bernini, Maddalena Poneti, From Fibonacci to Catalan permutations, PuMA 17 (1–2) (2006) 1–17, preprint

math.CO/0612277.
[5] Jean-Luc Baril, Vincent Vajnovszki, Gray code for derangements, Discrete Appl. Math. 140 (2004) 207–221.
[6] Antonio Bernini, Elisabetta Grazzini, Elisa Pergola, Renzo Pinzani, A general exhaustive generation algorithm for Gray structures, Acta

Inform. 44 (5) (2007) 361–376. Also as preprint math.CO/0703262.
[7] Timothy Chow, Julian West, Forbidden sequences and Chebyshev polynomials, Discrete Math. 204 (1999) 119–128.
[8] Miklós Bóna, Combinatorics of Permutations, Chapman & Hall, 2004.
[9] Eric S. Egge, Toufik Mansour, Permutations which avoid 1243 and 2143, continued fractions, and Chebyshev polynomials, Electron. J.

Combin. 9 (2) (2003) #R6.
[10] Gideon Ehrlich, Loopless algorithms for generating permutations, combinations, and other combinatorial objects, J. ACM 20 (1973) 500–513.
[11] Olivier Guibert, Combinatoire des permutations à motifs exclus en liaison avec mots, cartes planaires et tableaux de Young, Ph.D. Thesis,

Université Bordeaux 1, 1995.
[12] Asep Juarna, Vincent Vajnovszki, Some generalizations of a Simion-Schmidt bijection, Comput. J. 50 (2007) 574–580.
[13] C.W. Ko, Frank Ruskey, Generating permutations of a bag by interchanges, IPL 41 (5) (1992) 263–269.
[14] James F. Korsh, Loopless generation of up–down permutations, Discrete Math. 240 (1–3) (2001) 97–122.
[15] Darla Kremer, Permutations with forbidden subsequences and a generalized Schröder number, Discrete Math. 218 (1–3) (2000) 121–130.
[16] Darla Kremer, Postscript: Permutations with forbidden subsequences and a generalized Schröder number” [Discrete Math. 218 (2000)

121–130], Discrete Math. 270 (1–3) (2003) 332–333.
[17] Jean Pallo, Some properties of the rotation lattice of binary trees, Comp. J. 31 (1988) 564–565.
[18] Dominique Roelants van Baronaigien, Frank Ruskey, Generating permutations with given ups and downs, Discrete Appl. Math. 36 (1) (1992)

57–65.
[19] Frank Ruskey, Combinatorial Generation (in preparation).
[20] Frank Ruskey, Simple combinatorial Gray codes constructed by reversing sublists, in: ISAAC Conference, in: LNCS, vol. 762, 1993,

pp. 201–208.
[21] Carla Savage, A survey of combinatorial gray codes, SIAM Rev. 39 (4) (1997) 605–629.
[22] Vincent Vajnovszki, Gray visiting Motzkins, Acta Inform. 38 (2002) 793–811.
[23] Vincent Vajnovszki, A loopless algorithm for generating the permutations of a multiset, Theoret. Comput. Sci. 307 (2003) 415–431.
[24] Timothy Walsh, Gray codes for involutions, J. Combin. Math. Combin. Comput. 36 (2001) 95–118.
[25] Julian West, Generating trees and the Catalan and Schröder numbers, Discrete Math. 146 (1994) 247–262.
[26] Mark Weston, Vincent Vajnovszki, Gray codes for necklaces and Lyndon words of arbitrary base, PuMA 17 (1–2) (2006) 175–182.

http://arxiv.org//arxiv:math.CO/0612277
http://arxiv.org//arxiv:math.CO/0703262

	Combinatorial Gray codes for classes of pattern avoiding permutations
	Introduction
	A Gray code for Sn(231)
	Generating 231-avoiding permutations

	A Gray code for Schröder permutations
	Generating all Schröder paths

	Regular patterns and Gray codes
	Several well-known classes of regular patterns

	Acknowledgments
	References

