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In this paper, we prove the following result: 

THEOREM A. Let G be a jhite group, p be a prime, F be an 
algebraically closed field of characteristic p. Let M be an FG-module such 
that C,(M) is a p-group. Let x be an element of G such that 
M( 1 - x)(~-‘)‘* = 0. Then O,,(C,(x)) = O,,(G). 

Of course, it quickly follows that the corresponding result is true if F is of 
characteristic p, but not algebraically closed, or if F is a field of charac- 
teristic 0 and x is a p-element having minimum polynomial of degree 
(p - 1)/2 or less on the FG-module M such that C,(M) is a p-group. 

The main idea behind the proof of Theorem A is to apply the ideas used in 
Nagao’s proof of Brauer’s second main theorem [ 1 ] in a situation when we 
are dealing with a p-element having a minimum polynomial of small degree. 

We start with two general lemmas. The first is probably well known, and 
the second is a straightforward adaptation of Nagao’s argument to our 
situation. 

LEMMA 1. Let H be a finite group, p be a prime. Then for any 
x E O,(H) we have O,,(H) = O,,(C,(x)). 

Proof. Certainly, we have [O,,(H), x] = l,, O,,(H) < O,,(C,(x)). To 
prove the reverse inclusion, we may suppose that O,,(H) = l,, and we do so. 
Let A = O,,(C,(x)), B = O,(H). Then A X (x) normalizes B, and 
[A, C,(x)] < O,,(C,(x))n O,(C,(x)) = 1,. By a well-known lemma of J. G. 
Thompson, [A, B] = 1,. 

Now let E = ‘E(H) (the central product of the components of H). Then 
[E, x] < En O,(H) = l,, so E < C,(x). Hence E and O,(C,(x)) normalize 
each other, so [E, O,,(C,(x))] <En O,,(C,(x)). Since O,,(H) = l,, each 
component of H has order divisible by p, so it quickly follows now that 
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(E, O,,(C,,(x))] = 1,. We now have [ O,(C,(x)),F*(H)] = l,,, so 
O,,(C,(x)) < Z(F(H)), and O,(C,(x)) = l,, since O,(H) = 1,. 

LEMMA 2. Let H be a finite group, p be a prime, x be an element of 
order p in H. Let A4 be an FH-module in the p-block B, where F is a field of 
characteristic p containing a splitting field for H and its subgroups. Then we 
may write IV~.(~, = L @ N, where L has composition factors in p-blocks of 
C,(x) which are dominated by B in the sense of the Brauer homomorphism 
and where Ntx, is projective. 

Proof. Let z: Z(FH) + Z(FCn(x)) denote the Brauer homomorphism, let 
e be the block idempotent of Z(FH) associated with B, and let f = er. Then 
A4 CH(X) - - h&cx,f 0 W&e 4) (b ecause Me = M). Let L = Mc,,(xIf, 
N = MCHcX)(e -f ). It only remains to prove that N(X, is projective. 

Now let K be a class sum in Z(FH). Then we may write 
K=K7+ U+x-‘Ux+... (p-l)Uxp-’ 
may write e=f+Ztx- ‘z,“+ 

for some U in FH. Thus we 
1 ... +x-(~-~)ZX~-” for some Z in FH. 

Now N(e -f) = N ( more precisely, n(e - f) = n for each n in N). The 
mapping @N-,N given by q$=nZ(e-f) satisfies i,,,=$+x-‘@x... + 
x-@- 11 4x(“-‘), and so, by the criterion of D. G. Higman, NC,, is projective. 

Proof of Theorem A. The proof is broken into a number of easy steps. 
We suppose that Theorem A is false, and that a pair (G, M) has been chosen 
to violate the theorem with 1 G 1 + dim,(M) as small as possible. 

Step 1. By Lemma 1, we see immediately that x @ O,(G). 

Step 2. By the Hall-Higman theorem, (O,(G), x] < C,(M), so that 
OpW G Op4GiW)~ as C,(M) is a p-group. It only remains to prove that 
0,4Xx)) < O,,(G). 

Step 3. M is irreducible, and C,(M) = 1,. 

Proof of Step 3. Suppose that M is not irreducible. Then, as x @ O,(G), 
x acts nontrivially on some FG-composition factor of M, say V. 

Let K=C,(V), G=G/K and - denote images in G. Then [G, x] < K, 
since V is irreducible and X acts nontrivially on I’. By the minimality of 
(G, M), Op,(Cr#)) < O,,(G) (for dim,(V) < dim,(M)). Define the subgroup 
U of G by U = C&X). Then U < G, so by the minimality of (G, M), 
0,4C,(x)) G 0,0-4 so that O,,(C,(x)) < O,,(C,(x)) < O,,(U). Now 
o,w < 0,4C&) < opm. 

Define the subgroup T of G by r= O,,(G). Suppose that T(x) # G. Then 
O,,(C,(x)) < O,,(C,,,,(x)) < O,,(T) by the minimality of (G, M). Since 
T u G, we have O,,(C,(x)) < O,,(G), contrary to assumption. Thus 
T(x) = G. By the Hall-Higman theorem G = (2) x T, as T is a PI-group. 
This contradicts the fact that 2 is not central in c. Hence we are forced to 



P-LOCAL CORES IN LINEAR GROUPS 413 

conclude that M is irreducible. If C,(M) # l,, the argument above again 
leads to a contradiction, so we have C,(M) = 1,. 

Step 4. Let y = (~,,(C,(X))~: gE G). Then G = Y(x), and M, is 
irreducible. 

Proof of Step 4. Suppose that Y(x) # G. Then by the minimality of 
(GM) we have O,,(C,&x)) < O,(Y) < O,(G). Then we have 
O,(C,(x)) < O,(C,,,,(x)) < O,(Y) < O,(G), contrary to assumption. Thus 
G = Y(x). We note also that x has order p, since C,(M) = 1, and 
M(1 -x) @-‘)‘* = 0. If M, is not irreducible, then we may write 
M,= I’@ Vx ..a @ Vxp-‘, where V is some irreducible submodule of M,. 
This contradicts the fact that x has minimum polynomial of degree (p - 1)/2 
or less on M. 

Step 5. Let x have minimum polynomial degree n on M. Then the trivial 
module occurs at least n times as an E,(x)-composition factor of 
HomAM WcGcx,. 

Proof of Step 5. Consideration of the series 0 < M(1 -x)“-’ < 
M(1 -x)nPZ .a. < M(1 - x) < M shows that McGcx, has composition length 
at least n. Now if the Brauer character for McG(xI is C,“=, LZ~#~, then 
C;=, aj > n, and the Brauer character for Hom,(M, M)cc(xj is 
Cf= I Cj”= 1 aiaj#i$j, so that the trivial module occurs at least CT=, af times 
as a composition factor of Hom,(M, M)cG(xj, so certainly at least n times. 

Step 6. x has minimum polynomial of degree at most p - 2 on 
Hom,(M, M). 

Proof of Step 6. This can be verified directly, using a suitable basis for 
M. 

Step 7. Let {ei: 1 < i < k} be the set of block idempotents of Z(FG), 
where e, is the principal block idempotent. Let Vi = Hom,(M, M) ei for 
1 <i< k. Then dim,(V,)= 1. 

Proof of Step 7. By Brauer’s third main theorem, Lemma 2, and Step 6, 
V Ic,(Xj has all its composition factors in the principal p-block of C,(x). 
Hence O,,(C,(x)) acts trivially on V,. Thus Y acts trivially on V, (recall 
that Y= (OP,(Cc(x))g: g E G)). Since M, is irreducible, we have 
dim,(V,) = 1. 

Step 8: The final contradiction. By Step 5 (since certainly n > 1) and 
Step 7, the trivial module must occur as a composition factor of Vie,(x) for 
some i :> 1. However, by Lemma 2, Brauer’s third main theorem, and Step 6, 
viC,(xl does not have any composition factor in the principal block of C,(x). 
This contradiction completes the proof of Theorem A. 
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SOME COROLLARIES AND APPLICATIONS 

Let G be a finite group, p be a prime, F be a field of characteristic p, and 
V be a finite dimensional faithful FG-module. Let P be a p-subgroup of G. 
Let r be the dimension of the largest indecomposable summand of V,. Then 
[V,P;r]=O(where [V,P;O]=V, [V,P;i+l]=[V,P;i],P]fori>O). 

Let L,(P) denote the ith term of the lower central series of P. Lemma 3 is 
presumably a well-known result. 

LEMMA 3. For i > 1, we have [V, L,(P)] < [V, P; i]. 

ProoJ: We use induction on i. The result is true for i = 1. Suppose that 
the result has been established for i = k. Then we have 

[K L,(P), PI < [[K P; k], P] = [V, P; k + 11. 

Also, we have 

[P, K L,(P)] < [ [ K I’], P; k] = [ V, P; k + 11. 

By the three subgroups lemma, 

[L,(P), P, V] < [ K P; k + 1 I. 

Hence we have 

[?‘,L,+,(P)],< [v,Rk+ 11, 

as required. 

Another easy induction argument now yields 

[K L,(P); k] < [ K P; ik] for i,k>l. 

COROLLARY 4. Let j be an integer with j > 2r/(p - 1). Then for any x in 
L,(P) we have O,,(C,(x)) = O,,(G). 

ProoJ We have [V, Lj(P); (p - 1)/2] < [V, P;j((p - 1)/2)] = 0. In 
particular, each x E L/(P) has minimum polynomial of degree (p - 1)/2 or 
less on V. By Theorem A, O,(C,(x)) = O,,(G) for each x E L/(P). 

Remark. Statements corresponding to Corollary 4 can be made about 
elements of Pck) for sufticiently large k by making use of the fact that 
Pck) <L,,(P) for k > 0. 

We also remark that for j as in Corollary 4, we may choose an element z 
in Z(P)#n Lj(P), if L,(P) # 1,. By the Hall-Higman theorem, for any 
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x in P we have O,(C,(x)) < C,(z). Thus O,,(C,(z))= O,,(G) and 
(O,&(4): x E p> < C,(z). 

COROLLARY 5. Let y be a p-element of G, Q b a p-subgroup of G with 
y E Co(Q), and let W = C,(Q). Then if W( 1 - y)‘p-“‘2 = 0, we have 

O,GAYN n C,(Q) G O,G(QN- 

ProoJ Let H = C,(Q). Then W is H-invariant, and C,( I+‘) is a p-group. 
Since yEH, we may apply Theorem A to conclude that 
O,W) = O,,&,(Y)). N 0~ opt(cG(~N n G(Q) G O,GAY)) = O,W = 
O,GAQ))- 

COROLLARY 6. Let H be a p-constrainedfinite group with O,,(H) = l,, 
and such that K = O,,(H) is elementary Abelian. Let P E Sylp(H) be of 
nilpotence class n. Let j be an integer >2n/(p - l), and let - denote images 
in H/K. Then for any x in Lj(P) we have O,.(C&)) = O,,(i?). 

Proof. [K, L,(P); (p - 1)/2] < Lj(U-,,,2,(P) = 1,. Thus X has minimum 
polynomial of degree (p - 1)/2 or less on K (regarded as a vector space). 
Since B is faithfully represented on K, the result now follows from 
Theorem A. 

COROLLARY 7. Let H be a finite group, p be a prime, M be a faithful 
FH-module, where F is a field of characteristic p, W be an Abelian p- 
subgroup of H which is generated by elements having minimum polynomial of 
degree (p - 1)/2 or less on M. Then for any subgroup, A, of W, we have 

O,K,W = O,W. 

ProoJ: We use induction on 1 HI. If W < Z(H), the corollary is obviously 
true. Suppose that W &Z(H), and let w E W\Z(H) be a generator of W 
having minimum polynomial of degree (p - 1)/2 or less on M. By the 
Hall-Higman theorem, O,,(C,(A)) < C,(w) for each subgroup A of W. By 
induction, we have O,,(C,(A)) < O,(C,(w)) for each such subgroup (since 
]C,,(w)l < IHI). By Theorem A, O,,(C,(w)) = O,,(H). Also, by the 
Hall-Higman theorem, O,(H) < C,(w). Thus O,,(H) = O,,(C,,(A)) for 
each subgroup A of W. 

Remark. Let H be a finite group, p be a prime, and suppose that M is a 
faithful KH-module, where K is a field of characteristic 0. Let P E Sylp(H) 
and let x E P be an element having (p - 1)/2 or fewer eigenvalues on M. Let 
W = (x8 E P: g E G). Then W is Abelian (for we may suppose that elements 
of P are represented by monomial matrices, in which case all conjugates of x 
in P are represented by diagonal matrices). We can therefore’ apply 
Corollary 7 to the reduction (modp) of M. 
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