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Modelling the mechanical performance of textile composites is typically based on idealised unit cell
geometry. However, 3D woven composites feature more complex textile architecture then 2D woven
materials, and in reality nominally straight warp and weft yarns can also possess significant waviness.
For such textiles, idealising yarns as straight entities becomes an oversimplification. In this study, the
voxel method and a continuum damage model are used in a finite element analysis to compute
stress–strain curves for an orthogonal 3D woven composite under tensile loading. The main goal of this
study was to compare results produced using idealised geometry with realistic geometry obtained from
detailed simulation of the preform during weaving and compaction. Significant variation in predictions
was obtained using the different geometrical models. The idealised model lead to an overestimation of
stiffness and strength compared to experiment due to the neglecting of yarn waviness, whereas the
simulated geometry models produced more conservative results closer to experiment.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/3.0/).
1. Introduction

3D woven composites can provide a potential solution to the
fundamental limitations of traditional laminated composites;
delamination and labour intensive manufacture. The addition of
binder yarns provides through-thickness reinforcement leading
to greatly enhanced interlaminar properties as well as binding
the fabric to enable near-net-shape preforms to be woven and han-
dled. However, despite these advantages, the use of 3D woven
composites has been largely limited to niche applications. One of
the key reasons for this is the lack of predictive numerical tools,
which limits their ability to be used at the early stages of design.

Mechanical performance modelling of textile composites typi-
cally begins with the definition of textile unit cell geometry using
a specialist pre-processor such as TexGen [1,2] or WiseTex [3,4].
Such software can produce an idealised representation of a textile,
sufficient for the modelling of many types of composites with
2D reinforcement. However, some 3D woven textiles present a
significant challenge to model due to their inherent complexity.
While TexGen is capable of modelling such textiles, the idealised
geometries that it produces can neglect realistic features such as
yarn waviness and yarn pinching which play a significant role in
determining their resulting properties, especially strength [5,6].
Previous work [7] used a finite element (FE) model, based on the dig-
ital element method [8] in order to predict the deformations of an
orthogonal 3D woven fabric at the unit cell level. Each yarn was rep-
resented as a bundle of 61 chains of beam elements, with contact
between chains within a yarn defining yarn cross-sectional shape
and contact between each yarn assembly defining the yarn paths.
Tensioning of the binder yarns was used to simulate the weaving
process prior to moulding through compaction between rigid plates.
Throughout this procedure the unit cell was subjected to periodic
boundary conditions such that the resulting geometry was periodic.

Conventional FE models of 2D woven textile composites are
typically meshed with tetrahedral elements, with the matrix
domain designated as the inverse of the yarn volume within the
global unit cell domain (see for example [9]). Nodes of matrix
and yarn elements at the interface between the two different
material phases must be shared to form a conformal mesh. How-
ever, realistic models of complex 3D woven architectures will
likely feature degenerated resin regions and small yarn interpene-
trations meaning that such meshing practices are no longer feasi-
ble, especially when a periodic mesh is required. Other methods
have been proposed to model such textile composites including
the domain superposition technique (DST) [10] and embedded ele-
ment technique [11]. In these methods, the matrix domain is
assigned as the global domain leaving the yarns to be meshed
independently. A coupling technique between the domains
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ensures continuity of displacements while properties of the yarns
are reduced to account for the superposition. The independent
mesh method (IMM) [12] is a similar technique where any matrix
elements lying fully within yarn domains are excluded from the
analysis. Matrix elements which lie on the boundary are then sub-
jected to a refinement scheme. The extended finite element
method (XFEM), originally developed for modelling discontinuities
due to cracks, has also been applied to heterogeneous materials
with discontinuities at the material interface [13], including textile
composites [14]. The global domain is meshed using regular hexa-
hedral elements and the nodes of elements in the interface region
are enriched with extra degrees of freedom to account for the
strain field jump. However, it is still required that the geometry
is free from interpenetrations. In this study, a technique based on
voxels [15]; meaning a 3D pixel, is used. The global domain is
meshed in a similar process to XFEM and elements are assigned
to either the matrix or yarn domain depending on the location of
the element centroid. The voxel method has been shown to be
adequate for mechanical modelling of 2D textile composites [16].

2. Textile geometry

The accuracy of mechanical modelling of textile composites for
strength prediction is dependent on the modelling technique,
material models and assumed textile geometry. A previous project
considering failure modelling of 3D woven composites [17] con-
cluded that a significant limitation was with regard to the idealised
geometries being used. For textiles with complex internal architec-
ture, there was no further merit in pursuing relatively small
improvements with the failure models whilst significant discrep-
ancies existed between considered and real geometries. A sche-
matic representation of an orthogonal 3D woven fabric is shown
in Fig. 1. The fabric has two sets of binder yarns, each arranged
in a 5 harness satin style. One set of these binder yarns float on
the upper surface of the fabric while the other float on the bottom
surface. The original idealised TexGen unit cell model of this fabric
used in the aforementioned study is shown in Fig. 2(a). In this geo-
metrical model, the in-plane warp and weft yarns are completely
straight with zero crimp, waviness or cross-sectional variation.
Binder yarns follow a path with straight horizontal or vertical sec-
tions, constant cross-section and extend beyond the surface of the
fabric, resulting in a resin layer on the surfaces of the composite.
None of these features are representative in the real moulded
composite.

However, there have been recent developments to TexGen
aimed specifically at improving the quality of 3D woven textile
geometry. Despite this, it was not possible to generate a model at
the level of compaction consistent with the real infused composite
(a) Fabric surface

A A

Fig. 1. Schematic representation of orthogonal 3D woven fabric sho
(58.5% overall fibre volume fraction (o-FVF)) using the latest ver-
sion of TexGen (3.5.3). Fig. 3 shows an attempt at generating such
a model. Fig. 3(a) shows excessive squeezing of binder yarns at the
surface while Fig. 3(b) shows penetrations of binder and weft
yarns. A valid model at the target o-FVF could only be achieved
by shrinking yarn cross-sections, thus requiring excessive
intra-yarn fibre volume fraction (iy-FVF). As such, the new idealised
geometrical model used in this study has a lower o-FVF of 52.0%,
similar to the original idealised model, and is shown in Fig. 2(b). This
model features binder yarns which are flush with the fabric surface,
achieved using binder yarns which are near circular in the vertical
sections but flatten considerably on surface while inducing crimp
in the surface weft yarns. However, elsewhere the in-plane yarns
remain straight with constant cross-section.

A numerical model has been developed and used to predict the
deformations of the 3D woven fabric considered in this study dur-
ing weaving and subsequent compaction in a mould tool [7]. This
was conducted in order to produce accurate geometry for unit cell
analysis of textile composites. Whilst these deformation models
can produce geometry at levels of compaction as high as the real
fabric, for comparative purposes, this simulated geometry TexGen
model is also shown at 52.0% o-FVF in Fig. 2(c), and is visually con-
siderably different to the idealised models. It features significant
in-plane and out-of-plane waviness in warp and weft yarns and
variation of cross-sections in all yarns.

The average waviness levels in each of the geometrical models
are listed in Table 1. This was determined by splitting the yarn path
into short segments and calculating the angle of each segment
from the nominal path both in-plane (hIP) and out-of-plane (hOOP),
as shown in Fig. 4 and Eq. (1). The overall waviness (hoverall) of each
segment was assessed by considering a 3D vector, a, defined by hIP

and hOOP. hoverall was calculated as the angle of a with another vec-
tor, b, defining nominal yarn path, as calculated in Eq. (2). The final
waviness value is the average of this value over the total length of
the yarn.

hIP ¼ tan�1 z1 � z0

x1 � x0

� �
; hOOP ¼ tan�1 y1 � y0

x1 � x0

� �
ð1Þ

hoverall ¼ cos�1 a � b
jajjbj ð2Þ

where :
awarp ¼ ð1; tan hIP; tan hOOP;Þ
bwarp ¼ ð1;0;0Þ

The output of the deformation model has been validated against
computed tomography (CT) scans of the dry fabric subjected to in-
situ compaction across a range of volume fractions in [7], with
excellent qualitative correlation. A CT image of a unit cell is
Weft

Warp

Binder

(b) Section A-A 

wing; (a) unit cell with tessellation and (b) fabric cross-section.
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Fig. 2. Various TexGen unit cell models of 3D woven fabric compared to CT scan, at 52% o-FVF.

(a) (b)

Fig. 3. Idealised TexGen model at 58.5% o-FVF showing; (a) excessive yarn flattening, (b) example of yarn interpenetrations.

Table 1
Average waviness values in each of the models.

Ideal (original) Ideal (new) Simulated (52.0% o-FVF) Simulated (58.5% o-FVF)

Warp 0� 0� 3.14� 4.81�
Weft 0� 0.19� 3.91� 4.11�

Fig. 4. Path of a warp yarn, showing method to define waviness.
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presented in Fig. 2(d) where it can clearly be seen that the simu-
lated geometry model represents the architecture of the real fabric
much more accurately than the idealised models, but unfortu-
nately experimental data for the waviness of the fabric at the high
level of compaction considered in this paper is not available.

2.1. Conversion of realistic geometry from deformation models

The output of the deformation models, with yarns represented
as a bundle of beam elements, is not immediately useful for
meso-scale mechanical performance analysis where yarns require
definition as solid geometry. Conversion of the deformation model
geometry was performed using Python scripting to create the sim-
ulated geometry TexGen model [18] shown in Fig. 2(c), from which
FE models can be generated. Building a unit cell textile model in
TexGen requires definition of three attributes; yarn paths, yarn
cross-sections as well as yarn repeats with a domain. For detailed
information regarding the theory of geometrical modelling of tex-
tiles as applied in TexGen, refer to [1].

The path of a yarn in TexGen is represented by a one-dimen-
sional line defined in three-dimensional space. The script was used
to march along each yarn, stopping at regularly spaced intervals to
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calculate the yarn centroid and attribute these as master nodes
which were joined with a periodic spline (Fig. 5). Yarn cross-
sections are defined in TexGen as two-dimensional shapes in a
plane perpendicular to the yarn tangent. Planes were specified at
each master node to account for the variation in cross-sectional
shape along the yarn path and the intersection points of each beam
element within the yarn was mapped to these planes. Next,
cross-sections were defined based on these mapped points, using
the procedure outlined below to generate polygons. These
polygons are sampled by a number of equally spaced slave nodes
for graphical rendering and meshing.

Convex hull algorithms are widely used in computational
geometry to define the smallest convex polygon around a set of
points e.g. [19,20]. This can be visualised using an analogy in which
the points are represented by pins in a board. By tying a piece of
string to a starting pin, the convex hull is the shape formed by
wrapping the string around the set of the pins until it returns to
the starting pin. However, the shape of a yarn cross-section is
not always convex and applying the convex hull would give an
inaccurate representation of the yarn in such cases. Therefore a
modified convex hull algorithm was implemented, beginning by
defining the first point in the polygon as the node with the largest
x co-ordinate (in an x–y plane), then proceeding anti-clockwise
around the section. Using the previous analogy, a string of finite
length, r, is employed to define a search radius for the subsequent
selection which is the point creating a line with the smallest exter-
nal angle from the previous polygon section. A closed polygon is
formed once the initial node is reselected and is subsequently
expanded by the radius of the beams, d/2. The search radius, r,
was defined as r = xd, where the parameter x can be used to adjust
the level of smoothing of the cross-section. A value of x = 4 was
found to produce good results and is compared with the convex
hull solution for two extreme examples of yarn cross sections gen-
erated by the deformation models in Fig. 6. While the convex hull
produces good results for the thick yarn, its representation of the
thinner yarn is poor since the large concave regions are smoothed
over. The modified algorithm, however, produces good results in
both situations.

Since the output of the unit cell deformation models is periodic,
specification of yarn repeat vectors corresponding to the tessella-
tion of the unit cell can be utilised in TexGen to define an infinite
fabric which is then trimmed to a finite domain of the unit cell.
Master node

Fig. 5. Yarn definit

(a)

(b)x

y

Fig. 6. Illustration of; (a) convex hull (x =1) and (b) modified convex hull algorithms (
3. Modelling methodology

In this study, tensile loading in warp and weft directions will be
considered for the following four scenarios:

A. New idealised geometry model (52.0% o-FVF)
B. Simulated geometry model (52.0% o-FVF)
C. Simulated geometry model (58.5% o-FVF)
D. Experimental data (58.5% o-FVF)

The quoted o-FVFs for A–C refer to the TexGen geometrical mod-
els. The voxel models generated from these TexGen models show
negligible difference from these values, since any errors in yarn
volume fraction (YVF) resulting from the voxel discretisation are
offset by adjustment of the iy-FVF. The results of A and B are used
to assess the effect of the different geometries on mechanical
performance prediction, since the two models can be directly
compared at the same o-FVF. Further insight can be gained
regarding the effect of compaction from B to C which can only
be achieved by using models of the realistic geometry. The accu-
racy of each model as compared to experiment will also be
assessed.

3.1. Mesh and boundary conditions

Voxel meshes can be automatically generated in TexGen with
each voxel being designated to either a yarn or the matrix depend-
ing on the location of its centroid. This means the technique is tol-
erant of small yarn interpenetrations in the geometrical models
which can be introduced during the conversion process from defor-
mation models. Unit cell models of size 27.8 � 9.9 � 5.3 mm were
used with cubic shaped voxel elements providing an element
length of 0.12 mm. Using this technique, it is trivial to generate
periodic meshes of complex geometries thus reducing pre-processing
effort and facilitating automation. It also avoids the need to specify
the fictitious resin gaps between yarns often resorted to in conven-
tional modelling of textile composites to produce adequate quality
elements (see for example [21]). Material orientations were
assigned to each voxel element using the procedure applied in
TexGen which is outlined in [1]. Periodic boundary conditions for
the unit cell with stagger in tessellation shown in Fig. 1(a) were
applied as derived in [22]. Since the unit cell represents the full
Slave node

ion in TexGen.

x = 4) as applied to two different yarn shapes as generated by deformation model.
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Fig. 7. Illustration of generalised chess model showing; (a) micro scale unit cell of
unidirectional composite with square packing, (b) chess model discretisation of unit
cell, reduced to a quarter by symmetry. (In each image, shaded and blank regions
represent fibres and matrix respectively).
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thickness of the material, the upper and lower surfaces were
unconstrained.

3.2. Material properties

In each of the models the yarn cross-sectional area and hence
iy-FVF varied in segments along yarn path. This variation was from
47–78% iy-FVF in the idealised model, though most of this varia-
tion occurs in the binder yarns. The simulated geometry models
exhibited a high diversity of yarn shapes and dimensions in all
yarns with iy-FVF ranging from 36–87%, where high iy-FVFs
occurred in regions of yarn to yarn contact at cross-over points
where load is transmitted through fabric thickness during weaving
and compaction. Whilst the iy-FVF remains below the maximum
hexagonal array fibre packing limit of �91%, since this cannot be
violated in such multi filament based deformation models, the high
iy-FVFs suggested in certain localised regions is exaggerated. In
practice it is difficult to exceed iy-FVFs greater than 70–75% (see
for example [23–25]) as unlike the model, fibres in a real yarn
are not perfectly aligned and have some level of entanglement.

The resin pockets were assigned the properties of the pure
isotropic epoxy resin while the yarns were treated as transversely
isotropic homogenous material similar to a unidirectional lamina.
Properties were applied to each element within the yarn depend-
ing on the local iy-FVF, in order to accurately represent the distri-
bution of properties along the yarns. Fibre and matrix properties
are shown alongside estimated yarn properties at a nominal
iy-FVF of 70% in Table 2. Properties of the carbon fibres and epoxy
resin were taken from manufacturer’s data, though some fibre
properties were taken from the literature, with averaged experi-
mentally derived values used where available.

Yarn elastic constants were calculated from constituents using a
micromechanical FE model with hexagonal fibre packing. Strength
properties were estimated using a simple analytical model, called
the generalised chess model, first used in [26]. Fig. 7(a) shows
the micro scale unit cell of a unidirectional fibrous composite with
regular square packing. This unit cell has two planes of symmetry
and thus the considered region can be reduced to a quarter of this
unit cell. Fig. 7(b) shows the quarter unit cell approximated by a
square fibre grid consisting of four blocks. Blocks 1, 2 and 4 repre-
sent matrix material with block 3 representing the fibre. A set of
conditions including the prescribed stress/strain field, continuity
of traction on the inter-block boundaries and symmetry form a sys-
tem of equations relative to the stress in each block. In essence, the
obtained representation is similar to the discretisation of the unit
cell by four finite elements.

These equations along with the Hooke’s law are sufficient to
identify the stresses in each block, which are assumed to be uni-
form. Once the stresses are determined, strength can be estimated.
The fibre dominated longitudinal strength is calculated by maxi-
mum stress criterion and resin dominated strength properties are
calculated using the following criteria:

max
pmx

pcr
;
qmx

qcr

� �
P 1 ð3Þ
Table 2
Table of material properties for constituents and yarn (at nominal 70% iy-FVF).

E11 (GPa) E22 (GPa) m12 = m23 m23 G12 = G

Carbon fibre [40] 238 13 [35,36] 0.20 [41] 0.25 [41] 13 [42
Epoxy resin MVR444 [44] 3.1 3.1 0.35 0.35 1.2
Yarn (70% iy-VF) 167 8.1 0.24 0.37 4.5

a Warp/weft yarns (HTS40 F13 12k).
b Binder yarns (HTA40 E13 6k).
where Pmx and Pcr are the maximum hydrostatic tension in the
matrix (crucial for failure of brittle epoxies [27,28]) and its critical
value. In an elementary uniaxial tensile test the epoxy matrices fail
in a brittle fashion and hence p ¼ pcr ¼ St

3 at failure (one third of the
apparent uniaxial strength St). qmx and qcr are the Mises stress and
the correspondent critical value characterising the probability of a
ductile failure. In pure shear the epoxy yields as an ideal plastic
material before failing, hence qcr can be taken as the yield stress.

The model was used to predict strength under three uniaxial
conditions; transverse tension, in-plane shear, out-of-plane shear.
The prediction of the transverse tensile strength follows the antic-
ipated trend; strength drops when iy-FVF is increased from 0% to
40% and remains nearly constant as it further increases. The trans-
verse tension and shear strength values are in good agreement
with the available data, e.g. [29].

3.3. Material damage models

Carbon fibres often exhibit non-linear tensile behaviour, e.g. at
an applied strain of 1% the Young’s modulus may increase by 20–
25% of its initial value [30]. Recent studies showed this phenome-
non (known as the ‘non-Hookean’ effect) to be partly responsible
for the non-linear behaviour of 3D woven composites [31]. How-
ever, due to the lack of data for the particular carbon fibres used
here, the behaviour of yarns was assumed to be linear prior to
damage initiation. The matrix was treated similarly. After damage
initiation a continuum damage mechanics (CDM) model [32] was
applied both to yarns and matrix. It assumes that damage in a
material can be considered as a reduction of stiffness properties
over a region of material, a single finite element in this case.

Matrix damage was assessed by the pressure dependent modi-
fied von Mises criterion listed in Eq. (4) [33]. Damage initiation was
assumed when the damage parameter Dm exceeded the value of
1.0.

Dm ¼
Sc

m � St
m

Sc
mSt

m

ðr1 þ r2 þ r3Þ

þ 1
2Sc

mSt
m

ðr1 � r2Þ2 þ ðr2 � r3Þ2 þ ðr1 � r3Þ2
h i

ð4Þ
13 (GPa) G23 (GPa) St
11 (MPa) St

22 (MPa) Ss
12 ¼ Ss

13 (MPa) Ss
23(MPa)

,43] 6 [41] 4620a/3825b – – –
1.2 77.6 77.6 61.5 61.5
3.0 3234a/2678b 36.4 53.8 61.5
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where ri with i = 1, 2, 3 are the principal stresses and Sj
m with j = t, c

are the matrix tensile and compressive strengths.
Three modes of failure were considered for the yarns: longitudi-

nal tension, transverse tension and shear. The damage state of the
material was defined by a set of three parameters Di listed in Eqs.
(5)–(7) with indices i = 1, 2, 3 representing longitudinal, shear and
transverse failure modes respectively.

D1 ¼max
r11

St
11

;
�r11

Sc
11

 !
ð5Þ

D2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

12 þ r2
13

q
S12

ð6Þ

D3 ¼max
maxðr2;r3Þ

St
22

;�minðr2;r3Þ
Sc

22

 !
ð7Þ

where; rij are components of stress tensor, Sij
k are strengths of yarn

with indices i, j = 1, 2 corresponding to the directions while k = t, c
stands for tension and compression.

The moduli of the damaged material were described by Eqs.
(8)–(10) for the yarns and Eq. (11) for the matrix:

E11 ¼
E0

11; D1 6 1

0:001E0
111; D1 > 1

(
ð8Þ

E22 ¼ E33 ¼ E0
22maxð0:001;minðPðD2Þ; PðD3ÞÞÞ ð9Þ

G12 ¼ G13 ¼ G0
12maxð0:001;minðPðD2Þ; PðD3ÞÞÞ ð10Þ

Em ¼ E0
mmaxð0:001; PðDmÞÞ ð11Þ
Fig. 8. Stiffness reduction penalty function.

(a)

Fig. 9. Voxel meshes for; (a) idealised m
where stiffness properties with a superscript 0 refer to the undam-
aged value and P(Di) is a penalty function defined as:

PðDiÞ ¼ 1� 1
expð�c1Di þ c2Þ

� �
ð12Þ

It can be seen that damage in the longitudinal direction causes
abrupt reduction of longitudinal properties whereas other stiffness
properties are subject to an exponential degradation. Poisson’s
ratios m12, m23 and m13 remain intact, while the corresponding Pois-
son’s ratios in other directions (i.e. m21, m32 and m31) were adjusted to
keep the stiffness matrix of an element symmetric. Parameters c1

and c2 in the penalty function are empirical constants where their
ratio determines how fast damage will propagate through an ele-
ment and defines the final failure of the element (Fig. 8). This will
have some mesh dependence, with coarse meshes requiring a
higher ratio to prevent the dissipated energy increasing. The ratio
c2/c1 was initially chosen from a model of a 2D woven unit cell
[16] with a more refined mesh. Based on the initial results of load-
ing in the warp direction an improved value of 4.0 was selected. The
influence of mesh size whilst keeping this parameter constant has
been investigated and results are discussed in Section 4.

4. Results and discussion

Voxel meshes used for the idealised and simulated geometry
models are shown in Fig. 9. It was relatively simple to represent
the straight yarns of the idealised model with voxels, but the com-
plex geometry of the simulated geometry models proved more
challenging with angled or curved yarns having stepped or jagged
surfaces. The quality of the voxel representation of geometry
improves with refinement, however the large unit cell size of this
fabric placed a practical limit of the level of refinement possible.
The baseline models had nearly 800,000 elements and took 5 days
to run on a high performance computing system using 32 CPUs.

Young’s moduli and ultimate tensile strength values are pre-
sented for each of the models compared to experiment in Table 3.
Stress–strain curves for each data set are shown for the warp and
weft directions in Figs. 10 and 11 respectively. Experimental curves
[34] shown are for a representative test and model results using
the low compaction geometry have been normalised by o-FVF to
aid comparison.

Non-linear behaviour of a 3D woven composite was shown in
[31] to be the result of a combination of three phenomena: fibre
non-linearity, inelastic yarn straightening and damage develop-
ment in the composite. The latter of these two phenomena are
accounted for in the modelling here. It was also shown in [30] that
the first two phenomena dominate at lower strains while damage
development overcomes them at higher strains.

The experimental curves in Figs. 10 and 11 are bi-linear with a
stiffness reduction kink at around 0.6% strain. It is believed that
this non-linearity is predominantly due to damage development,
(b)

odel, (b) simulated geometry model.



Table 3
Comparison of modulus (E) and ultimate tensile strength (St) predicted by the models and from experiment.

Ideal (52.0% o-FVF)a Simulated (52.0% o-FVF)a Simulated (58.5% o-FVF) Experiment (58.5% o-FVF)

E (GPa) St (MPa) E (GPa) St (MPa) E (GPa) St (MPa) E (GPa) St (MPa)

Warp 72.8 (64.7a) 922 (820a) 64.3 (56.5a) 669 (615a) 56.7 551 63.9 (0.73b) 701 (35.0b)
Weft 71.0 (63.1a) 920 (818a) 61.7 (54.6a) 596 (530a) 59.7 533 60.8 (0.80b) 625 (40.9b)

a Raw, non-normalised data.
b Standard deviation.
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Fig. 10. Graph showing stress strain curves of each model alongside experiment for tensile warp loading. Data from 52.0% o-FVF models is normalised.
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Fig. 11. Graph showing stress strain curves of each model alongside experiment for tensile weft loading. Data from 52.0% o-FVF models is normalised.
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more specifically transverse yarn, and also resin, cracks. These have
been observed in an orthogonal 3D composite of similar weave
style but fewer layers in interrupted tests (Fig. 12). Significant
damage is also present in the models prior to final failure, see
Fig. 13 showing ‘cracks’ of damaged material forming in the yarns
perpendicular to the applied load.

Longitudinal strains in the yarns were assessed in one of the
models. It was found that at an applied strain of 0.6% (where
�10% of transverse yarns material has sustained some damage)
only a small fraction (<1%) of the yarns have strain values higher
than 1%. Based on [31], this implies that overall increase of stiffness
cannot be higher than 10–15%. It was therefore considered reason-
able to neglect fibre non-linearity in the material model.

The result of the idealised model was an overestimation of
stiffness in both directions by around 15%. The low compaction
simulated geometry model predicted moduli very close to experi-
ment with the high compaction model having slightly reduced val-
ues. The same trend is replicated with strength prediction for each
model. The damage model used for the analysis is based on a sim-
plified mechanical approach and thus cannot capture transverse
failure with great accuracy. Stress distribution, damage onset and
final strength are significantly influenced by the yarn crimp. Hence,
the simulated geometry models produced a more accurate predic-
tion of the strain onset of transverse yarn damage accumulation
and the stress–strain curve shows the main trend of stiffness
reduction. The final failure depends mainly on correct prediction
of longitudinal stresses, although the level of damage present at
the point of failure affects maximum stress which can be sustained.

Comparison of the two 52% o-FVF models clearly demonstrates
the effect of textile geometry on the resulting mechanical



Fig. 12. Micrograph of a thinner orthogonal 3D woven fabric of similar weave style showing transverse cracks in weft yarns and resin at 90% failure load in interrupted test
[34].

(a)

(b)

Fig. 13. Damage plots in 58.5% o-FVF simulated geometry model at 1% strain showing; (a) transverse tensile damage in weft yarns, (b) resin damage, where 0 and 1 represent
undamaged and fully degraded material respectively.

Table 4
Comparison of modulus (E) and ultimate tensile strength (St) predicted by the models
in the convergence study.

Relative element length Number of elements E (GPa) St (MPa)

0.66 231,000 60.2 585
1.0 787,500 59.7 533
1.5 2,627,250 62.3 562
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properties. Non-conservative results were produced by the idea-
lised model because of the geometrical assumptions outlined in
Section 2, most notably the lack of yarn waviness. Assessment of
the two simulated geometry models, considering the normalised
data for the low compaction model, shows a reduction in mechan-
ical properties with compaction since the highly compacted model
features greater waviness. In these cases, the relative reduction in
tensile strength was over double the relative reduction in stiffness,
illustrating that strength is more sensitive to geometrical defects
than stiffness. This effect will be even more severe for compressive
strength since the presence of waviness causes kink-band forma-
tion in yarns [5,6]. Even when considering the raw, un-normalised
data of the low o-FVF simulated geometry model, the results sug-
gest that the mechanical properties do not necessarily improve
with compaction since the effect of greater o-FVF is counteracted
by the reinforcement acting with lower efficiency. This indicates
that there is likely to be an optimum moulded thickness for a given
reinforcement type and desired properties with regards to a bias
towards stiffness or strength. The use of deformation models in
conjunction with failure models outlined in this paper could be
used help determine this thickness for a given weave style, since
the behaviour of 3D woven composites is very dependent on the
specific reinforcement and results from one textile cannot be con-
sidered to carry over to a different textile.

One would expect the fully compacted simulated geometry
model to produce the closest match with experiment, however
predicted properties were slightly underestimated. One potential
source of error was the applied boundary conditions. A unit cell
with periodic boundary conditions behaves as if it is part of an infi-
nite material, although due to the physically large unit cell size
specimens for testing were only around one unit cell wide for weft
loading and two for warp loading. Running unit cell models with
no periodicity constraints in the lateral direction however showed
negligible changes in stiffness, thus eliminating this as a possible
cause. The results of these models are sensitive to material inputs
and whilst every care was taken in determining these properties, it
is possible that inaccuracies exist between the real material and
properties used due to the reliance on manufacturer’s and litera-
ture data. Fibre transverse modulus for example has a notable
effect on overall stiffness and published values vary widely
[35,36]. However this was not attributed as the main source of
error.

As further investigation, and in order to assess the mesh sensi-
tivity of the models, a convergence study was conducted, generat-
ing coarse and refined models by dividing and multiplying the
baseline element dimensions by a factor of 1.5 giving element sizes
of 0.18 and 0.08 mm respectively. This was done for weft loading in
the fully compacted realistic model since there was more damage
prior to final failure and this would indicate any differences
between different meshes most clearly. The results are summa-
rised in Table 4. The predicted modulus was similar for the coarse
and baseline models, but increasing refinement showed a small
increase in modulus. This trend of increasing stiffness with voxel
refinement occurs for yarns with misalignment to the mesh direc-
tion since the voxel discretisation gives a stepped surface which is
structurally less efficient. However, when considering straight
yarns aligned to the voxel edges, voxel models produce an accurate
stiffness prediction compared to a traditional FE approach, even
with low mesh refinement. High refinement of misaligned yarns
will cause the prediction to converge to the correct numerical solu-
tion, though the level of refinement used in this paper is coarser
than what is required to achieve full convergence. The implication
of this is that the voxel method accurately modelled the idealised
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geometry but underestimated stiffness for the two more accurate
simulated geometry models.

The damage parameter c2/c1 was kept constant in each model
such that the strength predictions in the convergence study
illustrated the effect of mesh refinement on the damage model.
Stiffness degradation due to damage could therefore be expected
to retard with refinement because the energy dissipated reduces.
However, the effect of refinement on strength did not follow this
trend, where in fact there was no clear pattern with both coarse
and refined models having a slightly higher strength than the base-
line. Extraction of the force through a single weft yarn in the centre
of the model at 0.9% strain showed a similar trend to the ultimate
strength predictions. The variation in strength was largely due to
the variation in voxel discretisation for the different mesh sizes
causing variations in the local stress state which fluctuate with
mesh refinement rather than converging on a single value. It can
thus be concluded that for the range of meshes investigated here,
the damage formulation itself is not highly sensitive to the mesh
size, once an initial set of parameters is chosen, with voxel discret-
isation effects dominating. This is a limitation of the voxel method
when applied to complex geometrical models, since the key advan-
tage of the technique is the ability to mesh complex geometry.
Several techniques could be implemented to improve the accuracy
of voxel modelling at low refinement. These include a better repre-
sentation of the yarn–matrix interface through local refinement
[15] or mesh smoothing [37], or by assigning mixed properties to
voxels which occupy an interphase region consisting of both yarn
and matrix [38,39].

5. Conclusions

Three different geometrical models of a complex orthogonal 3D
woven composite have been assessed using the voxel method and
a continuum damage model for determination of elastic moduli
and final failure. The assumptions used in an idealised model have
been shown to produce significantly non-conservative results for
stiffness and especially strength predictions. Models considering
realistic geometry from simulation at two levels of compaction
produced reduced, and more accurate, predictions. The fully com-
pacted simulated geometry model produced reduced properties
compared to the normalised lower compaction simulated geome-
try model due to the increase in waviness levels. The significant
variation of results between the different models clearly illustrates
the importance of textile geometry and that idealisation assump-
tions are not adequate for textiles with complex internal architec-
ture. The fully compacted model should have produced closest
match with experimental data, though results were slightly con-
servative. This has been attributed to the voxel discretisation of
the geometry, as the stepped yarn surfaces in the simulated geom-
etry models caused a reduction in stiffness and some fluctuation in
strength. Considering such complex geometry introduces greater
requirements on mesh refinement in order to achieve convergence
than it was feasible to achieve for the considered unit cell and
alternative strategies other than mesh refinement need to be con-
sidered to mitigate its effects.
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