JOURNAL OF ALGEBRA 83, 471-476 (1983)

Some Remarks on *p*-Local Cores in Linear Groups

GEOFFREY R. ROBINSON

Department of Mathematics, University of Chicago, 5734 University Avenue, Chicago, Illinois 60637

Communicated by Walter Feit

Received August 31, 1982

In this paper, we prove the following result:

THEOREM A. Let G be a finite group, p be a prime, F be an algebraically closed field of characteristic p. Let M be an FG-module such that $C_G(M)$ is a p-group. Let x be an element of G such that $M(1-x)^{(p-1)/2} = 0$. Then $O_{p'}(C_G(x)) = O_{p'}(G)$.

Of course, it quickly follows that the corresponding result is true if F is of characteristic p, but not algebraically closed, or if F is a field of characteristic 0 and x is a p-element having minimum polynomial of degree (p-1)/2 or less on the FG-module M such that $C_G(M)$ is a p-group.

The main idea behind the proof of Theorem A is to apply the ideas used in Nagao's proof of Brauer's second main theorem [1] in a situation when we are dealing with a *p*-element having a minimum polynomial of small degree.

We start with two general lemmas. The first is probably well known, and the second is a straightforward adaptation of Nagao's argument to our situation.

LEMMA 1. Let H be a finite group, p be a prime. Then for any $x \in O_p(H)$ we have $O_{p'}(H) = O_{p'}(C_H(x))$.

Proof. Certainly, we have $[O_{p'}(H), x] = 1_H$, $O_{p'}(H) \leq O_{p'}(C_H(x))$. To prove the reverse inclusion, we may suppose that $O_{p'}(H) = 1_H$, and we do so. Let $A = O_{p'}(C_H(x))$, $B = O_p(H)$. Then $A \times \langle x \rangle$ normalizes B, and $[A, C_B(x)] \leq O_{p'}(C_H(x)) \cap O_p(C_H(x)) = 1_H$. By a well-known lemma of J. G. Thompson, $[A, B] = 1_H$.

Now let E = E(H) (the central product of the components of H). Then $[E, x] \leq E \cap O_p(H) = 1_H$, so $E \leq C_H(x)$. Hence E and $O_{p'}(C_H(x))$ normalize each other, so $[E, O_{p'}(C_H(x))] \leq E \cap O_{p'}(C_H(x))$. Since $O_{p'}(H) = 1_H$, each component of H has order divisible by p, so it quickly follows now that

 $[E, O_{p'}(C_H(x))] = 1_H$. We now have $[O_{p'}(C_H(x)), F^*(H)] = 1_H$, so $O_{p'}(C_H(x)) \leq Z(F(H))$, and $O_{p'}(C_H(x)) = 1_H$, since $O_{p'}(H) = 1_H$.

LEMMA 2. Let H be a finite group, p be a prime, x be an element of order p in H. Let M be an FH-module in the p-block B, where F is a field of characteristic p containing a splitting field for H and its subgroups. Then we may write $M_{C_H(x)} = L \oplus N$, where L has composition factors in p-blocks of $C_H(x)$ which are dominated by B in the sense of the Brauer homomorphism and where $N_{(x)}$ is projective.

Proof. Let $\tau: Z(FH) \to Z(FC_H(x))$ denote the Brauer homomorphism, let e be the block idempotent of Z(FH) associated with B, and let $f = e\tau$. Then $M_{C_H(x)} = M_{C_H(x)} f \oplus M_{C_H(x)}(e-f)$ (because Me = M). Let $L = M_{C_H(x)} f$, $N = M_{C_H(x)}(e-f)$. It only remains to prove that $N_{\langle x \rangle}$ is projective.

Now let K be a class sum in Z(FH). Then we may write $K = K\tau + U + x^{-1}Ux + \cdots + x^{-(p-1)}Ux^{p-1}$ for some U in FH. Thus we may write $e = f + Z + x^{-1}Zx + \cdots + x^{-(p-1)}Zx^{(p-1)}$ for some Z in FH. Now N(e-f) = N (more precisely, n(e-f) = n for each n in N). The mapping $\phi: N \to N$ given by $n\phi = nZ(e-f)$ satisfies $i_N = \phi + x^{-1}\phi x \cdots + x^{-(p-1)}\phi x^{(p-1)}$, and so, by the criterion of D. G. Higman, $N_{(x)}$ is projective.

Proof of Theorem A. The proof is broken into a number of easy steps. We suppose that Theorem A is false, and that a pair (G, M) has been chosen to violate the theorem with $|G| + \dim_F(M)$ as small as possible.

Step 1. By Lemma 1, we see immediately that $x \notin O_p(G)$.

Step 2. By the Hall-Higman theorem, $[O_{p'}(G), x] \leq C_G(M)$, so that $O_{p'}(G) \leq O_{p'}(C_G(x))$, as $C_G(M)$ is a p-group. It only remains to prove that $O_{p'}(C_G(x)) \leq O_{p'}(G)$.

Step 3. M is irreducible, and $C_G(M) = 1_G$.

Proof of Step 3. Suppose that M is not irreducible. Then, as $x \notin O_p(G)$, x acts nontrivially on some FG-composition factor of M, say V.

Let $K = C_G(V)$, $\overline{G} = G/K$ and $\overline{}$ denote images in \overline{G} . Then $[G, x] \leq K$, since V is irreducible and \overline{x} acts nontrivially on V. By the minimality of (G, M), $O_{p'}(C_{\overline{G}}(\overline{x})) \leq O_{p'}(\overline{G})$ (for $\dim_F(V) < \dim_F(M)$). Define the subgroup U of G by $\overline{U} = C_{\overline{G}}(\overline{x})$. Then U < G, so by the minimality of (G, M), $O_{p'}(C_u(x)) \leq O_{p'}(U)$, so that $O_{p'}(C_G(x)) \leq O_{p'}(C_u(x)) \leq O_{p'}(U)$. Now $\overline{O_{p'}(U)} \leq O_{p'}(C_{\overline{G}}(\overline{x}) \leq O_{p'}(\overline{G})$.

Define the subgroup \overline{T} of G by $\overline{T} = O_{p'}(\overline{G})$. Suppose that $T\langle x \rangle \neq G$. Then $O_{p'}(C_G(x)) \leq O_{p'}(C_{T(x)}(x)) \leq O_{p'}(T)$ by the minimality of (G, M). Since $T \triangleleft G$, we have $O_{p'}(C_G(x)) \leq O_{p'}(G)$, contrary to assumption. Thus $T\langle x \rangle = G$. By the Hall-Higman theorem $\overline{G} = \langle \overline{x} \rangle \times \overline{T}$, as \overline{T} is a p'-group. This contradicts the fact that \overline{x} is not central in \overline{G} . Hence we are forced to

conclude that M is irreducible. If $C_G(M) \neq 1_G$, the argument above again leads to a contradiction, so we have $C_G(M) = 1_G$.

Step 4. Let $y = \langle O_{p'}(C_G(x))^g : g \in G \rangle$. Then $G = Y \langle x \rangle$, and M_Y is irreducible.

Proof of Step 4. Suppose that $Y\langle x \rangle \neq G$. Then by the minimality of (G, M) we have $O_{p'}(C_{Y(x)}(x)) \leq O_{p'}(Y) \leq O_{p'}(G)$. Then we have $O_{p'}(C_G(x)) \leq O_{p'}(C_{Y(x)}(x)) \leq O_{p'}(Y) \leq O_{p'}(G)$, contrary to assumption. Thus $G = Y\langle x \rangle$. We note also that x has order p, since $C_G(M) = 1_G$ and $M(1-x)^{(p-1)/2} = 0$. If M_Y is not irreducible, then we may write $M_Y = V \oplus Vx \dots \oplus Vx^{p-1}$, where V is some irreducible submodule of M_Y . This contradicts the fact that x has minimum polynomial of degree (p-1)/2 or less on M.

Step 5. Let x have minimum polynomial degree n on M. Then the trivial module occurs at least n times as an $FC_G(x)$ -composition factor of $Hom_F(M, M)_{C_G(x)}$.

Proof of Step 5. Consideration of the series $O < M(1-x)^{n-1} < M(1-x)^{n-2} \cdots < M(1-x) < M$ shows that $M_{C_G(x)}$ has composition length at least *n*. Now if the Brauer character for $M_{C_G(x)}$ is $\sum_{j=1}^{k} a_j \phi_j$, then $\sum_{j=1}^{k} a_j \ge n$, and the Brauer character for $\operatorname{Hom}_F(M, M)_{C_G(x)}$ is $\sum_{i=1}^{k} \sum_{j=1}^{k} a_i a_j \phi_i \overline{\phi}_j$, so that the trivial module occurs at least $\sum_{j=1}^{k} a_j^2$ times as a composition factor of $\operatorname{Hom}_F(M, M)_{C_G(x)}$, so certainly at least *n* times.

Step 6. x has minimum polynomial of degree at most p-2 on $\operatorname{Hom}_F(M, M)$.

Proof of Step 6. This can be verified directly, using a suitable basis for M.

Step 7. Let $\{e_i: 1 \le i \le k\}$ be the set of block idempotents of Z(FG), where e_1 is the principal block idempotent. Let $V_i = \text{Hom}_F(M, M) e_i$ for $1 \le i \le k$. Then $\dim_F(V_1) = 1$.

Proof of Step 7. By Brauer's third main theorem, Lemma 2, and Step 6, $V_{1C_G(x)}$ has all its composition factors in the principal *p*-block of $C_G(x)$. Hence $O_{p'}(C_G(x))$ acts trivially on V_1 . Thus Y acts trivially on V_1 (recall that $Y = \langle O_{p'}(C_G(x))^g : g \in G \rangle$). Since M_Y is irreducible, we have $\dim_F(V_1) = 1$.

Step 8: The final contradiction. By Step 5 (since certainly n > 1) and Step 7, the trivial module must occur as a composition factor of $V_{iC_G(x)}$ for some i > 1. However, by Lemma 2, Brauer's third main theorem, and Step 6, $V_{iC_G(x)}$ does not have any composition factor in the principal block of $C_G(x)$. This contradiction completes the proof of Theorem A.

GEOFFREY R. ROBINSON

SOME COROLLARIES AND APPLICATIONS

Let G be a finite group, p be a prime, F be a field of characteristic p, and V be a finite dimensional faithful FG-module. Let P be a p-subgroup of G. Let r be the dimension of the largest indecomposable summand of V_p . Then [V, P; r] = 0 (where [V, P; 0] = V, [V, P; i+1] = [V, P; i], P] for i > 0).

Let $L_i(P)$ denote the *i*th term of the lower central series of P. Lemma 3 is presumably a well-known result.

LEMMA 3. For $i \ge 1$, we have $[V, L_i(P)] \le [V, P; i]$.

Proof. We use induction on *i*. The result is true for i = 1. Suppose that the result has been established for i = k. Then we have

$$[V, L_k(P), P] \leq [[V, P; k], P] = [V, P; k+1].$$

Also, we have

$$[P, V, L_k(P)] \leq [[V, P], P; k] = [V, P; k+1].$$

By the three subgroups lemma,

$$[L_k(P), P, V] \leq [V, P; k+1].$$

Hence we have

$$[V, L_{k+1}(P)] \leq [V, P; k+1],$$

as required.

Another easy induction argument now yields

$$[V, L_i(P); k] \leq [V, P; ik]$$
 for $i, k \geq 1$.

COROLLARY 4. Let j be an integer with $j \ge 2r/(p-1)$. Then for any x in $L_j(P)$ we have $O_{p'}(C_G(x)) = O_{p'}(G)$.

Proof. We have $[V, L_j(P); (p-1)/2] \leq [V, P; j((p-1)/2)] = 0$. In particular, each $x \in L_j(P)$ has minimum polynomial of degree (p-1)/2 or less on V. By Theorem A, $O_{p'}(C_G(x)) = O_{p'}(G)$ for each $x \in L_j(P)$.

Remark. Statements corresponding to Corollary 4 can be made about elements of $P^{(k)}$ for sufficiently large k by making use of the fact that $P^{(k)} \leq L_{2k}(P)$ for $k \geq 0$.

We also remark that for j as in Corollary 4, we may choose an element z in $Z(P)^{\#} \cap L_j(P)$, if $L_j(P) \neq 1_G$. By the Hall-Higman theorem, for any x in P we have $O_{p'}(C_G(x)) \leq C_G(z)$. Thus $O_{p'}(C_G(z)) = O_{p'}(G)$ and $\langle O_{p'}(C_G(x)) : x \in P \rangle \leq C_G(z)$.

COROLLARY 5. Let y be a p-element of G, Q b a p-subgroup of G with $y \in C_G(Q)$, and let $W = C_V(Q)$. Then if $W(1-y)^{(p-1)/2} = 0$, we have

$$O_{p'}(C_G(y)) \cap C_G(Q) \leq O_{p'}(C_G(Q)).$$

Proof. Let $H = C_G(Q)$. Then W is H-invariant, and $C_H(W)$ is a p-group. Since $y \in H$, we may apply Theorem A to conclude that $O_{p'}(H) = O_{p'}(C_H(y))$. Now $O_{p'}(C_G(y)) \cap C_G(Q) \leq O_{p'}(C_H(y)) = O_{p'}(H) = O_{p'}(C_G(Q))$.

COROLLARY 6. Let H be a p-constrained finite group with $O_{p'}(H) = 1_H$, and such that $K = O_p(H)$ is elementary Abelian. Let $P \in Sylp(H)$ be of nilpotence class n. Let j be an integer $\ge 2n/(p-1)$, and let denote images in H/K. Then for any x in $L_i(P)$ we have $O_{p'}(C_H(\bar{x})) = O_{p'}(\bar{H})$.

Proof. $[K, L_j(P); (p-1)/2] \leq L_{j((p-1)/2)}(P) = 1_H$. Thus \bar{x} has minimum polynomial of degree (p-1)/2 or less on K (regarded as a vector space). Since \bar{H} is faithfully represented on K, the result now follows from Theorem A.

COROLLARY 7. Let H be a finite group, p be a prime, M be a faithful FH-module, where F is a field of characteristic p, W be an Abelian p-subgroup of H which is generated by elements having minimum polynomial of degree (p-1)/2 or less on M. Then for any subgroup, A, of W, we have $O_{n'}(C_H(A)) = O_{n'}(H)$.

Proof. We use induction on |H|. If $W \leq Z(H)$, the corollary is obviously true. Suppose that $W \leq Z(H)$, and let $w \in W \setminus Z(H)$ be a generator of W having minimum polynomial of degree (p-1)/2 or less on M. By the Hall-Higman theorem, $O_{p'}(C_H(A)) \leq C_H(w)$ for each subgroup A of W. By induction, we have $O_{p'}(C_H(A)) \leq O_{p'}(C_H(w))$ for each subgroup (since $|C_H(w)| < |H|$). By Theorem A, $O_{p'}(C_H(w)) = O_{p'}(H)$. Also, by the Hall-Higman theorem, $O_{p'}(H) \leq C_H(W)$. Thus $O_{p'}(H) = O_{p'}(C_H(A))$ for each subgroup A of W.

Remark. Let H be a finite group, p be a prime, and suppose that M is a faithful KH-module, where K is a field of characteristic 0. Let $P \in \text{Sylp}(H)$ and let $x \in P$ be an element having (p-1)/2 or fewer eigenvalues on M. Let $W = \langle x^k \in P : g \in G \rangle$. Then W is Abelian (for we may suppose that elements of P are represented by monomial matrices, in which case all conjugates of x in P are represented by diagonal matrices). We can therefore apply Corollary 7 to the reduction (mod p) of M.

GEOFFREY R. ROBINSON

Reference

1. H. NAGAO, A proof of Brauer's theorem on generalized decomposition numbers, Nagoya Math. J. 22 (1963), 73-77.