
MATHEMATICS 

RATIONAL QUADRILATERALS 

SECOND COMMUNICATION 

BY 

J. H. J. ALMERING 

(Communicated by Prof. J. G. VAN DER CORPUT at the meeting of Dec. 19, 1964) 

§ 1. Introduction 

A polygon, of which the sides and diagonals have a rational length, 
will be called a rational polygon. In a former paper, published in these 
Proceedings [1J I developed a method to construct rational quadrilaterals. 
Our starting point is a rational triangle ABO; without loss of generality 
we can suppose the sides of this triangle to be integers. Next we construct 
points E, situated in the plane of the triangle, for which AE, BE and OE 
are rational. Such a point E, not situated on a side of the triangle, for 
which AE, BE and OE are rational, will be called a convenient point. 

We have seen that the convenient points lie everywhere dense in the 
plane of the triangle and moreover that through any vertex an infinite 
number of straight lines exists that each contain an infinite number of 
convenient points. 

A 

Fig. 1 

In the following an arbitrary line through 0, different from AO and 
BO, will be denoted by "a line l", l meets AB in D (figure 1). Let us 
assume that the line l contains an infinite number of convenient points. 



291 

For a convenient point E of 1 the lengths of AE, BE and OE are rational 
numbers, which we suppose to be written with the smallest positive 
denominator. The smallest common multiple of these denominators will 
be called the "denominator" of the convenient point considered. 

We will show that the number of convenient points on 1, of which the 
denominator H does not exceed a given natural number G, is finite. Next 
we will derive a lower bound for this number, that increases unlimitedly 
with G, namely 

log log G _ ]( 
log 4 

where ]( represents a number, that is wholly determined by the position 
of A, B, 0 and 1. 

For the convenient points on 1 a law of distribution will be formed, 
by the aid of which we will prove the 

Theorem. Given a circle r and a rational triangle ABO situated 
in the plane of r. For large G the number of convenient points in the 
interior of r with denominators ~ G has an order of magnitude larger 
than log log G. 

Contrary to former investigations, that were restricted to qualitative 
results, here quantitative results are derived. It may be advisable to 
remark that these quantitative results are presumably very rough, because 
the order of magnitude of the lower bound, indicated above, is probably 
much lower than that of the considered function itself. 

It is obvious that the number of points E, situated in the plane of 
the triangle ABO, for which BE and OE are rational, is countable, as for 
BE and OE only a countable number of values can be taken into con
sideration. 

§ 2. The cubic curve 

Let w be the index of the triangles that occur in the figure and let 
E be a convenient point on the line 1. The index w is a squarefree natural 
number. Let <X and fJ be the angles of the triangle ABO that are situated 
at A and B, <x' and fJ' the corresponding angles of the triangle ABE. 
We now put (See [II], p. 42) 

tg i<x = Xl Vw , tg ifJ = YI Vw , 
X2 Y2 

tg i<x' = Ixi VW , tg ifJ' = lyl Vw , 

<ODB = p 
UI -

, tg ip = - Vw, 
U2 

where the separate pairs Xl, X2; YI, Y2; UI, U2 are relatively prime positive 
integers, X and yare rational numbers that are to be taken positive if 
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E lies at the same side of AB as 0, and negative if E lies at the opposite 
side of AB. 

If we further put 

m = YIY2(X2Ul - XIU2) WXIUl + X2U2) 

n =XIX2(Y2Ul +YIU2) (-WYIUl +Y2U2), 

then x and y satisfy the equation: 

(1) 

Clearly the numbers m and n are integers, that are determined by the 
position of A, B, 0 and l. If the position of A, B, 0 and l is given, (1) 
gives the equation of a cubic curve in the coordinates x and y. A point 
with rational coordinates will be called a rational point. Any rational 
point of the curve (1) for which x>O, y>O gives rise to a convenient point 
on the line l. A rational point (x, y) with 0<X<Ul/U2,0<y<U2/WUl 
yields a convenient point that lies at the same side of AB as O. If 
x> Ul/U2, y> U2/WUl then we consider instead of (x, y) the rational point 
(-I/wx, -I/wy) of the curve, which yields a convenient point at the 
other side of AB. This is connected with the fact, that the equation (I) 
does not change if for x is substituted -I/wx or -I/wy for y. 

§ 3. Transformation of the cubic curve 

In the same way as in our earlier paper (see [I] p. 194) we apply to 
(I) a birational transformation. We here take the transformation in such 
a way that points (x, y) with positive x and yare mapped on points with 
positive X and Y, and moreover that the point x = 0, y = ° is transformed 
into the point X = 0, Y = 0. 

In the earlier formulae we replace to this end x by -I/wx. By this (I) 
is replaced by itself and the transformed equation remains the same as 
previously. The transformation formulae are 

(2) ) 

X(X+q) 
x = 2nwuIU2(Y -pX) 

Y-pX 

where 

(3) 

The transformed equation is 

(4) y2 = X3 + (N2 - 2M) X2 + M2 X, 

where 
M =4mnwu12u22 , N = (m+n) (WU12+U22). 

The numbers M and N are integers. 
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We will call (4) the "normalized equation" and the curve that is repre
sented by this equation the "normal curve". 

The inverse transformation is 

(5) 

~ X = Mwxy 

? Y = MWXYU1U2 {n( wx + ~) + m ( wy + ~) } . 
In the following we will suppose that the point D lies between A and B. 

Then we have 
m>O , n>O , M>O , N>O, 

and then with a point (x, y) for which x> 0, y> ° corresponds a point 
(X, Y) with X>O, Y>O. 

§ 4. In what cases has l an infinite number of convenient points1 

The line l has an infinite number of convenient points if the corre
sponding normal curve possesses a non-exceptional point. In our previous 
paper ([I] p. 196) we considered the rational point P (X2' Y 2) of the 
normal curve for which 

X 2 = { 2mn (WU12_U22)}2 
m-n 

There is some advantage in replacing P 2 by the rational point Pa, that 
is obtained by intersecting the line OP2 with curve. We obtain for the 
abscissa Xa of the latter point: 

Xa = {2WU12U22(m-n) }2. 
WU12-U22 

The point Pa can be exceptional only if 9Xa is an integer and that is 
if the number (2 defined by 

is an integer. In the latter expression we substitute the values of m and n 
of § 2 and we obtain 

6 2 2 { 2 (X2Y1 - X1Y2) (WX1Y1 + X2Y2) U1 U2 } 
(2 = WU1 U2 X1X2YlY2 + 2 2 • WU1 -U2 

The number (2 is an integer if and only if the number 

is an integer. We can write (21 in the form 

(6) 

19 Series A 
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where 

The number a is an integer, dependent on the position of A, Band 0 
but independent of the line l. We now have the 

Theorem. It is always possible to find two positive relatively prime 
integers U1 and U2 in such a way that 

1) U1/U2 is arbitrarily near any positive real number A i= 1!V~, 

2) the expression (6) does not represent an integer. 

Proof. (See fig. 2). We consider the part 151 of the (U1' U2) plane for 
which U1>O, U2>O, WU12-u22>lal and the part 152 of the (U1, U2) plane 
for which U1>O,U2>O,u22_ wu12>lal. We take an arbitrary positive 
number e such that the halflines with the equations U1/U2 = A + e, U1> ° 
and U1/U2 = A - e, U1> ° intersect both with 151 or both with 152. This is 

~----~------------U, 
Fig. 2 

always possible as A i= l/VW. We suppose for instance that both lines 
intersect with 151. We consider that part of b1 that lies between the two 
halflines and call this b3. Now we choose the point (Ul, U2) in b3 in such 
a manner that U2 is relatively prime with U1 and with w, we attain this 
for instance by choosing for U2 a prime number greater than wand by 
choosing for U1 a positive integer, that is not a multiple of U2. Then the 
numerator and the denominator of the fraction 

cannot be divided by a factor of U1 nor by a factor of U2 and so this fraction 
cannot be reduced. Moreover (6) is not an integer because IWU12_U221 > lal. 
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From the above it follows: An infinite number of lines through the 
point 0 exists such that each of them possesses an infinite number of 
convenient points, these lines are everywhere dense in the plane of the 
triangle ABO. 

§ 5. An upper bound for the denominator of a convenient point 

Let (x, y) be a rational point of the curve (1) with x>O, y>O and 
xY=l=-ljw. For the lengths of AE, BE and OE we find 

AE= 
y(1+wx2) 

. AB, 
(x+y) j1-wxyj 

BE= 
x(1+ wy2) 

. AB, 
(x+y) j1-wxyj 

OE = XY(WUI2+U22) . AB. 
UIU2(X + y) j1- wxyj 

With the rational point (x, y) of (1) corresponds a rational point of the 
normal curve, that can be written in homogeneous coordinates (X, Y, Z), 
where X, Y and Z are positive integers without a common factor greater 
than 1. Applying the formulae (2) we obtain expressions in X, Y and Z 
for the lengths of AE, BE and OE. These expressions are quotients of 
homogeneous polynomials in X, Y and Z with integer coefficients that 
depend on Xl, X2, yl, Y2, UI, U2 and w. The denominators of these expressions 
appear to be the same, namely 

(7) jX -MZj . {mX(X +wqZ)2+nZ(Y +pX)2}. 

Here p and q have the values mentioned in (3). The expression (7) 
represents an integer that is an upper bound for the number H as defined 
in the introduction. 

§ 6. The function N(G) 

We consider a line 1 with an infinite number of convenient points. 
For any convenient point E of 1 the lengths of AE, BE and OE are rational 
numbers with denominators that do not exceed the number H. We 
have the 

Theorem. For any given natural number G there are only a finite 
number of convenient points on 1 for which the "denominator" H is 
smaller than G. 

Proof. Let us suppose that for a certain number G an infinite number 
of convenient points exists for which H <G. By multiplying all distances 
by G! we obtain a figure with an infinite number of points E I , E 2, E 3 , ••• 

such that the lengths of AEn and OEn (n= 1,2,3, ... ) are integers (fig. 3). 
In the triangle AEnEn+1 we have 

(8) 
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Let A' be the projection of A on 1, we put AA' =d, A'En=xn,A'En+1=xn+1' 
Then the left hand side of (8) can be written in the form 

(Vd2 +xn2 -xn) + (xn+1- Vd2 +x;+l)' 

If n --+ (/) the expressions between the brackets tend to zero and a contra
diction arises. 

So for any given line 1 we can define a function N(G) that gives the 
number of convenient points of which the denominator does not exceed 
the natural number G. 

§ 7. The "weight" of a rational point of the normal curve 

By the "weight" of a rational point P(X, Y, Z) of the normal curve 
we mean: 

y(P) = max {lXI, IYI, IZI}. 

Here X, Y and Z are supposed to be integers without a common factor 
greater than 1. 

From two different rational points A and B we can derive a third 
rational point on the normal curve by intersecting the line AB with 
the curve. We will call this the "construction by chords". For the weight 
of the point 0 obtained we have the theorem: 

Theorem. Let 0 be a rational point of the normal curve that is 
obtained by the "construction by chords" from the rational points A 
and B of the curve. Then we have the inequality 

y(O) ~ {2y(A) .y(B)}4. 
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Proof. Putting A=(XI, YI,ZI), B=(X2, Y 2,Z2), 0= (X3, Y3,Z3) we 
have 

X3 = (XI Y2 -X2YI )2 (XIZ2-X2ZI) ZIZ2, 

Y3 = (XI Y2-X2YI ) {XIX2(XIZ2-X2ZI)2 + 
+ (XI Y2 -X2YI ) (YIZ2- Y 2Z l ) Z IZ2}, 

Z3 = XIX2(XIZ2-X2ZI)3, 

from which the required inequality is easily derived. 
By drawing the tangent in a rational point A of the normal curve and 

intersecting this line with the curve we obtain the tangential point of A, 
this also is a rational point. We have the 

Theorem. Let A be a rational point of the normal curve (3) and 
let B be the tangential point of A, we then have the inequality 

(9) y(B)~Q. {y(A)}6, 

where Q is a positive constant, depending on the coefficients of the curve. 

Proof. Writing the equation of the curve in the form 

Y2Z=X3+KX2Z+LXZ2 

and putting A=(Xo, Yo,Zo), B=(XI, YI,ZI) we obtain 

) 
Xl = 2YOZO(X02_LZ02)2, 

(10) YI = (LZ02_X02)(X04+2KX03Z+6LX02Z02+2KLXoZ03+L2Z04), 

Zl = 8Yo3Zo3. 

The right hand sides of the expressions (10) are of the sixth degree in 
X, Y and Z from which the inequality (9) follows. 

Finally we give an upper bound for the denominator of a convenient 
point. Using the weight of the point we obtain by (7) 

H ~ (M + 1) {m(1 + co2q2)2+n(1 +p)2} y4. 

We can write this as 

(11) 

where () is a natural number, dependent on Xl, X2, YI, Y2, UI, U2 and co. 

§ 8. Introduction 01 elliptic parameters on the normal curve 

By a translation parallel to the axis of X we bring the normalized 
equation 

y2=X3+KX2+LX 
into the form 

(12) 

where 
Y ='YJ , X =~-lK. 
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In (12) we introduce elliptic functions by putting 

1] = iP'(v) , ;=P(v), 

here P is the Weierstrassian elliptic function. 
If we denote the differentiation with respect to the elliptic parameter 

by a dash we have 
;'=21] ; X'=2Y. 

In our earlier paper ([I], § 3) we saw that the normal curve consisted 
of an oval situated in the region X < 0 and an infinite branch in the 
region X ~ o. For the infinite branch we can choose for the elliptic argument 
a real number between 0 and 2w!, where 2WI is the real period of the 
elliptic function. The parameters of points on the oval can be written 
AWl +wa with -1 <A< 1, here 2W3 is the purely imaginary period. 

If three points of a cubic curve are collinear, the sum of their elliptic 
arguments is a constant modulo a period. For the normal curve this 
constant is zero. 

On a cubic curve a finite number of rational points exists with the 
arguments 

in such a way that the argument of any rational point of the curve can 
be expressed in the form 

where ml, m2, ... , mR are integers. If the number R is as small as possible, 
we have a system of base-points on the cubic, then R is the rank of the 
curve. On the normal curve it is always possible to choose a basis in such 
a manner that VI, V2, ... , VR-I are real and that VR = AWl + Wa with - 1 < A < l. 
We then obtain all rational points on the infinite branch by taking mR=O 

and letting the numbers m!, m2, ... , mR-I run through all possible integer 
values. 

In the case that the normal curve possesses an infinite number of 
rational points there are an infinite number of these points on the infinite 
branch and so at least one of the numbers v!, V2, ... , VR-I has an irrational 
proportion to WI. 

If we arrange the numbers 

in a sequence, first taking all cases in which the sum 

is equal to 1, next all cases in which this sum is equal to 2, etc., then 
according to a theorem of number-theory the sequence, formed in this 
manner is uniformly distributed modulo 2WI. (See for a similar theorem 
the paper [III] of KUIPERS and SCHEELBEEK.) In this way all rational 
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points of the infinite branch are arranged in a sequence so that the elliptic 
arguments are uniformly distributed modulo 2011. 

§ 9. A special sequence of rational points on the normal curve 

We suppose that the values of Xl, X2, Yl, Y2, Ul, U2 and 01 are such, 
that the curve (1) has an infinite number of rational points. In that case 
the normal curve also has an infinite number of rational points and so 
this curve possesses at least one rational point PI situated on the infinite 
branch, with an elliptic argument lX that has an irrational proportion to 
2011. In the case that the point P 3 mentioned in § 4 is a non-exceptional 
point, we can take the latter for the point Pl. 

The point PI' with the argument -lX is a rational point too. We say 
that PI' is obtained from P using the "construction by reflection". The 
point 2lX also is a rational point, for this point is the tangential-point 
of the point -lX. (For reasons of brevity we denote a point with the 
argument 8 by "the point 8".) Applying the "construction by chords" 
on the points -lX and - 2lX we obtain the point 3lX; the points -lX and 
- 3lX yield the point 4lX etc. 

Proceeding in this manner we obtain the sequence of rational point.s 

PI, P 2 , P 3 , •.• 

with the arguments 
lX, 2lX, 3lX, .... 

These points are all situated on the infinite branch and their argument~ 
are uniformly distributed modulo 2011. 

We derive an upper bound for the weight Yn of the point P n with the 
argument nlX. Applying a theorem of § 7 we have 

Y3 ~ (2Yl)4 Y24 

Continuing in this manner we obtain 

Yn<::(2Yl)4(2Yl)42 . .... (2Yl)4n-2·Y24n-2. 

From this it follows 
n-1 n-2 n-1 

Yn <:: (2Yl)4 "Y24 <:: (2YlY2)' 4 . 

Applying (9) we have 

and so 

where 
Kl=2.QY17. 

From the sequence of rational points PI, P 2, P 3, ••• we form a second 
sequence in this manner: If for Pn(X, Y), Y>O then we take Qn=Pn. 
If for P n, Y < 0 then we take Qn = (X, - Y). The arguments of the sequence 
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Ql, Q2, Q3, ... are uniformly distributed modulo WI. All points Qn are 
different because the proportion 1X/2wI is irrational. 

Let the point Qn have a denominator Hn. Then applying (II) we obtain 

Hn ,;;;;;J)Yn4 ,;;;;;J). K14n. 

By means of this inequality we find a lower bound of the function N(G). 
Every point Qn gives rise to a rational point (xn, Yn) of the curve (1) 
with Xn> 0, Yn> 0 and finally to a convenient point En on the line l. 
Two different rational points of the normal curve yield different convenient 
points of l. 

Let G be a given natural number. Then Hn-;;;'G if 

().KI 4n < G 

from which it follows for G> () and K I > 1 : 

(13) 
log log (G/()) -log log KI 

n < log 4 . 

If the number n satisfies this inequality, En is a convenient point with 
a denominator that is at most equal to G. So the number of such convenient 
points is at least equal to the right hand side of (13) diminished by 1. 

So we obtain 

N(G) ~ log log (G/())-log log KI _ 1 
- log 4 

and consequently 

N(G) ~ log log G _ K 
- log 4 2 

where G> 1 and K2 represents a positive constant that only depends on 
the position of A, B, 0 and l. 

§ 10. A law 0/ distribution belonging to the sequence E I, E 2, E3, ... 

Differentiating the equations (5) with respect to the elliptic parameter 
and in connection with the relation X' = 2Y we obtain the equation 

(14) x'y+xy' = 2UIU2XY {n ( wx + ~) + m ( wy + t) }. 
Differentiating (1) we obtain 

(15) nx' ( W + :2) = my' ( W + :2) . 
Solving x' and y' from (14) and (15) we obtain 

x' = 2muIU2xy ( W + :2)' 
y' = 2nUIU2XY(W + :2)' 
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Let A represent the length of ED. In the triangle AED we compute A, 
expressed in m, W, x, UI, U2: 

.1= mx(wuI2+U22) 
(UI-XU2) (WUIX+U2)· 

From this it follows that 

A' = dA . x' = 2U12U22(1+wX2) (1+ wy2) .12 
dx xy( WU12 + U22) 

and from this we derive 

l' __ 4UIU2 V~ 
II. -.,--- • rlr2 

sin qJ 

where rl and r2 represent the lengths of AE and BD. So we have 

dA 4UIUd~ 
dv sin qJ 

. rIr2· 

As the convenient points El, E 2 , E 3 , ... are uniformly distributed with 
respect to the elliptic parameter v, the number of points En on a small 
segment dA of the line 1 for n --+ Vl is proportional to 

So we have for A> 0 the law of distribution 

Here rl and r2 are to be considered as functions of A, the length of DE 
(fig. 4). Now the following theorem is proved: 

Theorem. Let PI be a non-exceptional point of the normal-curve 
with the real elliptic argument eX. Starting from PI we derive (for instance 
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by using the constructions by chords, by tangents and by reflection) 
the sequence of rational points P n, the argument of P n being niX. To 
every point P n one and only one convenient point En on l belongs. Now 
we consider the points Er, E 2, E 3 , ... , E k . Let Eo be an arbitrary point 
on l (Eo =1= D) and let A be the length of EoD. If 1:'1 is the number of points 
Ei (i=I, 2, ... , k) situated on the segment EoD and if 1:'2 is the number 
of points Ei that are situated on the same side of AB as Eo, then 

lim 1:'1 = f(A). 
k--> V1 1:'2 

§ 11. The number of convenient points inside a given circle r 
Theorem. For large G the number of convenient points inside a 

given circle r, with denominators ;::; G has an order of magnitude greater 
than log log G. 

Proof. We may suppose that r does not intersect the sides of the 
triangle nor their produced parts, because otherwise r can be replaced 
by a circle, situated in the interior of r that satisfies this condition. 

Fig. 5 

Suppose that the situation is as drawn in fig. 5 (for other positions of r 
the proof is similar). Let OF and OF' be two halflines, issuing from 0, 
that both intersect the circle r. 

In the following Cr, C2, C3, and C4 will represent conveniently chosen 
positive numbers that are fully determined if A, B, 0, r, OF and OF' are 
given. 

From every halfline, issuing from 0 and within the angle FOF' a 
chord ;;:;; Cl is cut off by the circle. Let H be an arbitrary positive integer 
(not to be confused with the "denominator" H as used in § 6). 
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According to § 4 the angle FO F' contains H halflines, issuing from 
0, lr, 12, 13 , .•. , IH, that each contain an infinite number of convenient 
points. 

Let 1", be one of these halflines and let IX", be a corresponding elliptic 
argument that has an irrational proportion to WI,"" where 2WI,,,, is the 
corresponding real period of the elliptic function. Let U k,,,,(h= 1,2, 3, . .. ,H) 
be the number of points with arguments qlX",( L:;;, q -;;;, k) that are situated 
on the chord that is cut off from the halfline 1",. According to the law 
of distribution we have for h= 1, 2, 3, ... , H: 

Here ft", and v", (ft", < v",) are the values of A that correspond with the inter
section points of 1", with the circle (h= 1,2,3, ... , H). 

It will be clear that if we consider all possible halflines in the interior 
of the angle FO F', a lower bound C2 > 0 exists for the first integral and 
an upper bound C3> 0 for the second one, and thus 

lim k-IUk,,,, ~ ~ = C4, 
k_v> C3 

from which we derive for k > k", : 

where k", is a conveniently chosen positive number, dependent on h. 
In this manner we obtain Uk,,,, convenient points on 1"" that are situated 

in the interior of r. Applying the method of § 9 we see that the denomi
nator of any of these points does not exceed 

K",4k 

here K", is a constant, dependent on h (h= 1,2, 3, ... , H). If we take now 

K = max {K",} 
h-l,2, ... ,H 

then the denominators of all convenient points considered in the interior 
of r are at most equal to 

where K depends on the number H. Thus if k is the greatest integer for 
which 

we then obtain III this way 

convenient points inside r with denominators -;;;, G. 
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We have 

and consequently 
k > log log G-Iog log K _ 1. 

log 4 

The number of convenient points inside r with denominator ~ G is 
for k ~ max kh greater than or equal to tC4Hlc, and as for a sufficiently 

l~h~H 

large number G we have 

.1 Hlc .1 H (log log G -log log K _ 1) C4 H I I G 
2 C4 > 2C4 log 4 > 4 log 4' og og , 

where H is an arbitrary natural number, we see that the number of 
convenient points with denominator ~ G that are situated in the interior 
of r, has an order of magnitude exceeding log log G. 
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