
Computers and Mathematics with Applications 59 (2010) 2026–2036

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

A comparative study of numerical integration based on Haar wavelets
and hybrid functions
Siraj-ul-Islam a,∗, Imran Aziz b, Fazal Haq c
a Department of Basic Sciences, NWFP University of Engineering and Technology, Peshawar, Pakistan
b Department of Mathematics, University of Peshawar, Pakistan
c Department of Mathematics and Statistics, NWFP Agricultural University, Peshawar, Pakistan

a r t i c l e i n f o

Article history:
Received 23 May 2009
Received in revised form 25 November
2009
Accepted 5 December 2009

Keywords:
Numerical integration
Haar wavelets
Hybrid functions

a b s t r a c t

A quadrature rule based on uniform Haar wavelets and hybrid functions is proposed to
find approximate values of definite integrals. The wavelet-based algorithm can be easily
extended to find numerical approximations for double, triple and improper integrals. The
main advantage of this method is its efficiency and simple applicability. Error estimates of
the proposed method alongside numerical examples are given to test the convergence and
accuracy of the method.
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1. Introduction

Numerical integration has many applications in science and engineering. In recent years the wavelet approach is
becoming more popular in the field of numerical approximations. Different types of wavelets and approximating functions
have been used in numerical approximations. Among them Haar wavelets [1] and hybrid functions [2] have gained
popularity among researchers due to their useful properties. In most cases, the beauty of the wavelet approximation is
overshadowed by the computational cost of the algorithm. Haar wavelets are the simplest orthonormal wavelet with
compact support and they have been used in different numerical approximation problems. Chen and Hsiao [1] established
an operation matrix of integration based on these wavelets and applied it to analyse lumped-parameter and distributed-
parameter dynamic systems. In another paper, Chen and Hsiao [3] showed that the Haar wavelet operational matrix is the
fastest among the orthogonal functions for solving identification and optimization problems of dynamic systems. Hsiao
and Wang [4] proposed an algorithm based on Haar wavelets for solving nonlinear stiff systems and Hsiao [5] proposed
an algorithm based on Haar wavelets for solving linear stiff systems. Lepik [6] applied Haar wavelets in solving differential
equations. Lepik and Tamme [7,8] used Haar wavelets for solving linear and nonlinear integral equations. Maleknejad and
Mirzaee [9] solved linear integral equations via Haar wavelets. Lepik [10,11] applied Haar wavelets in solving nonlinear
integro–differential equations and partial differential equations.
Hybrid functions have faster convergence thanHaarwavelets and they canmodel discontinuities in a bettermanner than

Haar wavelets [12]. Another useful property of hybrid functions is a special product matrix and a related coefficient matrix
with optimal order. The advantage of hybrid functions is that the orders of block-pulse functions and Legendre polynomials
are adjustable to obtain highly accurate numerical solutions compared to the piecewise constant orthogonal function for
the solution of integral equations [2]. Recently, hybrid functions have been successfully used for the numerical solution
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of ordinary differential equation as well as integral equations. Marzban and Razzghi [13] applied hybrid functions to find
the numerical solution of a controlled duffing oscillator. [14] used hybrid functions for nonlinear initial-value problems.
Marzban et al. [2] applied hybrid functions for solving Fredholm and Volterra integral equations of the second kind.Marzban
and Razzghi [15] applied hybrid functions to find the optimal control of linear delay systems.
Motivated by the excellent performance of these methods, we will apply the same techniques for numerical integration.

The organization of this paper is as follows. In Section 2, numerical integration using Haar wavelets is described and in
Section 3 hybrid functions are used for numerical integration. Error analysis for Haar Wavelets is given in Section 4 and
numerical results are reported in Section 5. Some conclusions are drawn in Section 6.

2. Numerical integration using Haar wavelets

2.1. Haar wavelets

The scaling function for the family of Haar wavelets defined on the interval [a, b) is

h1(x) =
{
1 for x ∈ [a, b)
0 elsewhere. (1)

The mother wavelet for the Haar wavelets family is also defined on the interval [a, b), and is given by

h2(x) =


1 for x ∈

[
a,
a+ b
2

)
−1 for x ∈

[
a+ b
2

, b
)

0 elsewhere.

(2)

All the other functions in the Haar wavelet family are defined on subintervals of [a, b) and are generated from h2(x) by the
operations of dilation and translation. Each function in the Haar wavelets family defined for x ∈ [a, b) except the scaling
function can be expressed as

hi(x) =

{1 for x ∈ [α, β)
−1 for x ∈ [β, γ )
0 elsewhere,

(3)

where

α = a+ (b− a)
k
m
, β = a+ (b− a)

k+ 0.5
m

, γ = a+ (b− a)
k+ 1
m

, i = 3, 4, . . . , 2M. (4)

The integer m = 2j, where j = 0, 1, . . . , J , J = 2M and integer k = 0, 1, . . . ,m − 1. The integer j indicates the level of the
wavelet and k is the translation parameter. The maximal level of resolution is the integer J . The relation between i,m and k
is given by i = m+ k+ 1.
The Haar wavelet functions are orthogonal to each other because∫ b

a
hj(x)hk(x) dx =

{
(b− a)2−j when j = k
0 when j 6= k. (5)

Thus any function f (x)which is square integrable in the interval (a, b) can be expressed as an infinite sum of Haar wavelets

f (x) =
∞∑
i=1

aihi(x). (6)

The above series terminates at finite terms if f (x) is piecewise constant or can be approximated as piecewise constant during
each subinterval.

2.2. Method of numerical integration based on Haar wavelets

In this section we consider numerical integration for single, double and triple integrals using Haar wavelets.
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Fig. 1. Haar approximation of the function f (x) = sin(πx) forM = 4: - - - exact curve, — Haar curve.

Fig. 2. Haar approximation of the function f (x) = sin(πx) forM = 8: - - - exact curve, — Haar curve.

2.2.1. Numerical technique for single integrals
We consider the integral∫ b

a
f (x) dx (7)

over the interval [a, b]. The function f (x) can be approximated using Haar wavelets as

f (x) ≈
2M∑
i=1

aihi(x). (8)

The behavior of Haarwavelets to approximate sin(πx) is shown in Figs. 1 and 2. TheHaarwavelets approximation converges
rapidly to the exact function by increasing the value ofM .

Lemma 1. The approximate value of the integral is∫ b

a
f (x) dx ≈ a1(b− a). (9)

Proof. Since∫ b

a
hi(x) dx = 0, i = 2, 3, . . . , (10)

and ∫ b

a
h1(x) dx = b− a, (11)
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a
f (x) dx ≈

2M∑
i=1

ai

∫ b

a
hi(x) dx = a1(b− a). � (12)

It is clear from Eq. (12) that Haar approximation involves only one coefficient in the evaluation of the definite integral.
To calculate the Haar coefficient a1 we consider the nodal points

xk = a+ (b− a)
k− 0.5
2M

, k = 1, 2, . . . , 2M. (13)

The discretized form of (8) can be written as

f (xk) =
2M∑
i=1

aihi(xk), k = 1, 2, . . . , 2M. (14)

The second advantage of Haar wavelet approximation is that we do not need to solve the above system which is computa-
tionally expensive for large values of M . The next lemma gives us an easy formula with which to calculate the value of the
Haar coefficient a1.

Lemma 2. The solution of the system (14) for a1 is

a1 =
1
2M

2M∑
k=1

f (xk). (15)

Proof. We prove the result by induction on J , whereM = 2J . For J = 0, we haveM = 1, and the linear system in this case is

f (x1) = a1 + a2
f (x2) = a1 − a2,

(16)

which has solution

a1 =
1
2
[f (a1)+ f (a2)]. (17)

Therefore, the lemma is true for J = 0.
Next assume that the lemma is true for J = n − 1, n = 1, 2, . . . and consider the linear system with J = n. For J = n,

we have M = 2n and the linear system has 2n+1 equations involving 2n+1 variables. From this system we obtain a new
system by adding consecutive equations, first and second, third and fourth, fifth and sixth, and so on. This new system has
2n equations involving 2n variables. Replacing 2ak by a′k and f (x2k−1) + f (x2k) by g(xk) in this system, we obtain a system
similar to system (14), and so we can apply an induction hypothesis to this system. Thus we have

a′1 =
1

2.2n−1

2.2n−1∑
k=1

g(xk). (18)

Substituting back the values of a′1 and g(xk), we obtain

a1 =
1
2.2n

2.2n∑
i=1

f (xk), (19)

and so the lemma is true for J = n. Hence, by induction, the lemma is true for all J = 0, 1, . . . . �

Hence, using the quadrature method with Haar wavelets we obtain the following formula for numerical integration:

∫ b

a
f (x) dx ≈

b− a
2M

2M∑
i=1

f (xk) =
b− a
2M

2M∑
k=1

f
(
a+

(b− a)(k− 0.5)
2M

)
. (20)
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2.2.2. Numerical technique for double and triple integrals
We derive a similar formula for double and triple integrals. The method can be extended to higher integrals as well.

Consider the double integral∫ d

c

∫ b

a
f (x, y) dx dy. (21)

The function f (x, y) can be approximated using Haar wavelets as

f (x, y) ≈
2M∑
j=1

2M∑
i=1

aijhi(x)hj(y). (22)

Lemma 3. The approximate value of the integral is∫ d

c

∫ b

a
f (x, y) dx dy ≈ a11(b− a)(d− c). (23)

Proof. The proof of this lemma is similar to the proof of Lemma 1. �

As in the case of the single integral, we define the points

xk = a+ (b− a)
k− 0.5
2M

, k = 1, 2, . . . , 2M (24)

and

yl = c + (d− c)
l− 0.5
2M

, l = 1, 2, . . . , 2M. (25)

Substituting these points in (22), we obtain

f (xk, yl) =
2M∑
j=1

2M∑
i=1

aijhi(xk)hj(yl), k = 1, 2, . . . , 2M, l = 1, 2, . . . , 2M. (26)

Lemma 4. The solution of the system (26) for a11 is

a11 =
1
4M2

2M∑
l=1

2M∑
k=1

f (xk, yl). (27)

Proof. The proof of this lemma is similar to the proof of Lemma 2. �

Therefore, the formula for approximating double integrals using Haar wavelets is∫ d

c

∫ b

a
f (x, y) dx dy ≈

(b− a)(d− c)
4M2

2M∑
l=1

2M∑
k=1

f
(
a+ (b− a)

k− 0.5
2M

, c + (d− c)
l− 0.5
2M

)
. (28)

This formula can be extended to triple integrals, and is given by∫ h

e

∫ d

c

∫ b

a
f (x, y, z) dx dy dz ≈

(h− e)(d− c)(b− a)
8M3

2M∑
l=1

2M∑
k=1

2M∑
j=1

f (xj, yk, zl), (29)

where

xj = a+ (b− a)
j− 0.5
2M

, j = 1, 2, . . . , 2M, (30)

yk = c + (d− c)
k− 0.5
2M

, k = 1, 2, . . . , 2M, (31)

zl = e+ (h− e)
l− 0.5
2M

, l = 1, 2, . . . , 2M. (32)
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3. Numerical integration using hybrid functions

3.1. Hybrid functions

The orthogonal set of hybrid functions ψij(x), i = 1, 2, . . . , n and j = 0, 1, . . . ,m− 1 is defined on the interval [0, 1) as

ψij(x) =

Lj(2nt − 2i+ 1), for x ∈
[
i− 1
n
,
i
n

)
0, otherwise,

(33)

where n and m are the orders of the block-pulse functions and Legendre polynomials, respectively. The notation ψ is used
for hybrid functions to distinguish them from Haar wavelets. The Legendre polynomials can be calculated recursively as

L0(x) = 1, L1(x) = x, (34)

Lk+1(t) =
(
2k+ 1
k+ 1

)
xLk(x)−

(
k
k+ 1

)
Lk−1(x), k = 1, 2, 3, . . . . (35)

Any function f (x)which is square integrable in the interval [0, 1) can be expressed as

f (x) =
∞∑
i=1

∞∑
j=0

cijψij(x), i = 1, 2, . . . ,∞, j = 0, 1, . . . ,∞, x ∈ [0, 1). (36)

However, if the function f (x) is piecewise constant ormay be approximated as piecewise constant, thenwe can approximate
f (x) as

f (x) ≈
n∑
i=1

m−1∑
j=0

cijψij(x). (37)

3.2. Method of numerical integration based on hybrid functions

In this section we consider numerical integration for single and double integrals using hybrid functions.

3.2.1. Numerical technique for single integrals
We consider the definite integral∫ 1

0
f (x) dx. (38)

If the limits of integration are different, then by a suitable substitution these limits can be changed to 0 and 1. Using (37),
the approximate value of the integral is given by∫ 1

0

n∑
i=1

m−1∑
j=0

cijψij(x) =
1
n

n∑
i=1

ci0. (39)

In order to calculate the coefficients ci0 of hybrid functions we consider the nodal points

xk =
2k− 1
2mn

, k = 1, 2, . . . ,mn. (40)

Substituting these points in (37), we obtain

f (xk) =
n∑
i=1

m−1∑
j=0

cijψij(xk), k = 1, 2, . . . ,mn. (41)

We can calculate the hybrid coefficients ci0, i = 1, 2, . . . , n from the above system of equations. Note that we need to
calculate only n coefficients.
The fast convergence of hybrid functions for sin(πx) is shown in Figs. 3 and 4. These clearly show an improved convergent

behavior in comparison with Haar functions.
Form = 1, the coefficients ci0 are given as

ci0 = f
(
2i− 1
2n

)
, (42)
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Fig. 3. Hybrid approximation of the function f (x) = sin(πx) form = 2, n = 2: - - - exact curve, — hybrid curve.

Fig. 4. Hybrid approximation of the function f (x) = sin(πx) form = 4, n = 4: - - - exact curve, — hybrid curve.

and the approximate value of the integral in this case is∫ 1

0
f (x) dx ≈

1
n

n∑
i=1

f
(
2i− 1
2n

)
. (43)

Form = 2,∫ 1

0
f (x) dx ≈

1
2n

2n∑
i=1

f
(
2i− 1
4n

)
. (44)

Form = 3,∫ 1

0
f (x) dx ≈

1
8n

n∑
i=1

(
3f
(
6i− 5
6n

)
+ 2f

(
6i− 3
6n

)
+ 3f

(
6i− 1
6n

) )
. (45)

Form = 4,∫ 1

0
f (x) dx ≈

1
48n

n∑
i=1

(
13f

(
8i− 7
8n

)
+ 11f

(
8i− 5
8n

)
+ 11f

(
8i− 3
8n

)
+ 13f

(
8i− 1
8n

) )
. (46)

Form = 5,∫ 1

0
f (x) dx ≈

1
1152n

n∑
i=1

(
275f

(
10i− 9
10n

)
+ 100f

(
10i− 7
10n

)
+ 402f

(
10i− 5
10n

)

+ 100f
(
10i− 3
10n

)
+ 275f

(
10i− 1
10n

))
. (47)
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Form = 6,∫ 1

0
f (x) dx ≈

1
1280n

n∑
i=1

(
247f

(
12i− 11
12n

)
+ 139f

(
12i− 9
12n

)
+ 254f

(
12i− 7
12n

)

+ 254f
(
12i− 5
12n

)
+ 139f

(
12i− 3
12n

)
+ 247f

(
12i− 1
12n

))
. (48)

3.2.2. Numerical technique for double integrals
We consider the double integral∫ 1

0

∫ 1

0
f (x, y) dx dy. (49)

Using hybrid functions we can approximate the function f (x, y) as

f (x, y) ≈
n∑
i=1

m−1∑
j=0

n∑
k=1

m−1∑
l=0

cijklψij(x)ψkl(y). (50)

Substituting these in (49), we obtain an approximate value of the integral as∫ 1

0

∫ 1

0
f (x, y) dx dy ≈

1
n2

n∑
i=1

n∑
k=1

ci0k0. (51)

In order to calculate the hybrid coefficients ci0k0, we consider the points

xp =
2k− 1
2mn

, p = 1, 2, . . . ,mn, (52)

yq =
2k− 1
2mn

, q = 1, 2, . . . ,mn. (53)

Substituting these points in (50), we obtain a system of equations:

f (x, y) =
n∑
i=1

m−1∑
j=0

n∑
k=1

m−1∑
l=0

cijklψij(xp)ψkl(yq), p = 1, 2, . . . ,mn, q = 1, 2, . . . ,mn. (54)

The coefficients ci0k0 can be easily calculated from this system. We need to calculate n2 coefficients in this case. Integral
approximations are given below for the first few values ofm.
Form = 1,∫ 1

0

∫ 1

0
f (x, y) dx dy ≈

1
n2

n∑
i=1

n∑
k=1

f
(
2i− 1
2n

,
2k− 1
2n

)
. (55)

Form = 2,∫ 1

0

∫ 1

0
f (x, y) dx dy ≈

1
4n2

2n∑
i=1

2n∑
k=1

f
(
2i− 1
4n

,
2k− 1
4n

)
. (56)

Form = 3,∫ 1

0

∫ 1

0
f (x, y) dx dy ≈

1
64n2

n∑
i=1

n∑
k=1

(
9f
(
6i− 5
6n

,
6k− 5
6n

)
+ 6f

(
6i− 5
6n

,
6k− 3
6n

)
+ 9f

(
6i− 5
6n

,
6k− 1
6n

)
+ 6f

(
6i− 3
6n

,
6k− 5
6n

)
+ 4f

(
6i− 3
6n

,
6k− 3
6n

)
+ 6f

(
6i− 3
6n

,
6k− 1
6n

)

+ 9f
(
6i− 1
6n

,
6k− 5
6n

)
+ 6f

(
6i− 1
6n

,
6k− 3
6n

)
+ 9f

(
6i− 1
6n

,
6k− 1
6n

))
. (57)
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Form = 4,∫ 1

0

∫ 1

0
f (x, y) dx dy ≈

1
2304n2

n∑
i=1

n∑
k=1

(
169f

(
8i− 7
8n

,
8k− 7
8n

)
+ 143f

(
8i− 7
8n

,
8k− 5
8n

)
+ 143f

(
8i− 7
8n

,
8k− 3
8n

)
+ 169f

(
8i− 7
8n

,
8k− 1
8n

)
+ 143f

(
8i− 5
8n

,
8k− 7
8n

)
+ 121f

(
8i− 5
8n

,
8k− 5
8n

)
+ 121f

(
8i− 5
8n

,
8k− 3
8n

)
+ 143f

(
8i− 5
8n

,
8k− 1
8n

)
+ 143f

(
8i− 3
8n

,
8k− 7
8n

)
+ 121f

(
8i− 3
8n

,
8k− 5
8n

)
+ 121f

(
8i− 3
8n

,
8k− 3
8n

)
+ 143f

(
8i− 3
8n

,
8k− 1
8n

)
+ 169f

(
8i− 1
8n

,
8k− 7
8n

)
+ 143f

(
8i− 1
8n

,
8k− 5
8n

)
+ 143f

(
8i− 1
8n

,
8k− 3
8n

)
+ 169f

(
8i− 1
8n

,
8k− 1
8n

))
. (58)

4. Error analysis

4.1. Haar wavelets

Assume that f (x) is a differentiable function with

|f ′(x)| ≤ K , ∀t ∈ (a, b), (59)

where K is a positive constant. The Haar wavelet approximation for the function f (x) is given by

fM(x) =
2M∑
i=1

aihi(x). (60)

Babolian and Shahsavaran [16] have shown that the square of the error norm for wavelet approximation is given by

‖f (x)− fM(x)‖2 =
K 3

3
·
1

(2M)2
. (61)

Therefore,

‖f (x)− fM(x)‖ = O
(
1
M

)
. (62)

From the above equation, it is obvious that the error bound is inversely proportional to the level of resolution of the Haar
wavelet. This ensures the convergence of the Haar wavelet approximation whenM is increased.

4.2. Hybrid functions

Proposition. Let x(t) ∈ Hk(−1, 1) (Sobolev space), xJ(t) =
∑J
i=0 aiLi(t) be the best approximation polynomial of x(t) in

L2 − norm; then

‖x(t)− xJ(t)‖L2[−1,1] ≤ C0J
−k
‖x(t)‖Hk(−1,1),

where C0 is a positive constant, which depends on the selected norm and is independent of x(t), J; see [17,18].

5. Numerical examples

The following examples are given to show the accuracy and efficiency of Haar wavelets. In Examples 4 and 5 we apply
the method to double integrals while in Example 6 we apply it to a triple integral. In Examples 3 and 5, improper integrals
are approximated using this method.

Example 1.∫ 1

0
sin(x2) dx.

Relative errors are shown in Table 1.
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Table 1
Relative errors of Example 1.

Haar Hybrid

J = 4 1.4177E−04 m = 3, n = 5 1.0110E−05
J = 5 3.5432E−05 m = 4, n = 8 7.9460E−07
J = 6 8.8574E−06 m = 5, n = 12 3.4471E−11
J = 7 2.2143E−06 m = 6, n = 20 9.6947E−13

Table 2
Relative errors of Example 2.

Haar Hybrid

J = 4 3.5293E−05 m = 3, n = 5 3.6467E−07
J = 5 8.8229E−06 m = 4, n = 8 2.8648E−08
J = 6 2.2057E−06 m = 5, n = 12 1.3262E−12
J = 7 5.5143E−07 m = 6, n = 20 3.7148E−14

Table 3
Relative errors of Example 3.

Haar Hybrid

J = 4 4.0642E−05 m = 3, n = 5 2.9376E−04
J = 5 1.0173E−05 m = 4, n = 8 6.6406E−05
J = 6 2.5431E−06 m = 5, n = 12 1.8220E−06
J = 7 6.3578E−07 m = 6, n = 20 3.7947E−08

Table 4
Relative errors of Example 4.

Haar Hybrid

J = 4 5.0215E−04 m = 3, n = 5 4.3261E−07
J = 5 1.2551E−04 m = 4, n = 8 3.4122E−08
J = 6 3.1375E−05 m = 5, n = 12 2.4702E−13
J = 7 7.8437E−06 – –

Example 2.∫ 5

0

√
x2 − 5x+ 31 dx.

Relative errors are shown in Table 2.

Example 3 (Improper Integral).∫ 1

0

e−1/x

x2
dx.

Relative errors are shown in Table 3.

Example 4.∫ π
2

0

∫ π

0
sin(x+ y) dx dy.

Relative errors are shown in Table 4.

Example 5 (Improper Integral).∫ 1

0

∫ 1

0

1√
x2 + y2

dx dy.

Relative errors are shown in Table 5.
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Table 5
Relative errors of Example 5.

Haar Hybrid

J = 4 7.1275E−03 m = 3, n = 5 8.9863E−03
J = 5 3.5719E−03 m = 4, n = 8 4.6532E−03
J = 6 1.7880E−03 m = 5, n = 12 1.8550E−03
J = 7 8.9450E−04 – –

Table 6
Relative errors of Example 6.

Haar

J = 4 1.2863E−05
J = 5 3.2159E−06
J = 6 8.0398E−07

Example 6.∫ 2

1

∫ 2

1

∫ 2

1

1
x+ y+ z

dx dy dz.

Relative errors are shown in Table 6.

Note that in the case of improper integrals (Examples 3 and 5), the hybrid function approach is slightly better than the Haar
wavelet approach due to the effects of singularity, while in other examples we got significantly better results using hybrid
functions. This suggests that in the case of improper integrals one should prefer the Haar wavelet approach.

6. Conclusion

A comparative analysis of Haar wavelets and hybrid functions is performed to find numerical approximations of different
types of integral. The simple applicability of Haar wavelets and the fast convergence of hybrid functions provide a solid
foundation for using these functions in the context of numerical approximation of integral equations, partial differential
equations and ordinary differential equations.

Acknowledgements

We would like to thank the reviewers for their valuable suggestions towards the improvement of the paper.

References

[1] C.F. Chen, C.H. Hsiao, Haar wavelet method for solving lumped and distributed-parameter systems, IEE Proc. Control Theory Appl. 144 (1997) 87–94.
[2] C.H. Hsiao, Hybrid functionmethod for solving Fredholm and Volterra integral equations of the second kind, J. Comput. Appl. Math. 230 (2009) 59–68.
[3] C.F. Chen, C.H. Hsiao, Wavelet approach to optimising dynamic systems, IEE Proc. Control Theory Appl. 146 (1997) 213–219.
[4] Chun Hui Hsiao, Wen-June Wang, Haar wavelet approach to nonlinear stiff systems, Math. Comput. Simulation 57 (2001) 347–353.
[5] C.H. Hsiao, Haar wavelet approach to linear stiff systems, Math. Comput. Simulation 64 (2004) 561–567.
[6] Ü. Lepik, Numerical solution of differential equations using Haar wavelets, Math. Comput. Simulation 168 (2005) 127–143.
[7] Ü. Lepik, E. Tamme, Application of the Haar wavelets for solution of linear integral equations, in: Dynamical Systems and Applications, Antalaya,
Proceedings, 2004, pp. 494–507.

[8] Ü. Lepik, E. Tamme, Solution of nonlinear Fredholm integral equations via the Haar wavelet method, Proc. Estonian Acad. Sci. Phys. Math. 56 (2007)
17–27.

[9] K. Maleknejad, F. Mirzaee, Using rationalized Haar wavelet for solving linear integral equations, Appl. Math. Comput. 160 (2005) 579–587.
[10] Ü. Lepik, Haar wavelet method for nonlinear integro–differential equations, Appl. Math. Comput. 176 (2006) 324–333.
[11] Ü. Lepik, Numerical solution of evolution equations by the Haar wavelet method, Appl. Math. Comput. 185 (2007) 695–704.
[12] Xing TaoWang, Numerical solution of optimal control for scaled systems by hybrid functions, Int. J. Innovative Comput. Inf. Control 4 (2008) 849–855.
[13] H.R. Marzban, M. Razzaghi, Numerical solution of the controlled duffing oscillator by hybrid functions, Appl. Math. Comput. 140 (2003) 179–190.
[14] H.R. Marzban, H.R. Tabrizidooz, M. Razzaghi, Hybrid functions for nonlinear initial-value problems with applications to Lane–Emden type equations,

Phys. Lett. A 372 (2008) 5883–5886.
[15] H.R. Marzban, M. Razzaghi, Optimal control of linear delay systems via hybrid of block-pulse and Legendre polynomials, J. Franklin Inst. 341 (2004)

279–293.
[16] E. Babolian, A. Shahsavaran, Numerical solution of nonlinear Fredholm integral equations of the second kind using Haar wavelets, J. Comput. Appl.

Math. 225 (2009) 87–95.
[17] K. Maleknejad, M. Tavassoli Kajani, Solving second kind integral equations by Galerkin methods with hybrid Legendre and block-pulse functions,

Appl. Math. Comput. 145 (2003) 623–629.
[18] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods on Fluid Dynamics, Springer Verlag, 1988.


	A comparative study of numerical integration based on Haar wavelets and hybrid functions
	Introduction
	Numerical integration using Haar wavelets
	Haar wavelets
	Method of numerical integration based on Haar wavelets
	Numerical technique for single integrals
	Numerical technique for double and triple integrals


	Numerical integration using hybrid functions
	Hybrid functions
	Method of numerical integration based on hybrid functions
	Numerical technique for single integrals
	Numerical technique for double integrals


	Error analysis
	Haar wavelets
	Hybrid functions

	Numerical examples
	Conclusion
	Acknowledgements
	References


