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Abstract

Generalizing work of Gilmer and Heinzer, we de7ne a t#-domain to be a domain R in which⋂
M∈M1

RM �= ⋂
M∈M2

RM for any two distinct subsets M1 and M2 of the set of maximal t-ideals
of R. We provide characterizations of these domains, and we show that polynomial rings over
t#-domains are again t#-domains. Finally, we study overrings of t#-domains.
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0. Introduction

Let R denote an integral domain with quotient 7eld K . Then R is said to be a
#-domain or to satisfy the #-condition if

⋂
M∈M1

RM �= ⋂
M∈M2

RM whenever M1 and
M2 are distinct subsets of the set of maximal ideals of R. Pr@ufer domains satisfying the
#-condition were 7rst studied in [8,10]. Domains each of whose overrings satisfy the
#-condition were also studied in [10] (in the Pr@ufer case); these domains have come
to be called ##-domains.

Although the papers mentioned above contain very interesting results, those results
are essentially restricted to the class of Pr@ufer domains. This paper represents an eCort
to extend, by a modi7cation of the de7nitions, results about the #- and ##-conditions
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to a much wider class of domains. In the Section 1, we introduce the t#-condition: A
domain R satis7es the t#-condition if

⋂
M∈M1

RM �= ⋂
M∈M2

RM for any two distinct
subsets M1;M2 of the set of maximal t-ideals of R. We discuss the extent to which the
properties shown in [10] to be equivalent to the #-property carry over to our setting.
For example, [10, Theorem 1 (a) ⇔ (b)] states that the domain R has the #-property
if and only if each maximal ideal M of R contains a 7nitely generated ideal which
is contained in no other maximal ideal of R; we show that this result has a natural
counterpart in the class of v-coherent domains (which includes all Noetherian domains).
(All relevant de7nitions are given below.) In addition, we show that for any domain R,
R has the t#-property if and only if each maximal t-ideal M of R contains a divisorial
ideal contained in no other maximal t-ideal of R. We also give examples to show that
“divisorial” cannot be replaced by “7nitely generated” in general.

In Section 2, we attempt to generalize the ##-property. In the case of Pr@ufer domains,
the de7nition of the ##-property is reasonable since the overrings have nice properties
(e.g., they are Oat). To obtain a useful de7nition of the t##-property for more general
classes of rings, however, one must decide which overrings should be required to have
the t#-property. For example, we could say that R has the t##-property if each t-linked
overring of R has the t#-property. Another possibility is to require that the overrings of
R which are generalized rings of quotients of R should have the t#-property. In the end
we avoid making a de7nition at all. Instead, we explore several classes of overrings,
primarily in the context of v-coherent domains, and we obtain quite satisfactory results
for Pr@ufer v-multiplication domains.

Section 3 is devoted to a study of the t#-property for polynomial rings. We show that
if R has the t#-property, then so does R[{X�}] and that the converse is true if R[{X�}]
is assumed to be v-coherent. We also consider the t#-property in two commonly studied
localizations of R[{X�}].

1. The t#-property

For a nonzero fractional ideal I of a domain R with quotient 7eld K , we set I−1 =
(R :K I)={x∈K | xI ⊆ R}, Iv=(I−1)−1, and It=

⋃
Jv, where the union is taken over all

nonzero 7nitely generated subideals J of I . The reader is referred to [9] for properties
of these (and other) star operations. We also recall that I is said to be divisorial if
I = Iv and to be a t-ideal if I = It . Finally, we denote the set of maximal t-ideals of
R by t-Max(R).

We begin by repeating the de7nition of the t#-property.

De�nition 1.1. A domain R has the t#-property (or is a t#-domain) if
⋂

M∈M1

RM �= ⋂
M∈M2

RM for any two distinct subsets M1 and M2 of t-Max(R).

Theorem 1.2. The following statements are equivalent for a domain R:

(1) R is a t#-domain.
(2) For each N ∈ t-Max(R), we have

⋂
M∈t-Max(R)\{N} RM * RN .

(3) For each N ∈ t-Max(R), we have R �= ⋂
M∈t-Max(R)\{N} RM .
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(4)
⋂

M∈M1
RM and

⋂
M∈M2

RM are incomparable for each pair of disjoint subsets
M1 and M2 of t-Max(R).

(5) For each maximal t-ideal M of R, there is a divisorial ideal of R which is
contained in M and no other maximal t-ideal of R.

(6) For each maximal t-ideal M of R, there is an element u∈K \ R such that M is
the only maximal t-ideal containing (R :R u).

Proof. By [11, Proposition 4] we have R =
⋂

M∈t-Max(R) RM . Using this and the de7-
nitions, the following implications are straightforward: (1) ⇔ (2), (2) ⇔ (4); (2) ⇔
(3); and (6) ⇒ (5).

To prove (2)⇔ (6), observe that an element u∈K satis7es u∈⋂
M∈t-Max(R)\{N} RM\RN

if and only if (R :R u) is contained in N and no other maximal t-ideal of R.
Now assume (5). Let N ∈ t-Max(R), and pick a divisorial ideal I with I ⊆ N and

I * M for each M ∈ t-Max(R)\{N}. Then I−1 ⊆ ⋂
M∈t-Max(R)\{N} RM (since for each

M , we have (R :R I−1) = I * M) , but I−1 * R. Hence (5) ⇒ (3), and the proof is
complete.

Corollary 1.3. If R is a domain with the property that each maximal t-ideal is divi-
sorial, then R is a t#-domain.

Proof. This is clear from the equivalence of conditions (1) and (5) of Theorem
1.2.

Recall that a Mori domain is a domain satisfying the ascending chain condition on
(integral) divisorial ideals. Equivalently, a domain R is a Mori domain if for each ideal
I of R there is a 7nitely generated ideal J ⊆ I with Iv = Jv. In particular, the v- and
t-operations on a Mori domain are the same. Hence Corollary 1.3 implies that Mori
domains are t#-domains.

Remark 1.4. We have stated Theorem 1.2 for the t-operation, since our primary interest
is in that particular star operation. However, suppose that for a 7nite-type star operation
∗, we call a domain R a ∗#-domain if for each pair of nonempty subsets M1 and M2

of ∗-Max(R) with M1 �= M2, we have
⋂

M∈M1
RM �= ⋂

M∈M2
RM . Then Theorem 1.2

remains true with t replaced everywhere (including the proof) by ∗. This is of some
interest even in the case where ∗ is the trivial star operation (I∗ = I for each ideal I ;
this is often referred to as the d-operation). For the trivial star operation, Olberding
has proved the equivalence of statements (1) and (5) in [20, Proposition 2.2].

Theorem 1.2 (1) ⇔ (6) generalizes [10, Theorem 1 (a) ⇔ (b)], which states that
a Pr@ufer domain R is a #-domain if and only if each maximal ideal of R contains a
7nitely generated ideal which is contained in no other maximal ideal of R. This follows
upon recalling that for R Pr@ufer (i) each ideal is a t-ideal (so that t-Max(R)=Max(R))
and (ii) for each u∈K , (R :R u) is 7nitely generated (in fact, two generated). In
general, one cannot hope to show that each maximal t-ideal of a t#-domain contains a
7nitely generated ideal which is contained in no other maximal t-ideal, as the following
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example shows. (Example 1.7 is another such example. However, that example has
(Krull) dimension two, and we think it might be of some interest to have a one-
dimensional example.)

Example 1.5. Let T be an almost Dedekind domain with exactly one noninvertible
maximal ideal M . (One such example is constructed in [9, Example 42.6].) By
[8, Theorem 3], T is not a #-domain. For our purposes, it does no harm to assume
that T=M has a proper sub7eld. This follows from the fact that T (X )=T [X ]S , where S
is the multiplicatively closed subset of T [X ] consisting of those polynomials g having
unit content (the ideal generated by the coeRcients of g), is also an almost Dedekind
domain with exactly one nonivertible maximal ideal, namely MT (X ), whose residue
7eld T (X )=MT (X ) ≈ (T=M)(X ) has in7nitely many proper sub7elds [9, Proposition
36.7]. Let F be such a proper sub7eld of T=M , and let R be de7ned by the following
pullback diagram of canonical homomorphisms:

R −−−−−−−−−→ F

�



�

T −−−−−−→ k = T=M:

We claim that R is a t#-domain. (In fact, since R is one dimensional, it is a #-domain.)
We show that R satis7es condition (5) of Theorem 1.2. For this it suRces to observe
that each maximal ideal of R is divisorial. This is clear for M , and if P is a maximal
ideal of R with P �= M , then by [7, Theorem 2.35] P is actually invertible. Hence R
is a (t)#-domain. Since T is a non-t#-Pr@ufer domain with oCending maximal ideal M ,
however, there is no 7nitely generated ideal of T contained in M but no other maximal
ideal of T ; clearly, a similar statement applies to R.

If we restrict our attention to domains in which conductors are required to be 7nitely
generated, i.e., to :nite conductor domains, then the t#-property becomes equivalent to
the property that each maximal t-ideal contain a 7nitely generated ideal contained in
no other maximal t-ideal. In fact, we can obtain such a result by requiring a little less
than 7nite generation of conductors. Recall that a domain R is said to be v-coherent
if for each 7nitely generated ideal I of R, I−1 has 7nite type (i.e., there is a 7nitely
generated ideal J with I−1 = Jv). This condition was 7rst studied (under a diCerent
name) by Nour el Abidine [19]. It is easy to see that a 7nite conductor domain is
v-coherent. We have the following result.

Theorem 1.6. For a v-coherent domain, the conditions of Theorem 1.2 are each equiv-
alent to: Each maximal t-ideal of R contains a :nitely generated ideal which is con-
tained in no other maximal t-ideal of R.

Proof. The stated condition clearly implies condition (5) of Theorem 1.2. On the other
hand, condition (6), in the presence of v-coherence, implies the stated condition.
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Now [10, Theorem 1] contains a third equivalence, namely, that R is uniquely rep-
resentable as an intersection of a family {V�} of valuation overrings such that there
are no containment relations among the V�. Since each valuation overring of a Pr@ufer
domain is a localization, this suggests exploring the possibility that the t#-property on
a domain R is equivalent to the condition that R contain a unique set of incomparable
t-primes {P�} such that R=

⋂
RP� . One implication is easy. If we assume the existence

of a unique set of t-primes {P�} such that R=
⋂
RP� , then that set must be t-Max(R),

and so R is a t#-domain. In Theorem 1.8, we provide a converse in two cases. First,
we give an example showing that the converse does not hold in general. Recall that a
domain R is a Pr;ufer v-multiplication domain (PVMD) if RM is a valuation domain
for each maximal t-ideal M of R.

Example 1.7. In [13] Heinzer and Ohm give an example of an essential domain D
which is not a PVMD. In their example k is a 7eld, and y; z; x1; x2; : : : are independent
indeterminants over k; R = k(x1; x2; : : :)[y; z](y;z); for each i, Vi is a rank one discrete
valuation ring containing k({xj}j �=i) such that y, z, and xi all have value 1; and D =
R ∩ (

⋂
i Vi). Then D is a two-dimensional domain, and in [18] it is shown that the

maximal ideals of D are M;P1; P2; : : :, where M is the contraction of the maximal ideal
of R = DM , and Pi is the contraction of the maximal ideal of Vi = DPi . Note that each
Pi has height one and is therefore a t-ideal. We observe that each element of R is also
in Vi for all but 7nitely many i; this is the case since an element of R involves only
7nitely many of the xj, and xi is a unit of Vj for all j �= i. Similarly, each element
of the maximal ideal of R is in the maximal ideal of Vi for all but 7nitely many i. It
follows that if I is a 7nitely generated ideal of D contained in M , then I , and hence
also It , is contained in all but 7nitely many of the Pi. Suppose that for such an I we
have It * M . Write 1=x+m with x∈ It and m∈M . By the observations stated above,
x and m must be simultaneously in all but 7nitely many of the Pi, a contradiction.
Thus M is a t-ideal. 2 We show that R has the t#-property by showing that M and
the Pi satisfy condition (5) of Theorem 1.2. For each i, the divisorial ideal xiD ⊆ Pi,
while xi �∈ M and xi �∈ Pj for j �= i. As for M , note that y=z ∈⋂

DPi \ DM . Hence
(D :D y=z) ⊆ M , but (D :D y=z) * Pi for i = 1; 2; : : : . Finally, denoting the height-one
primes contained in M by {Q�}, we observe that D = (

⋂
� DQ�) ∩ (

⋂
i DPi) for the set

of incomparable t-primes {Q�} ∪ {Pi} �= t-Max(R).

In our next result, we use the fact that a PVMD is v-coherent [19].

Theorem 1.8. Let R be either a PVMD or a Mori domain. Then the conditions of
Theorem 1.2 are each equivalent to: There is a unique set {P�} of incomparable
t-primes such that R =

⋂
RP� . In particular, a Mori domain has this property.

Proof. One implication was discussed above. Assume that R is a t#-domain, and sup-
pose that R =

⋂
RP� for some set {P�} of incomparable t-primes. Observe that the

2 We observe that since DM = R is not a valuation domain, this yields an easy way to see that D is not
a PVMD.
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hypotheses guarantee that R is v-coherent. It suRces to show that each P� is a max-
imal t-ideal. By way of contradiction, suppose that P� $ M , where M is a maximal
t-ideal. If R is a PVMD, then (since the P� are incomparable and RM is a valuation
domain), P� * M for each � �= �. By Theorem 1.6, M contains a 7nitely generated
ideal I which is contained in M and no other maximal t-ideal. In particular, I * P�

for � �= �. Pick a∈M \P�. Then (I; a) is a 7nitely generated ideal contained in no P�

whatsoever. It follows that (I; a)−1 ⊆ ⋂
RP� = R, whence (I; a)v = R. However, since

M is a t-ideal, we have (I; a)v ⊆ M , a contradiction in this case. If R is Mori, then
M itself is divisorial, and, since M is contained in no P�, we obtain the contradiction
that M−1 ⊆ ⋂

RP� .

Remark 1.9. We have not been able to determine whether weakening the hypothesis
of Theorem 1.8 to v-coherent is suRcient. It does suRce if we make the following
subtle change to the condition: there is a unique set {P�} of t-primes such that both
R =

⋂
RP� and the intersection is irredundant (no RP� can be deleted). To see this,

suppose that R is a t#-domain, and let {P�} be as indicated. Pick a P�; we wish to
show that it is a maximal t-ideal. The irredundancy hypothesis allows us to choose
u∈RP� \ ⋂

� �=� RP� . We have (R :R u) * P� and (R :R u) ⊆ P� for each � �= �. Since
R is v-coherent, there is a 7nitely generated ideal I with (R :R u) = Iv. Pick a maximal
t-ideal M ⊇ P�. If there is an element a∈M \ P�, then, as in the proof of Theo-
rem 1.8, the ideal (I; a) will furnish a contradiction.

2. Overrings of t#-domains

In [10] Gilmer and Heinzer also studied Pr@ufer domains with the property that each
overring is a #-domain; these domains have come to be called ##-domains. Our goal
in this section is to obtain t-analogues of results on ##-domains.

Most of the characterizations of Pr@ufer ##-domains in [10] can be extended to
PVMDs with the property that each t-linked overring is t#. However, if we want
to consider a larger class of domains, e.g., v-coherent domains, the question arises as
to which overrings should be considered. Put another way, it is not clear exactly how
one should de7ne the t##-property (and we shall not do so).

In what follows, it will be convenient to employ the language of localizing systems.
We recall the requisite de7nitions. A nonempty set F of nonzero ideals of R is said
to be a multiplicative system of ideals if IJ ∈F for each I; J ∈F. The ring RF =
{x∈K | xI ⊆ R for some I ∈F} is called a generalized ring of quotients of R. For
each ideal J of R we set JF = {x∈K | xI ⊆ J for some I ∈F}; JF is an ideal of RF

containing JRF.
A particular type of multiplicative system is a localizing system: this is a set F of

ideals of R such that (1) if I ∈F and J is an ideal of R with I ⊆ J , then J ∈F
and (2) if I ∈F and J is an ideal of R such that (J :R a) ∈F for every a∈ I , then
J ∈F. If ! is a subset of SpecR, then F(!) = {I | is an ideal of R such that I *
P for each P ∈!} is a localizing system; moreover, RF(!) =

⋂
P∈! RP . A localizing

system F is said to be spectral if F = F(!) for some set of primes !. Finally, an
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irredundant spectral localizing system is a localizing system of ideals F(!), where
! is a set of pairwise incomparable primes.

These notions have t-analogues. A set of t-ideals is a t-multiplicative system if it is
closed under t-multiplication; a t-multiplicative system " is a t-localizing system if it
satis7es the closure operations (1) and (2) above.

The localizing system F is said to be of :nite type if for each I ∈F there is a
7nitely generated ideal J ∈F with J ⊆ I . Also, F is said to be v-:nite if each t-ideal
of F contains a v-7nite ideal which is also in F.

Denoting the set of t-ideals of R by t(R), it is easy to see that if F is a localizing
system, then " = F ∩ t(R) is a t-localizing system, RF = R", and F is v-7nite if
and only if " is v-7nite. Conversely, if " is a t-localizing system of t-ideals, then
S" = {I | It ∈"} is a localizing system of ideals with " = S" ∩ t(R).

Let ! be a set of pairwise incomparable t-primes. With F(!) as above and "(!)=
F(!) ∩ t(R)(={I | I is a t-ideal and I * P for all P ∈!}), we have that I ∈F(!) if
and only if It ∈"(!). Hence "(!) = F(!).

An overring T of R is a t-subintersection of R if it has the form
⋂
RP , where the

intersection is taken over some set of t-primes P of R, i.e., if T = R"(!) for some
spectral t-localizing system "(!) of R, where ! is a set of t-primes. We say that T
is t->at over R if TM = RM∩R for each maximal t-ideal M of T [17]. Finally, recall
that T is t-linked over R if for each 7nitely generated ideal I of R with (R : I) = R
we have (T : IT ) = T [1].

The following implications are easily veri7ed: T is t-Oat over R ⇒ T is a t-subinter-
section of R ⇒ T is a generalized ring of quotients of R ⇒ T is t-linked over R.

All these conditions are equivalent for PVMDs [17, Proposition 2.10], but we believe
that in general none of the arrows can be reversed if R is merely assumed to be
v-coherent. Also, if R is a PVMD, then every t-linked overring of R is a PVMD
[16, Theorem 3.8 and Corollary 3.9], but if R is just v-coherent, we know only that
generalized rings of quotients of R are v-coherent [6, Proposition 3.1].

We shall begin by considering t-Oat overrings of v-coherent domains. Recall that,
for any domain R, an overring T of R is t-Oat over R if and only if T is a generalized
ring of quotients with respect to a v-7nite t-localizing system of ideals [2, Theorem
2.6].

On the other hand, we know that if R is Pr@ufer then every overring is Oat, and
we also know that R is a ##-domain if each irredundant spectral localizing system
is 7nitely generated [5]. We shall show that for v-coherent domains the property that
each irredundant spectral t-localizing system is v-7nite is equivalent to the property
that each t-subintersection of R is t-Oat and t#.

Lemma 2.1. Let R be a v-coherent domain and " a t-localizing system of t-ideals.
Then the following statements are equivalent.

(1) " is v-:nite.
(2) The set ! of maximal elements of t-Spec(R)\" is not empty, and M ∈ t-Max(R")

if and only if M = P" for some P ∈!.
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Under these conditions, "="(!). In particular, if ! is a set of pairwise incomparable
t-primes of R, then " = "(!) is v-:nite if and only if t-Max(R") = {P" |P ∈!}.

Proof. Set F = S" = {I | It ∈"} and use (i) ⇔ (vi) of [6, Theorem 3.3].

Proposition 2.2. Let R be a v-coherent domain. If ! and !′ are two sets of pairwise
incomparable t-primes such that "(!) and "(!′) are v-:nite and R"(!) =R"(!′), then
! = !′.

Proof. By Lemma 2.1, we have t-Max(T ) = {P" |P ∈!} = {Q"′ |Q∈!′} and, upon
contracting to R, we obtain ! = !′.

Recalling that an overring T of a domain R is t-Oat over R if and only if T = R"

for some v-7nite t-localizing system ", the preceding two results immediately imply:

Corollary 2.3. Let R be a v-coherent domain and let T be a t->at overring of R. Then
there exists a uniquely determined set ! of pairwise incomparable t-primes for which
T = R"(!) and "(!) is v-:nite. The set ! is given by ! = {M ∩ R |M ∈ t-Max(T )}.

Proposition 2.4. Let R be a v-coherent domain. Then the following statements are
equivalent.

(1) For each set ! of pairwise incomparable t-primes of R, "(!) is v-:nite.
(2) If ! and !′ are two sets of pairwise incomparable t-primes of R such that

R"(!) = R"(!′), then ! = !′.
(3) If T is a t-subintersection of R and is represented as T =

⋂
P∈! RP for some set

! of pairwise incomparable t-primes, then that representation is irredundant.
(4) For each t-prime P and each set ! of pairwise incomparable t-primes of R

not containing P, there exists an element u∈K such that (R :R u) ⊆ P and
(R :R u) * Q, for each Q∈!.

(5) For each t-prime P and each set ! of pairwise incomparable t-primes of R not
containing P, there exists a :nitely generated ideal J of R such that J ⊆ P and
J * Q for each Q∈!.

(6) For each t-prime P and each set ! of pairwise incomparable t-primes of R not
containing P, RP + R"(!).

(7) For each set ! of pairwise incomparable t-primes of R, R"(!) is t->at over R
and has the t#-property.

Proof. (1) ⇒ (2) by Proposition 2.2.
(2) ⇒ (3) is clear.
(3) ⇒ (1): Given a set ! of incomparable primes, consider the t-subintersection

T = R"(!) of R. Since T is v-coherent [6, Proposition 3.1] and the intersection is
irredundant, we obtain t-Max(T ) = {P"(!) |P ∈!} as in Remark 1.9. It follows that
"(!) is v-7nite (Lemma 2.1).
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(1) ⇒ (7): Let ! be a set of pairwise incomparable t-primes of R and T = R"(!).
Since "(!) is v-7nite, then T is t-Oat over R, and ! = {M ∩ R |M ∈ t-Max(R)} is
uniquely determined by Corollary 2.3. Hence we cannot delete any P ∈!, and so
the intersection is irredundant. In addition, by t-Oatness, TM = RM∩R; hence T is a
t#-domain.

(7)⇒(3): If the t-subintersection T=R"(!) of R is t-Oat, then !={M∩R |M ∈ t-Max(R)}
by Corollary 2.3. If T is also a t#-domain, then T =

⋂
TM =

⋂
RM∩R is an irredundant

t-subintersection.
(2) ⇒ (4): Given ! and P as speci7ed, set !′ = (! \ {Q∈! |Q ⊆ P}) ∪ {P}. Then

! �= !′, so that R"(!) �= R"(!′) by (2). Since we clearly have R"(!′) ⊆ R"(!), there is
an element u∈R"(!) \ R"(!′), and for this u we have (R :R u) ⊆ P and (R :R u) * Q
for each Q∈!.

(4) ⇒ (5): Since R is v-coherent, then the ideal (R :R u) contains a 7nitely generated
subideal J with Jv = (R :R u); this J does what is required.

(5) ⇒ (6): Given J as indicated, one shows easily that (R : J ) ⊆ R"(!) but (R : J ) *
RP , whence RP + R"(!).

(6) ⇒ (2): Suppose that ! and !′ are two sets of pairwise incomparable primes for
which R"(!) =R"(!′) but ! �= !′. We may then assume that there is a prime P ∈!\!′.
If P * Q for all Q∈!′, then (6) yields RP * R"(!′) =R"(!), a contradiction. We then
denote by !′′ the maximal elements in the set (!∪{Q∈!′ |P ⊆ Q})\{P}. (Choosing
the maximal elements is possible since both ! and !′ contain pairwise incomparable
elements.) Pick Q0 ∈!′ with P ⊆ Q0. Then Q0 ∈!′′, and we have RP ⊇ RQ ⊇ R"(!′′),
which contradicts (6).

Remark 2.5. The equivalent conditions of Proposition 2.4 hold automatically for a
Mori domain, since in such a domain each t-ideal is v-7nite.

Proposition 2.6. Let R be a v-coherent domain such that each t-subintersection of R
is t->at over R. Then the following statements are equivalent:

(1) Each t->at overring of R is a t#-domain.
(2) Each t-subintersection of R is a t#-domain.
(3) For each set ! of pairwise incomparable t-primes of R, "(!) is v-:nite.
(4) If T is a t-subintersection of R, there exists a unique set of pairwise incomparable

t-primes ! of R such that T = R"(!); moreover, ! = {M ∩ R |M ∈ t-Max(T )}.
(5) If T is a t->at overring of R and T =

⋂
Q∈! TQ for some set ! of pairwise

incomparable t-primes of T , then ! = t-Max(T ).

Proof. (1) ⇔ (2) and (5) ⇒ (1) are clear.
(2) ⇔ (3) by Proposition 2.4.
(3) ⇒ (4) by Corollary 2.3.
(4) ⇒ (5): Assume that T is a t-Oat overring of R and that we have T =

⋂
Q∈! TQ,

where ! is a set of pairwise incomparable t-primes of T . By t-Oatness, TQ =RQ∩R for
each Q∈!. Hence T =R"(#), where #={Q∩R |Q∈!}. We then have != t-Max(T )
by (4) (and t-Oatness).
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If R is a Mori domain, then, as mentioned in Remark 2.5, the equivalent conditions of
Proposition 2.4 hold. It then follows from [2, Theorem 2.6] that each t-subintersection
of R is t-Oat; hence the equivalent conditions of Proposition 2.6 hold also.

For a PVMD, t-subintersections are automatically t-Oat; in fact, t-linked overrings
are t-Oat by [17, Proposition 2.10]. Thus the hypotheses of Proposition 2.6 hold for
PVMDs. Our next proposition adds several more equivalences for PVMDs. We need
the following lemma.

Lemma 2.7. Let R be a PVMD and let P be a t-prime of R which is not t-invertible.
Then (P : P) = (R : P) = RP ∩ S, where S =

⋂
M∈t-Max(R);M+P RM .

Proof. By [15, Proposition 2.3, Lemma 1.2], (R : P)=(P : P). The result now follows
from [14, Theorem 4.5].

Proposition 2.8. For a PVMD R, the conditions of Proposition 2.6 are also equivalent
to each of the following:

(6) If ! ⊆ t-Max(R), then "(!) is v-:nite.
(7) Each t-prime ideal P of R contains a :nitely generated ideal which is not con-

tained in any maximal t-ideal of R not containing P.
(8) For each t-prime P of R, there exists an element u∈K such that (R :R u) ⊆ P

and (R :R u) * M , for each maximal t-ideal M not containing P.
(9) For each t-prime ideal P of R, RP +

⋂
RM , where M ranges over the set of

maximal t-ideals not containing P.
(10) Each t-linked overring of R is a t#-domain.
(11) (P : P) is a t#-domain for each t-prime P of R.

Proof. (3) ⇒ (6) is clear.
(6) ⇒ (7): If ! is the set of maximal t-ideals not containing P, then P ∈"(!) and

"(!) is v-7nite.
(7) ⇒ (1): Let T be a t-subintersection of R. Then T is t-Oat over R, and we have

T =
⋂

M∈t-Max(T ) RM∩R. Fix N ∈ t-Max(T ) and let J be a 7nitely generated ideal of R
contained in P=N ∩R and not contained in the maximal t-ideals of R not containing P.
Since in a PVMD two incomparable t-primes are t-comaximal, then J is not contained
in M ∩ R for each maximal t-ideal M �= N of T . It follows that JT is a 7nitely
generated ideal contained in N and not contained in M for M �= N . We conclude by
applying Theorem 1.6.

(3) ⇒ (8) by Proposition 2.4.
(8) ⇒ (7) by v-coherence.
(8) ⇔ (9) because, for each prime P and u∈K , (R:Ru) ⊆ P iC u �∈ RP .
(1) ⇔ (10) because each t-linked overring of a PVMD is t-Oat [17, Proposition

2.10].
(11) ⇒ (9): Let T = (P :P). If P is t-invertible then R=T . Otherwise, T = (R :P) =

RP ∩ (∩RM�), where M� ranges over the set of maximal t-ideals of R not containing P
(Lemma 2.7). In either case, setting !={P}∪{M�}, we have that T =R"(!). Since R is
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v-coherent, the set of ideals {Q"(!) =QRQ∩T ;Q∈!} is a set of incomparable t-primes
of T [6, Proposition 3.2]. For each Q∈!, we have RQ = TQ"(!) and by hypothesis T
is a t#-domain. Hence by Theorem 1.6 R"(!) is an irredundant intersection. It follows
that RP + ∩RM� .

(10) ⇒ (11): According to [1, Proposition 2.2(5)], (Av : Av) is t-linked over R for
each ideal A of R. In fact, it is easy to see that replacing “v” by “t” in the proof of
that result shows that (At : At) is t-linked. In particular, if P is a t-prime of R, then
(P : P) is t-linked.

Comparing conditions (3) and (6) of Propositions 2.6 and 2.8, we observe that
for PVMDs one has to consider only subsets of t-Max(R) rather than all sets of
incomparable t-primes.

The equivalence of conditions (7) and (8) above is also proved in [3, Lemma 3.6].
The equivalence of conditions (10) and (11) for Pr@ufer domains is [20, Proposition
2.5].

When R is Pr@ufer, Proposition 2.8 recovers [5, Theorem 2.4]. In [5, Theorem 2.5] it
is also proved that for Pr@ufer domains the ##-condition is equivalent to the #P-condition
introduced by Popescu in [21]. We recall that R is a #P-domain if, given two sets of
prime ideals !1 �= !2 with the property that P +Q =R for each pair of distinct ideals
P ∈!1 and Q∈!2, we have R"(!1) �= R"(!2).

We can de7ne the t#P-property analogously: R is a t#P-domain if, given two sets
of prime t-ideals !1 �= !2 with the property that (P +Q)t =R for each pair of distinct
ideals P ∈!1 and Q∈!2, we have R"(!1) �= R"(!2).

We will show that, with this de7nition, [5, Theorem 2.5] can be extended to PVMDs.
Recall that, if R is a PVMD, then for any two incomparable prime t-ideals P and Q
we have (P + Q)t = R (since RM is a valuation domain for each maximal t-ideal M
of R).

Proposition 2.9. Let R be a v-coherent domain, and assume that the equivalent con-
ditions of Proposition 2.4 are satis:ed. Then R is a t#P-domain.

Proof. Let !1 �= !2 be two sets of prime t-ideals of R with the property that (P+Q)t=
R for each pair of distinct ideals P ∈!1 and Q∈!2, and let P ∈!1\!2. Since (P+Q)t
=R for Q∈!2, we have (P+M)t =R for each M in the set #={N ∈ t-Max(R) |Q ⊆
N for some Q∈!2}. Since # is a set of incomparable t-primes not containing P, we
may apply Proposition 2.4 (4) to obtain an element u∈K such that (R :R u) ⊆ P but
(R :R u) * M for each M ∈#. It is then easy to see that u∈R"(!2) \ R"(!1).

Our next result shows that for PVMDs the t#P-condition is equivalent to the condi-
tions of Propositions 2.6 and 2.8.

Proposition 2.10. Let R be a PVMD. Then R is a t#P-domain if and only if each
t-linked overring of R is a t#-domain.

Proof. In a PVMD any two incomparable t-primes are t-comaximal. Hence if R is
a t#P-domain, then R must satisfy condition (3) of Proposition 2.4. The fact that
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conditions (4) of Proposition 2.6 and (10) of Proposition 2.8 are equivalent then
shows that each t-linked overring of R is a t#-domain. The converse follows from
Proposition 2.9.

The next result generalizes [5, Theorem 2.6].

Proposition 2.11. The following statements are equivalent for a v-coherent domain R:

(1) For each set ! of t-primes of R, "(!) is v-:nite.
(2) R satis:es the ascending chain conditions on t-primes, and R satis:es the equiv-

alent conditions of Proposition 2.4.

Proof. (1) ⇒ (2): Let ! be a nonempty set of t-primes of R. Since "(!) is v-7nite,
Lemma 2.1 implies that ! has maximal elements. Hence R satis7es the acc on t-primes.
Condition (1) of Proposition 2.4 holds by hypothesis.

(2) ⇒ (1): Let ! be a nonempty set of t-primes. Then acc on t-primes implies
that each element of ! is contained in a maximal element. Hence if !0 is the set of
maximal elements of !, then "(!) = "(!0) is v-7nite by Proposition 2.4.

The preceding result can be improved for PVMD’s in a way which generalizes
[10, Theorem 4]. We 7rst recall some results from [2] and prove a variation on [10,
Lemma 4].

Lemma 2.12. Let R be any domain. Then R satis:es the ascending chain condition
on radical t-ideals if and only if each prime t-ideal is the radical of a v-:nite t-ideal.
If R does satisfy the acc on radical t-ideals, then every t-ideal has only :nitely

many minimal (t-)primes.

Proof. [2, Lemmas 3.7 and 3.8].

Lemma 2.13 (cf. [10, Lemma 4]). Let I = (a1; : : : ; an) be a :nitely generated ideal
of a PVMD R. Then each minimal prime ideal of Iv is minimal over some (ai).
Moreover, if Iv has only :nitely many minimal primes, then each minimal prime of
Iv is the radical of a v-:nite divisorial ideal.

Proof. Let P be minimal over Iv. Then P is a t-prime, and, since primes contained in
P are also t-primes, P is also minimal over I . The proof of the 7rst statement now
proceeds as in the proof of the corresponding part of [10, Lemma 4]. Now assume
that Iv has only 7nitely many minimal primes P1; : : : ; Pk , k¿ 2. Since there are no
containment relations among the Pi (and since the t-spectrum of a PVMD is treed),
we have (P1 + P2 · · ·Pk)t = R. Hence there are 7nitely generated ideals A ⊆ P1 and
B ⊆ P2 · · ·Pk with (A+B)v=R. We claim that P1 is the radical of (I+A)v. To see this,
suppose that Q is a prime which is minimal over (I + A)v. Then Q is a t-prime and
must contain a prime minimal over Iv; that is, Q must contain one of the Pi. However,
Q cannot contain Pi for i¿ 2, since then Q would contain B (and (A+B)v=R). Hence
Q contains, and is therefore equal to, P1.
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Proposition 2.14. Let R be PVMD. Then the statements in Proposition 2.11 are
equivalent to each of the following:

(3) R satis:es the ascending chain condition on radical t-ideals.
(4) R satis:es the ascending chain condition on t-primes, and, for each :nitely gen-

erated ideal I , the set of minimal primes of Iv is a :nite set.
(5) Each t-prime of R is branched and each t-linked overring of R is a t#-domain.
(6) R satis:es the ascending chain condition on t-primes and each t-linked overring

of R is a t#-domain.

Proof. (2) ⇒ (4): By (3) ⇔ (5) of Proposition 2.4, for each t-prime P of R, we have
that RP +

⋂
RM , where the intersection is taken over those maximal t-ideals of R

which do not contain P. Hence each principal ideal has only 7nitely many minimal
(t-)primes by [3, Lemma 3.9]. Thus if I = (a1; : : : ; an) is 7nitely generated, then Iv can
have only 7nitely minimal primes, since Lemma 2.13 implies that each such minimal
prime must be minimal over one of the ai.

(4) ⇒ (3): Let P be a t-prime of R. By Lemma 2.12, it suRces to show that P is
the radical of a v-7nite t-ideal. By the ascending chain condition on t-primes, the set
of t-primes properly contained in P has a maximal element Q. Thus, for x∈P \ Q,
P is minimal over the principal ideal xR. By assumption, xR has only 7nitely many
minimal primes. Hence Lemma 2.13 yields that P is the radical of a v-7nite t-ideal,
as desired.

(3) ⇒ (2): Clearly, R satis7es the ascending chain condition on t-primes. Let P be
a t-prime of R. By Lemma 2.12 P is the radical of Jv for some 7nitely generated ideal
J of R. Since any t-prime containing J also contains P, it is clear that condition (5)
of Proposition 2.4 holds.

(2) ⇔ (6) because each t-linked overring of a PVMD is a t-Oat t-subintersection
([16, Theorem 3.8] and [17, Proposition 2.10]).

(5) ⇔ (6): Since each localization of a PVMD at a t-prime is a valuation domain,
each t-prime of R is branched if and only if R satis7es the ascending chain condition
on t-primes.

The PVMDs with the property that each t-localizing system of ideals is v-7nite have
been studied in [2,3]. They are called Generalized Krull domains. By [2, Theorem 3.9],
R is a Generalized Krull domain if and only if each principal ideal has only 7nitely
many minimal primes and P �= (P2)t for each t-prime P. On the other hand, the 7rst
condition is satis7ed under the equivalent conditions of Proposition 2.8 [3, Lemma
3.9]. Hence we obtain the following result.

Corollary 2.15. A PVMD R is a Generalized Krull domain if and only if each t-linked
overring of R is a t#-domain and P �= (P2)t for each t-prime P.

3. Polynomial rings

In this section, we denote by {X�} a set of independent indeterminates over R. Let
us call a prime ideal Q of R[{X�}] an upper to zero if Q∩R=0. For f in the quotient
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7eld of R[{X�}], the content of f, written c(f) is the fractional R-ideal generated
by the coeRcients of f; we also write c(I) for the fractional ideal generated by the
coeRcients of all the polynomials in the fractional R[{X�}]-ideal I .

Lemma 3.1. Let Q be an upper to zero in R[{X�}]. Then the following statements
are equivalent.

(1) Q=fK[{X�}]∩R[{X�}] for some irreducible polynomial f∈K[{X�}]. (Note that
we may take f∈R[{X�}].)

(2) ht Q = 1.
(3) R[{X�}]Q is a DVR.

Proof. A localization argument establishes (1) ⇔ (2), and (3) ⇒ (2) is trivial. Assume
(2). If {X�} is 7nite, then (3) follows from a standard induction argument. If {X�}
is in7nite, then we may pick X1; : : : ; Xn ∈ {X�} with Q ∩ R[X1; : : : ; Xn] �= 0. Then V =
R[X1; : : : ; Xn]Q∩R[X1 ;:::;Xn] is a DVR with maximal ideal M = (Q ∩ R[X1; : : : ; Xn])V , and,
since ht Q= 1, we must have Q extended from Q∩R[X1; : : : ; Xn]. It is then easy to see
that R[{X�}]Q = V [{X�}]M [{X�}] is a DVR.

Lemma 3.2. Let Q be an upper to zero in R[{X�}] which is also a maximal t-ideal.
Then ht Q = 1.

Proof. First suppose {X�}={X1; : : : ; Xn}. The result clearly holds if n=1 (even if Q is
not a maximal t-ideal!). Suppose n¿ 1, and let q=Q ∩R[X1; : : : ; Xn−1]. If q= 0, then
ht Q= 1 by the case n= 1. If q �= 0, then by [15, Theorem 1.4], q is a maximal t-ideal
of R[X1; : : : ; Xn−1], and Q = q[Xn]. By induction ht q = 1, and V = R[X1; : : : ; Xn−1]q is
a DVR by Lemma 3.1. Hence R[X1; : : : ; Xn]Q = V [Xn]Q is also a DVR, and ht Q = 1.

For the general case, we may pick X1; : : : ; Xn ∈ {X�} with q=Q ∩R[X1; : : : ; Xn] �= 0.
By [4, Proposition 2.2], q is a maximal t-ideal of R[X1; : : : ; Xn], and Q is extended
from q. The argument now proceeds as in the induction step above.

The following extends [15, Theorem 1.4, Corollary 1.5] to the case of in7nitely
many indeterminates.

Theorem 3.3. Let Q be an upper to zero in R[{X�}]. Then the following statements
are equivalent.

(1) Q is a maximal t-ideal.
(2) Q is t-invertible.
(3) c(Q)t =R, and ht Q=1. (In this case, a standard argument shows that Q contains

an element g with c(g)v = R.)

In case these equivalent statements hold, then Q = fK[{X�}] ∩ R[{X�}] for some
f∈R[{X�}] such that f is irreducible in K[{X�}]; moreover, we have Q =
(f; g)v.
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Proof. (3) ⇒ (1): Since ht Q = 1, Q is a t-ideal. Hence Q is contained in a maximal
t-ideal, say N . Since c(Q)t = R, we cannot have N extended from N ∩ R, whence N
is an upper to zero by [4, Proposition 2.2]. By Lemma 3.2, ht N = 1, whence Q = N ,
and Q is a maximal t-ideal.

The proofs of (1) ⇒ (3) and (2) ⇒ (1) are as in [15, Theorem 1.4].
(1) ⇒ (2): This also goes through essentially as in the proof of [15, Theorem 1.4].

That proof contains a reference to [12, Proposition 1.8], which is stated for the case
of one indeterminate. However, the proof of this latter result extends to the case of an
arbitrary set of indeterminates. (The content formula [9, Corollary 28.3] is needed.)

To prove the last statement, note that Q =fK[{X�}] ∩ R[{X�}] by Lemmas 3.1 and
3.2. The fact Q = (f; g)v may be proved as in [15, Corollary 1.5].

Theorem 3.4. If R is a t#-domain, then so is R[{X�}].

Proof. We wish to show that condition (5) of Theorem 1.2 is satis7ed. Thus let
N be a maximal t-ideal of R[{X�}]. By [4, Proposition 2.2], either N ∩ R = 0 or
N = (N ∩ R)R[{X�}]. In the former case N is divisorial (being a t-invertible t-ideal),
and N is certainly not contained in any other maximal t-ideal of R[{X�}]. In the latter
case, N ∩R contains a divisorial ideal I which is contained in no other maximal t-ideal
of R, and it follows that IR[{X�}] is a divisorial ideal of R[{X�}] which is contained
in N and no other maximal t-ideal of R[{X�}].

We have been unable to prove the converse of Theorem 3.4. (Indeed, we doubt
that the converse is true.) However, we can prove that several standard localizations
of R[{X�}] are simultaneously t#. We denote by R({X�}) the ring of fractions of
R[{X�}] with respect to the multiplicatively closed subset of R[{X�}] consisting of the
polynomials of unit content. Finally, if S = {f∈R[{X�}] | c(f)v = R}, we denote by
R〈{X�}〉 the ring R[{X�}]S . We then have the following description of the maximal
t-ideals in these rings.

Lemma 3.5. Denote by U1 the set of uppers to zero which are also maximal t-ideals
in R[{X�}] and by U2 the set of those elements P ∈U1 which satisfy c(P) �= R. Then
(1) t-Max(R[{X�}]) = {MR[{X�}] |M ∈ t-Max(R)} ⋃

U1;
(2) t-Max(R({X�})) = {MR({X�}) |M ∈ t-Max(R)} ⋃{PR({X�}) |P ∈U2};
(3) t-Max(R〈{X�}〉) = {MR〈{X�}〉 |M ∈ t-Max(R)}.

Proof. (1) Each maximal t-ideal of R[{X�}] must have the form indicated by
[4, Proposition 2.2]. The reverse inclusion follows from [4, Lemma 2.1].

(2) By [16, Corollary 2.3], MR({X�}) is a t-ideal of R({X�}) for each M ∈ t-Max(R).
Suppose that for some N ∈ t-Max(R({X�})) we have N ⊇ MR({X�}). Then since
R({X�}) is a ring of fractions of R[{X�}], N is extended from a maximal t-ideal of
R[{X�}], which in turn must be extended from a maximal t-ideal of R. It follows
that N =MR({X�}). Hence MR({X�}) ∈ t-Max(R({X�})). If P ∈U2, then, since c(P) �=
R, PR({X�}) �= R({X�}). Moreover, since ht P = 1 by Theorem 3.3, ht PR({X�}) =
1 also, and PR({X�}) is a t-prime of R({X�}). Any maximal t-ideal of R({X�})
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containing PR({X�}) must be extended from a t-prime of R[{X�}] containing P. There-
fore, since P ∈ t-Max(R[{X�}]), PR({X�}) ∈ t-Max(R({X�})). That each maximal t-ideal
of R({X�}) must be of the form indicated follows from (1) (and the fact that R({X�})
is a ring of fractions of R[{X�}]).

(3) This follows from the facts that R〈{X�}〉 is a localization of R({X�}) and that
each P ∈U1 satis7es c(P)t =R[{X�}] by Theorem 3.3 so that PR〈{X�}〉=R〈{X�}〉.

In the proof of the following result, we often invoke Lemma 3.5 without explicit
reference.

Theorem 3.6. The following statements are equivalent for a domain R:

(1) R[{X�}] is a t#-domain.
(2) R({X�}) is a t#-domain.
(3) R〈{X�}〉 is a t#-domain.

If, in addition, R[{X�}] is v-coherent, then these conditions are equivalent to: R is a
t#-domain.

Proof. (1) ⇒ (2): If M ∈ t-Max(R), then by Theorem 1.2, M contains a divisorial ideal
I which is contained in no other maximal t-ideal of R. It follows that IR({X�}) is a
divisorial ideal of R({X�}) [16, Corollary 2.3], and it is clear that IR({X�}) is contained
in MR({X�}) but in no other maximal t-ideal of R({X�}). Hence each maximal t-ideal
of R({X�}) of the form MR({X�}) contains a divisorial ideal contained in no other
maximal t-ideal of R({X�}). On the other hand, if PR({X�}) is a maximal t-ideal of
R({X�}) with P ∈U2, then P is divisorial, from which it follows that PR({X�}) is also
divisorial (and is clearly not contained in any other maximal t-ideal of R({X�})). By
Theorem 1.2, R({X�}) is a t#-domain.

(2) ⇒ (3): Similar (but easier).
(3) ⇒ (1): Let M be a maximal t-ideal of R. By hypothesis and Theorem 1.2 ((1) ⇔

(6)), there is an element u∈K({X�}) such that (R〈{X�}〉 :R〈{X�}〉 u) is contained in
MR〈{X�}〉 and no other maximal t-ideal of R〈{X�}〉. Let I =(R[{X�}] :R[{X�}] U ). Then
I is divisorial in R[{X�}], and IR〈{X�}〉 = (R〈{X�}〉 :R〈{X�}〉 u). Clearly, I ⊆ MR[{X�}]
and I * NR[{X�}] for each maximal t-ideal N of R with N �= M . Moreover, I
is contained in at most 7nitely many maximal t-ideals P with P ∩ R = 0. We shall
show how to enlarge I so as to avoid each such P. By Theorem 3.3, we have that
PR〈{X�}〉 = R〈{X�}〉, and P is v-7nite. Therefore, since R[{X�}]P is a DVR, we may
pick h∈R[{X�}] \ P with hPn ⊆ I . Hence hR〈{X�}〉 = hPnR〈{X�}〉 ⊆ IR〈{X�}〉, and
there is an element g∈R[{X�}] with c(g)v =R and gh∈ I . In particular, g �∈ MR[{X�}],
so that the divisorial ideal (I :R[{X�}] g) is contained in MR[{X�}]. Moreover,
h∈ (I :R[{X�}] g)\P. Hence (I :R[{X�}] g) is a divisorial ideal contained in MR[{X�}]\P.
This process may be continued 7nitely many times to produce a divisorial ideal which
is contained in MR[{X�}] but in no other maximal t-ideal of R[{X�}]. Thus R[{X�}]
is a t#-domain.

To prove the 7nal statement, assume that R[{X�}] is a t#-domain. Let M ∈ t-Max(R).
By Theorem 1.6, there is a 7nitely generated ideal I of R[{X�}] such that I ⊆ MR[{X�}]
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and I is contained in no other maximal t-ideal of R[{X�}]. Clearly, c(I) ⊆ M and c(I)
is contained in no other maximal t-ideal of R. Another application of Theorem 1.6
completes the proof.

It is well known that a domain R is a PVMD if and only if R[{X�}] is a PVMD.
Thus for a PVMD R the conditions of Theorem 3.6 are each equivalent to R being a
t#-domain. It follows that if R is a Pr@ufer domain, then R is a #-domain if and only
if R[{X�}] is a t#-domain.

Now recall that it is possible for a polynomial ring over a Mori domain to fail to
be Mori [22]. In view of the fact that a Mori domain is automatically a t#-domain
(Corollary 1.3), we see by Theorem 3.4 that if R is a Mori domain, then R[{X�}] is
a t#-domain even though R[{X�}] may not be a Mori domain.

It is an open question whether R v-coherent implies that R[{X�}] is v-coherent. We
are therefore unable to determine whether the last statement of Theorem 3.6 remains
true if we assume only that R is v-coherent. It is true, however, that v-coherence of
R[{X�}] implies that of R, as the following result shows.

Proposition 3.7. If R[{X�}] is v-coherent, then R is v-coherent.

Proof. Let I be a 7nitely generated ideal of R. We have (I [{X�}])−1 = I−1[{X�}];
by hypothesis, this produces a 7nitely generated fractional ideal J of R[{X�}] with
I−1[{X�}] = Jv. We may assume 1 ∈ J . Moreover, since R[{X�}] ⊆ I−1[{X�}] ⊆
K[{X�}], we have R[{X�}] ⊆ J ⊆ K[{X�}]. Hence c(J ) is a 7nitely generated ideal of
R with 1 ∈ c(J ). We claim that c(J )v = I−1. Note that J ⊆ c(J )[{X�}] ⊆ I−1[{X�}].
Hence

Jv ⊆ (c(J ))[{X�}])v = c(J )v[{X�}] ⊆ I−1{X�}] = Jv;

and the claim follows.
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