Some Remarks on p-Local Cores in Linear Groups

Geoffrey R. Robinson
Department of Mathematics, University of Chicago, 5734 University Avenue, Chicago, Illinois 60637
Communicated by Walter Feit

Received August 31, 1982

In this paper, we prove the following result:

Theorem A. Let G be a finite group, p be a prime, F be an algebraically closed field of characteristic p. Let M be an $F G$-module such that $C_{G}(M)$ is a p-group. Let x be an element of G such that $M(1-x)^{(p-1) / 2}=0$. Then $O_{p^{\prime}}\left(C_{G}(x)\right)=O_{p^{\prime}}(G)$.

Of course, it quickly follows that the corresponding result is true if F is of characteristic p, but not algebraically closed, or if F is a field of characteristic 0 and x is a p-element having minimum polynomial of degree $(p-1) / 2$ or less on the $F G$-module M such that $C_{G}(M)$ is a p-group.

The main idea behind the proof of Theorem A is to apply the ideas used in Nagao's proof of Brauer's second main theorem [1] in a situation when we are dealing with a p-element having a minimum polynomial of small degree.

We start with two general lemmas. The first is probably well known, and the second is a straightforward adaptation of Nagao's argument to our situation.

Lemma 1. Let H be a finite group, p be a prime. Then for any $x \in O_{p}(H)$ we have $O_{p^{\prime}}(H)=O_{p^{\prime}}\left(C_{H}(x)\right)$.

Proof. Certainly, we have $\left[O_{p^{\prime}}(H), x\right]=1_{H}, O_{p^{\prime}}(H) \leqslant O_{p^{\prime}}\left(C_{H}(x)\right)$. To prove the reverse inclusion, we may suppose that $O_{p^{\prime}}(H)=1_{H}$, and we do so. Let $A=O_{p}\left(C_{H}(x)\right), \quad B=O_{p}(H)$. Then $A \times\langle x\rangle$ normalizes B, and $\left[A, C_{B}(x)\right] \leqslant O_{p},\left(C_{H}(x)\right) \cap O_{p}\left(C_{H}(x)\right)=1_{H}$. By a well-known lemma of J. G . Thompson, $[A, B]=1_{H}$.

Now let $E=E(H)$ (the central product of the components of H). Then $[E, x] \leqslant E \cap O_{p}(H)=1_{H}$, so $E \leqslant C_{H}(x)$. Hence E and $O_{p}\left(C_{H}(x)\right)$ normalize each other, so $\left[E, O_{p^{\prime}}\left(C_{H}(x)\right)\right] \leqslant E \cap O_{p^{\prime}}\left(C_{H}(x)\right)$. Since $O_{p^{\prime}}(H)=1_{H}$, each component of H has order divisible by p, so it quickly follows now that
$\left\{E, O_{p^{\prime}}\left(C_{H}(x)\right)\right]=1_{H} . \quad$ We now have $\left.\mid O_{p^{\prime}}\left(C_{H}(x)\right), F^{*}(H)\right]=1_{H}$, so $O_{p^{\prime}}\left(C_{H}(x)\right) \leqslant Z(F(H))$, and $O_{p^{\prime}}\left(C_{H}(x)\right)=1_{H}$, since $O_{p^{\prime}}(H)=1_{H}$.

Lemma 2. Let H be a finite group, p be a prime, x be an element of order p in H. Let M be an FH-module in the p-block B, where F is a field of characteristic p containing a splitting field for H and its subgroups. Then we may write $M_{C_{H}(x)}=L \oplus N$, where L has composition factors in p-blocks of $C_{H}(x)$ which are dominated by B in the sense of the Brauer homomorphism and where $N_{(x)}$ is projective.

Proof. Let $\tau: Z(F H) \rightarrow Z\left(F C_{H}(x)\right)$ denote the Brauer homomorphism, let e be the block idempotent of $Z(F H)$ associated with B, and let $f=e \tau$. Then $M_{C_{H}(x)}=M_{C_{H}(x)} f \oplus M_{C_{H}(x)}(e-f) \quad$ (because $\left.\quad M e=M\right)$. Let $L=M_{C_{H}(x)} f$, $N=M_{C_{H}(x)}(e-f)$. It only remains to prove that $N_{\langle x\rangle}$ is projective.

Now let K be a class sum in $Z(F H)$. Then we may write $K=K \tau+U+x^{-1} U x+\cdots+x^{-(p-1)} U x^{p-1}$ for some U in $F H$. Thus we may write $e=f+Z+x^{-1} Z x+\cdots+x^{-(p-1)} Z x^{(p-1)}$ for some Z in $F H$. Now $N(e-f)=N$ (more precisely, $n(e-f)=n$ for each n in N). The mapping $\phi: N \rightarrow N$ given by $n \phi=n Z(e-f)$ satisfies $i_{N}=\phi+x^{-1} \phi x \cdots+$ $x^{-(p-1)} \phi x^{(p-1)}$, and so, by the criterion of D. G. Higman, $N_{\langle x\rangle}$ is projective.

Proof of Theorem A. The proof is broken into a number of easy steps. We suppose that Theorem A is false, and that a pair (G, M) has been chosen to violate the theorem with $|G|+\operatorname{dim}_{F}(M)$ as small as possible.

Step 1. By Lemma 1, we see immediately that $x \notin O_{p}(G)$.
Step 2. By the Hall-Higman theorem, $\left[O_{p},(G), x\right] \leqslant C_{G}(M)$, so that $O_{p^{\prime}}(G) \leqslant O_{p^{\prime}}\left(C_{G}(x)\right)$, as $C_{G}(M)$ is a p-group. It only remains to prove that $O_{p^{\prime}}\left(C_{G}(x)\right) \leqslant O_{p^{\prime}}(G)$.

Step 3. M is irreducible, and $C_{G}(M)=1_{G}$.
Proof of Step 3. Suppose that M is not irreducible. Then, as $x \notin O_{p}(G)$, x acts nontrivially on some $F G$-composition factor of M, say V.

Let $K=C_{G}(V), \bar{G}=G / K$ and ${ }^{-}$denote images in \bar{G}. Then $[G, x] \nless K$, since V is irrcducible and \bar{x} acts nontrivially on V. By the minimality of $(G, M), O_{p^{\prime}}\left(C_{\bar{G}}(\bar{x})\right) \leqslant O_{p^{\prime}}(\bar{G})$ (for $\operatorname{dim}_{F}(V)<\operatorname{dim}_{F}(M)$). Define the subgroup U of G by $\bar{U}=C_{\bar{G}}(\bar{x})$. Then $U<G$, so by the minimality of (G, M), $O_{p^{\prime}}\left(C_{u}(x)\right) \leqslant O_{p^{\prime}}(U), \quad$ so that $\quad O_{p^{\prime}}\left(C_{G}(x)\right) \leqslant O_{p^{\prime}}\left(C_{u}(x)\right) \leqslant O_{p^{\prime}}(U)$. Now $\overline{O_{p},(U)} \leqslant O_{p^{\prime}},\left(C_{\bar{G}}(\bar{x}) \leqslant O_{p^{\prime}}(\bar{G})\right.$.

Define the subgroup T of G by $\bar{T}=O_{p}(\bar{G})$. Suppose that $T\langle x\rangle \neq G$. Then $O_{p^{\prime}}\left(C_{G}(x)\right) \leqslant O_{p^{\prime}}\left(C_{T(x)}(x)\right) \leqslant O_{p}(T)$ by the minimality of (G, M). Since $T \triangleleft G$, we have $O_{p^{\prime}}\left(C_{G}(x)\right) \leqslant O_{p^{\prime}}(G)$, contrary to assumption. Thus $T\langle x\rangle=G$. By the Hall-Higman theorem $\bar{G}=\langle\bar{x}\rangle \times \bar{T}$, as \bar{T} is a p^{\prime}-group. This contradicts the fact that \bar{x} is not central in \bar{G}. Hence we are forced to
conclude that M is irreducible. If $C_{G}(M) \neq 1_{G}$, the argument above again leads to a contradiction, so we have $C_{G}(M)=1_{G}$.

Step 4. Let $y=\left\langle O_{p^{\prime}}\left(C_{G}(x)\right)^{g}: g \in G\right\rangle$. Then $G=Y\langle x\rangle$, and M_{Y} is irreducible.

Proof of Step 4. Suppose that $Y\langle x\rangle \neq G$. Then by the minimality of (G, M) we have $O_{p^{\prime}}\left(C_{Y(x)}(x)\right) \leqslant O_{p^{\prime}}(Y) \leqslant O_{p^{\prime}}(G)$. Then we have $O_{p},\left(C_{G}(x)\right) \leqslant O_{p},\left(C_{Y(x\rangle}(x)\right) \leqslant O_{p},(Y) \leqslant O_{p},(G)$, contrary to assumption. Thus $G=Y\langle x\rangle$. We note also that x has order p, since $C_{G}(M)=1_{G}$ and $M(1-x)^{(p-1) / 2}=0$. If M_{Y} is not irreducible, then we may write $M_{r}=V \oplus V x \cdots \oplus V x^{p-1}$, where V is some irreducible submodule of M_{Y}. This contradicts the fact that x has minimum polynomial of degree $(p-1) / 2$ or less on M.

Step 5. Let x have minimum polynomial degree n on M. Then the trivial module occurs at least n times as an $F C_{G}(x)$-composition factor of $\operatorname{Hom}_{F}(M, M)_{C_{G}(x)}$.

Proof of Step 5. Consideration of the series $O<M(1-x)^{n-1}<$ $M(1-x)^{n-2} \cdots<M(1-x)<M$ shows that $M_{C_{G}(x)}$ has composition length at least n. Now if the Brauer character for $M_{C_{G}(x)}$ is $\sum_{j=1}^{k} a_{j} \phi_{j}$, then $\sum_{j=1}^{k} a_{j} \geqslant n$, and the Brauer character for $\operatorname{Hom}_{F}(M, M)_{c_{G}(x)}$ is $\sum_{i=1}^{k} \sum_{j=1}^{k} a_{i} a_{j} \phi_{i} \bar{\phi}_{j}$, so that the trivial module occurs at least $\sum_{j=1}^{k} a_{j}^{2}$ times as a composition factor of $\operatorname{Hom}_{F}(M, M)_{C_{G}(x)}$, so certainly at least n times.

Step 6. x has minimum polynomial of degree at most $p-2$ on $\operatorname{Hom}_{F}(M, M)$.

Proof of Step 6. This can be verified directly, using a suitable basis for M.

Step 7. Let $\left\{e_{i}: 1 \leqslant i \leqslant k\right\}$ be the set of block idempotents of $Z(F G)$, where e_{1} is the principal block idempotent. Let $V_{t}=\operatorname{Hom}_{F}(M, M) e_{i}$ for $1 \leqslant i \leqslant k$. Then $\operatorname{dim}_{F}\left(V_{1}\right)=1$.

Proof of Step 7. By Brauer's third main theorem, Lemma 2, and Step 6, $V_{1 C_{G}(x)}$ has all its composition factors in the principal p-block of $C_{G}(x)$. Hence $O_{p},\left(C_{G}(x)\right)$ acts trivially on V_{1}. Thus Y acts trivially on V_{1} (recall that $\left.Y=\left\langle O_{p},\left(C_{G}(x)\right)^{g}: g \in G\right\rangle\right)$. Since M_{Y} is irreducible, we have $\operatorname{dim}_{F}\left(V_{1}\right)=1$.

Step 8: The final contradiction. By Step 5 (since certainly $n>1$) and Step 7, the trivial module must occur as a composition factor of $V_{i C_{6}(x)}$ for some $i>1$. However, by Lemma 2, Brauer's third main theorem, and Step 6, $V_{i C_{G}(x)}$ does not have any composition factor in the principal block of $C_{G}(x)$. This contradiction completes the proof of Theorem A.

Some Corollaries and Applications

Let G be a finite group, p be a prime, F be a field of characteristic p, and V be a finite dimensional faithful $F G$-module. Let P be a p-subgroup of G. Let r be the dimension of the largest indecomposable summand of V_{p}. Then $[V, P ; r]=0$ (where $[V, P ; 0]=V,[V, P ; i+1]=[V, P ; i], P]$ for $i>0$).

Let $L_{i}(P)$ denote the i th term of the lower central series of P. Lemma 3 is presumably a well-known result.

Lemma 3. For $i \geqslant 1$, we have $\left[V, L_{i}(P)\right] \leqslant[V, P ; i]$.
Proof. We use induction on i. The result is true for $i=1$. Suppose that the result has been established for $i=k$. Then we have

$$
\left[V, L_{k}(P), P\right] \leqslant[[V, P ; k], P]=[V, P ; k+1]
$$

Also, we have

$$
\left[P, V, L_{k}(P)\right] \leqslant[[V, P], P ; k]=[V, P ; k+1]
$$

By the three subgroups lemma,

$$
\left[L_{k}(P), P, V\right] \leqslant[V, P ; k+1]
$$

Hence we have

$$
\left[V, L_{k+1}(P)\right] \leqslant[V, P ; k+1]
$$

as required.
Another easy induction argument now yields

$$
\left[V, L_{i}(P) ; k\right] \leqslant[V, P ; i k] \quad \text { for } \quad i, k \geqslant 1
$$

Corollary 4. Let j be an integer with $j \geqslant 2 r /(p-1)$. Then for any x in $L_{j}(P)$ we have $O_{p},\left(C_{G}(x)\right)=O_{p^{\prime}}(G)$.

Proof. We have $\left[V, L_{j}(P) ; \quad(p-1) / 2\right] \leqslant[V, P ; j((p-1) / 2)]=0$. In particular, each $x \in L_{j}(P)$ has minimum polynomial of degree $(p-1) / 2$ or less on V. By Theorem A, $O_{p^{\prime}}\left(C_{G}(x)\right)=O_{p^{\prime}}(G)$ for each $x \in L_{j}(P)$.

Remark. Statements corresponding to Corollary 4 can be made about elements of $P^{(k)}$ for sufficiently large k by making use of the fact that $P^{(k)} \leqslant L_{2 k}(P)$ for $k \geqslant 0$.

We also remark that for j as in Corollary 4, we may choose an element z in $Z(P)^{\#} \cap L_{j}(P)$, if $L_{j}(P) \neq 1_{G}$. By the Hall-Higman theorem, for any
x in P we have $O_{p^{\prime}}\left(C_{G}(x)\right) \leqslant C_{G}(z)$. Thus $O_{p^{\prime}}\left(C_{G}(z)\right)=O_{p^{\prime}}(G)$ and $\left\langle O_{p^{\prime}}\left(C_{G}(x)\right): x \in P\right\rangle \leqslant C_{G}(z)$.

Corollary 5. Let y be a p-element of G, Q b a p-subgroup of G with $y \in C_{G}(Q)$, and let $W=C_{\nu}(Q)$. Then if $W(1-y)^{(p-1) / 2}=0$, we have

$$
O_{p^{\prime}}\left(C_{G}(y)\right) \cap C_{G}(Q) \leqslant O_{p^{\prime}}\left(C_{G}(Q)\right) .
$$

Proof. Let $H=C_{G}(Q)$. Then W is H-invariant, and $C_{H}(W)$ is a p-group. Since $y \in H$, we may apply Theorem A to conclude that $O_{p^{\prime}}(H)=O_{p^{\prime}}\left(C_{H}(y)\right)$. Now $O_{p^{\prime}}\left(C_{G}(y)\right) \cap C_{G}(Q) \leqslant O_{p^{\prime}}\left(C_{H}(y)\right)=O_{p^{\prime}}(H)=$ $O_{p^{\prime}}\left(C_{G}(Q)\right)$.

Corollary 6. Let H be a p-constrained finite group with $O_{D^{\prime}}(H)=1_{H}$, and such that $K=O_{p}(H)$ is elementary Abelian. Let $P \in \operatorname{Sylp}(H)$ be of nilpotence class n. Let j be an integer $\geqslant 2 n /(p-1)$, and let denote images in H / K. Then for any x in $L_{j}(P)$ we have $O_{p^{\prime}}\left(C_{\vec{H}}(\bar{x})\right)=O_{p^{\prime}}(\bar{H})$.

Proof. $\left[K, L_{j}(P) ;(p-1) / 2\right] \leqslant L_{j((p-1) / 2)}(P)=1_{H}$. Thus \bar{x} has minimum polynomial of degree $(p-1) / 2$ or less on K (regarded as a vector space). Since \bar{H} is faithfully represented on K, the result now follows from Theorem A.

Corollary 7. Let H be a finite group, p be a prime, M be a faithful FH-module, where F is a field of characteristic p, W be an Abelian p subgroup of H which is generated by elements having minimum polynomial of degree $(p-1) / 2$ or less on M. Then for any subgroup, A, of W, we have $O_{p^{\prime}}\left(C_{H}(A)\right)=O_{p^{\prime}}(H)$.

Proof. We use induction on $|H|$. If $W \leqslant Z(H)$, the corollary is obviously true. Suppose that $W \not \approx Z(H)$, and let $w \in W \backslash Z(H)$ be a generator of W having minimum polynomial of degree $(p-1) / 2$ or less on M. By the Hall-Higman theorem, $O_{p^{\prime}}\left(C_{H}(A)\right) \leqslant C_{H}(w)$ for each subgroup A of W. By induction, we have $O_{p^{\prime}}\left(C_{H}(A)\right) \leqslant O_{p^{\prime}}\left(C_{H}(w)\right)$ for each such subgroup (since $\left.\left|C_{H}(w)\right|<|H|\right)$. By Theorem A, $\quad O_{p^{\prime}}\left(C_{H}(w)\right)=O_{D^{\prime}}(H)$. Also, by the Hall-Higman theorem, $O_{p^{\prime}}(H) \leqslant C_{H}(W)$. Thus $O_{p^{\prime}}(H)=O_{p^{\prime}}\left(C_{H}(A)\right)$ for each subgroup A of W.

Remark. Let H be a finite group, p be a prime, and suppose that M is a faithful $K H$-module, where K is a field of characteristic 0 . Let $P \in \operatorname{Sylp}(H)$ and let $x \in P$ be an element having $(p-1) / 2$ or fewer eigenvalues on M. Let $W=\left\langle x^{g} \in P: g \in G\right\rangle$. Then W is Abelian (for we may suppose that elements of P are represented by monomial matrices, in which case all conjugates of x in P are represented by diagonal matrices). We can therefore apply Corollary 7 to the reduction $(\bmod p)$ of M.

Reference

1. H. Nagao, A proof of Brauer's theorem on generalized decomposition numbers, Nagoya Math. J. 22 (1963), 73-77.
